Name: \qquad
Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.
SHOW YOUR WORK! Any arithmetical answer must be expressed as a common fraction (e.g. 2/3, $7 / 4$), reduced to lowest terms.

1. (25) Urn I contains three blue marbles and three yellow ones, while Urn II contains five and seven of these colors. We draw a marble at random from Urn I and place it in Urn II. We then draw a marble at random from Urn II. Let B_{1} denote the event that the first marble drawn is blue, Y_{2} denote the event that the second marble drawn is yellow, and so on. Fill in the blanks with equation numbers which will serve as reasons for the steps,

$$
\begin{align*}
P\left(B_{2}\right) & =P\left(B_{1} \text { and } B_{2} \text { or } Y_{1} \text { and } B_{2}\right) \tag{1}\\
& =P\left(B_{1} \text { and } B_{2}\right)+P\left(Y_{1} \text { and } B_{2}\right) \tag{2}\\
& =P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right)+P\left(Y_{1}\right) P\left(B_{2} \mid Y_{1}\right) \tag{3}
\end{align*}
$$

2. (25) Fill in the blanks (and only those blanks, no extra code elsewhere) in the following R code, which returns the (approximate) probability in (2.36) in the board game example:
```
boardsim <- function(nreps) {
    count4 <- 0
    countbonusgiven4<< 0
    for (i in 1: ) { # blank 1
        position <- sample(1:6,1)
        if (position == 3) {
        # blank 2
            position <- (position + sample(1:6,1)) %% 8
        } # blank 3
        if (position == 4) {
                        # blank 4
            if (bonus) countbonusgiven 4 <- countbonusgiven 4 + 1
        }
    }
    return( ) # blank 5
}
```

3. (25) Suppose the random variable X takes on only the values 0 and 1 . Fill in the blank with either $<, \leq,=, \neq$, \geq or no relation:
EX

$$
\mathrm{P}(\mathrm{X}=1)
$$

4. (25) Again for the board game example, suppose that the telephone report is that A ended up at square 1 after his first turn. Find the probability that he got a bonus.

Solutions:

1. $(2.2),(2.5)$
2.
```
boardsim <- function(nreps) {
    count4<- 0
    countbonusgiven4 <- 0
    for (i in 1:nreps) {
        position <- sample(1:6,1)
            if (position = 3) {
            bonus <- TRUE
            position <- (position + sample(1:6,1)) %% 8
        } else bonus <- FALSE
            if (position= 4) {
                count4<- count4 + 1
                if (bonus) countbousngiven4 <- countbousngiven4 + 1
        }
    }
    return(countbousngiven4/count4)
}
```

3. The answer is $=$, since

$$
E X=1 \cdot P(X=1)+0 \cdot P(X=0)=P(X=1)
$$

4. Landing at square 1 after one turn means $\mathrm{R}+\mathrm{B}$ is either 1 or 9 . Let $\mathrm{T}=\mathrm{R}+\mathrm{B}$.

$$
\begin{align*}
P(B>0 \mid T=1 \text { or } T=9) & =\frac{P((T=1 \text { or } T=9) \text { and } B>0)}{P(T=1 \text { or } T=9)} \tag{4}\\
& =\frac{P((R, B)=(3,6))}{P((R, B)=(1,0) \text { or }(R, B)=(3,6))} \tag{5}\\
& =\frac{\frac{1}{6} \cdot \frac{1}{6}}{\frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}} \tag{6}\\
& =\frac{1}{7} \tag{7}
\end{align*}
$$

