Name: _____

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. (20) In (2.30) and (2.32), cite "mailing tubes" for each, in the form of equation numbers that were used.

2. (40) This problem concerns the ALOHA network example. Let A_i denote the event that Node A attempts to transmit during epoch i, i = 1,2,... and define B_i similarly for Node B.

In each case below, you are given two events, in the first two columns of the table. Write in the third column either I, for independent, D, for disjoint, or N, for neither.

A_1	B_1	
A_1	B_2	
A_1	A_2	
A_1 and B_1	A_1 and not B_1	

3. (40) In the simple board game on pp.15ff, let X_i denote your position after your ith turn, i = 1,2,... Find $P(X_1 = 2)$ and $P(X_2 = 2|X_1 = 2)$, giving your answers as fractional expressions, e.g. (1+2/3) / (2 + 1/2).

Solutions:

1. (2.2), (2.5)

-	
•)	
4	٠

A_1	B_1	Ι
A_1	B_2	Ν
A_1	A_2	Ν
A_1 and B_1	A_1 and not B_1	D

3. Let R_i denote your ith ordinary roll, with B_i being the bonus you get for roll i.

$$P(X_1 = 2) = P(R_1 = 2, B_1 = 0 \text{ or } R_1 = 3, B_1 = 6)$$

= $\frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6}$

Get $P(X_2 = 2|X_1 = 2)$ by reasoning it out. After our first turn, if we are at square 2, the only way to be at that square after the next turn is to first roll a 1, getting us to the bonus square 3, and then roll a 6 for our bonus. The probability is thus (1/6) (1/6).