Name: \qquad
Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. Consider the ALOHA simulation on p.47.
(a) (20) On what line do we simulate the possible creation of a new message?
(b) (20) Change line 10 so that it uses sample() instead of runif().
2. (20) Say we roll two dice, a blue one and a yellow one. Let B and Y denote the number of dots we get, respectively. Now let G denote the indicator random variable for the event $S=2$. Find $E(G)$.
3. Suppose I_{1}, I_{2} and I_{3} are independent indicator random variables, with $P\left(I_{j}=1\right)=p_{j}, \mathrm{j}=1,2,3$. Find the following in terms of the p_{j}, writing your derivation in "stacked equation" form [as for example in (3.53)-(3.55)], with reasons in the form of mailing tube numbers. You should do reasonable algebraic simplfication of your expressions.
Let $S=I_{1}+I_{2} I_{3}$.
(a) (20) ES
(b) (20) $\operatorname{Var}(\mathrm{S})$

Solutions:

1.a 14
1.b
numsend <- numsend $+\operatorname{sample}(0: 1,1, \operatorname{prob}=c(p, 1-p))$
2. $\mathrm{EG}=\mathrm{P}(\mathrm{G}=1)=\mathrm{P}(\mathrm{B}+\mathrm{Y}=1)=1 / 36$
3.a

$$
\begin{align*}
E S & =E I_{1}+E I_{2} \cdot E I_{3} \tag{1}\\
& =p_{1}+p_{2} p_{3} \tag{2}
\end{align*}
$$

3.b

$$
\begin{align*}
\operatorname{Var}(S) & =\operatorname{Var}\left(I_{1}\right)+\operatorname{Var}\left(I_{2} I_{3}\right) \tag{3}\\
& =p_{1}\left(1-p_{1}\right)+\operatorname{Var}\left(I_{2} I_{3}\right) \tag{4}
\end{align*}
$$

Let A_{j} denote the event associated with $I_{j}, \mathrm{j}=1,2,3$, and let A denote the event that A_{2} and A_{3} both occur. Then $I_{2} I_{3}$ is the indicator random variable for A. Thus

$$
\begin{align*}
\operatorname{Var}\left(I_{2} I_{3}\right) & =P(A)[1-P(A)] \tag{5}\\
& =\left(p_{2} p_{3}\right)\left[1-p_{2} p_{3}\right] \quad \text { indep } \tag{6}
\end{align*}
$$

