Name:
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.
Important note: Remember that in problems calling for R code, you are allowed to use any built-in R function, e.g. choose(), sum(), integrate()etc.

1. (15) Consider the marble example, Section 11.5. Find $\operatorname{Var}(\mathrm{Y} \mid \mathrm{B}=2)$.
2. (15) Suppose in Equation (8.22) I wish to form an 88% confidence interval, instead of a 95% one. Give an expression, which must involve a call to one of the R functions we've used, to calculate the number I'll use instead of 1.96 .
3. Consider the "new, improved light bulbs" example in Section 9.6.2. Note: Each of the parts here is independent of the others.
(a) (10) If we wished to have significance level $\alpha=$ 0.10 , sampling 50 bulbs, what should be our threshhold for rejection, like the w in the example?
(b) (15) Suppose we have 15 people test batches of 10 light bulbs, each performing a significance test as in the example. Suppose also that actually H_{0} is true. Find the probability that at least 3 of the people reject H_{0}.
(c) (15) Suppose it turns out that $\bar{X}=1624.2$. Find the p -value.
4. In the baseball data, Section 11.7, I wanted to run separate regression analyses for catchers and starting pitchers.
(a) (15) I extracted the two subsets of my original data frame players, naming them catch and pitch. Give one line of R code that creates catch.
(b) (15) I ran regressions of weight on height in the two groups, with these results:
```
> summary(lm(catch$Weight ~ catch$Height))
Call:
lm(formula = catch$Weight ~ catch$Height)
\begin{tabular}{crrrr} 
Residuals: \\
Min & 1Q Median & 3Q & Max
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr}(>|t|
(Intercept) -79.4301 67.9087 -1.17 0. 0.246
catch$Height 3.9019 0.9335 4.18 7.91e-05 ***
> summary(lm(pitch$Weight ~ pitch$Height))
Call:
lm(formula = pitch$Weight ~ pitch$Height)
Residuals:
Min 
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -126.6988 $44.4338-2.8510 .00477$ ** pitch\$Height $4.4407 \quad 0.5943 \quad 7.4721 .89 \mathrm{e}-12$ ***

Find an approximate 95% confidence interval for the difference (catchers minus pitchers) between the slopes for the Height variables for the two groups.

Solutions:

1.

$$
0^{2} \cdot 0.036 / 0.090+1^{2} \cdot 0.048 / 0.090+2^{2} \cdot 0.006 / 0.090-0.667^{2}
$$

2.

-qnorm (0.06)
3.a
qgamma ($0.90,50,0.001) / 50$
3.b
$1-\operatorname{pbinom}(2,15,0.05)$
3.c
$1-\operatorname{pgamma}(16242,10,0.001)$
4.a
catch <- subset(players, Position = "Catcher")
or
catch <- players[players\$Position = "Catcher",]
4.b

$$
(3.9019-4.4407) \pm 1.96 \sqrt{0.9335^{2}+0.5943^{2}}
$$

