Name:
Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. X be the number of dots we get in rolling a three-sided die once. (It's cylindrical in shape.) The die is weighted so that the probabilities of one, two and three dots are $1 / 2,1 / 3$ and $1 / 6$, respectively. Note: Express all answers in this problem as common fractions, reduced to lowest terms, such as $2 / 3$ and $9 / 7$.
(a) (10) State the value of $p_{X}(2)$.
(b) (10) Find EX and $\operatorname{Var}(\mathrm{X})$.
(c) (15) Suppose you win $\$ 2$ for each dot. Find EW, where W is the amount you win.
2. This problem concerns the REVISED version of the committee/gender example.
(a) (10) Find $E\left(D^{2}\right)$. Express your answer as an unsimpilfied expression involving combinatorial quantities such as $\binom{168}{28}$.
(b) (15) Find $P\left(G_{1}=G_{2}=1\right)$. Express your answer as a common fraction.
3. (15) State the (approximate) return value for the function below, in terms of w. You must cite an equation number in the book to get full credit.
```
xsim <- function(nreps,w) {
    sumn <- 0
    for (i in 1:nreps) {
        n <- 0
        while (TRUE) {
            n <- n + 1
            u<- runif(1)
            if (u<w) break
        }
        sumn <- sumn + n
    }
    return(sumn/nreps)
}
```

4. (15) Consider the parking space example on p.48. (NOT the variant in the homework.) Let N denote the number of empty spaces in the first block. State the value of $\operatorname{Var}(\mathrm{N})$, expressed as a common fraction.
5. (10) Suppose X and Y are independent, with variances 1 and 2 , respectively. Find the value of c that minimizes $\operatorname{Var}[\mathrm{cX}+(1-\mathrm{c}) \mathrm{Y}]$.

Solutions:

1.a $1 / 3$
1.b

$$
E X=1 \cdot(1 / 2)+2 \cdot(1 / 3)+3 \cdot(1 / 6)=5 / 3
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E X)^{2} \\
& =1^{2} \cdot(1 / 2)+2^{2} \cdot(1 / 3)+3^{2} \cdot(1 / 6)-25 / 9 \\
& =5 / 9
\end{aligned}
$$

1.c $\mathrm{EW}=\mathrm{E}(2 \mathrm{X})=2 \mathrm{EX}=10 / 3$
2.a

$$
E\left(D^{2}\right)=(-2)^{2} \frac{\binom{6}{1}\binom{3}{3}}{\binom{9}{4}}+\ldots
$$

2.b

$$
\begin{aligned}
P\left(G_{1}=G_{2}=1\right) & =P\left(G_{1}=1\right) P\left(G_{2}=1 \mid G_{1}=1\right) \\
& =\frac{6}{9} \cdot \frac{5}{8} \\
& =\frac{5}{12}
\end{aligned}
$$

3. $1 / \mathrm{w}$, by (3.74)
4. $10(0.2)(1-0.2)=8 / 5$, by (3.82)
5.

$$
\begin{aligned}
0 & =\frac{d}{d c} \operatorname{Var}[c X+(1-c) Y] \\
& =\frac{d}{d c}\left[c^{2} \operatorname{Var}(X)+(1-c)^{2} \operatorname{Var}(Y)\right] \\
& =\frac{d}{d c}\left[c^{2}+2(1-c)^{2}\right] \\
& =2 c-4(1-c)
\end{aligned}
$$

So, the best c is $2 / 3$.

