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Abstract

KDD is an inherently statistical activity, and there has been considerable literature which draws upon statistical science.
However, the usage has typically been vague and informal at best, and at worst of a seriously misleading nature. The present
paper seeks to take a first step in remedying this problem by pairing precise mathematical descriptions of the concepts in
KDD with practical interpretations and implications for specific KDD issues.

1 Introduction

A number of papers by statisticians have noted the inherently statistical nature of KDD, such as Pregibon [1], Friedman
[2] and Rocke [3]. These authors have pointed out various statistical tools which should prove useful in KDD. Yet these
papers have not taken a mathematically rigorous approach in their presentation.

Similarly, much of the research in KDD has been of a purely empirical nature, without a supporting theoretical framework.
As the old saying goes, “The proof of the pudding is in the eating,” so empirical evaluation is a must for any method. Yet it
is important also tounderstandwhy a method works well or not, and this calls for a mathematical treatment at some level.

On the other hand, there are many papers which make the opposite error: They are quite rigorous but fail to connect to
real-world issues in a practical, intuitive manner. Moreover, their theoretical nature renders them largely inaccessible to KDD
practitioners.

Clearly, this gap—a gaping chasm, really—is not healthy for the field. We believe the gap is resulting in both misun-
derstandings and missed opportunities. Our aim here, then, will be to bridge this gap—or more accurately, to advocate that
researchers in the field themselves bridge the gap, along the lines we propose in this paper:

We call upon empirical researchers to couch the problems and solutions they discuss in a mathematically precise manner,
and at least undertake a small-scale mathematical analysis. At the same time, we call upon theoretical researchers to present
their work in a more intuitive manner with a more solid connection to actual KDD practice.

In both cases, we will propose a simple framework, consisting of some simple mathematical constructs motivated by
intuitive notions tied to the actual practice of KDD. It is important to note that the latter, i.e. the intuitive “philosophical”
issues, will play an integral role here. The mathematical constructs are not sufficient by themselves. They will be simple, and
in fact will be at least vaguely familiar to some readers, but our emphasis here will be in their interpretation and usage.

In Section 2, we will set up the mathematical framework and their intuitive interpretation in a practical context. Then in the
following sections we present several examples of published work in KDD which we believe would have been enhanced by
the precise yet intuitive approach we have outlined above. We will argue, for example, that contrary to having a constraining
effect on empirical research, a precise yet intuitive formulation of the issues in a research project can actually ehance the
researcher’s ability to do innovative, “out of the box” thinking.

2 Some Infrastructure

As is common in theoretical treatments, we will phrase the issues in terms of a statistical prediction problem. But we
depart from tradition by engaging in an explicit discussion of the practical interpretation of what we mean by “statistical.”



2.1 Notation

Denote our attribute set byX(1), ..., X(d). It is assumed that our database constitutes astatistical sampleof n observations
on these attributes; theith observation on thejth attribute from this sample is denoted byX(j)

i , i = 1,...,n, j = 1,...,d.
To make things concrete—again, this is one of our principle aims—let’s consider the well-known KDD “basket” example.

Each row in the database corresponds to some individual consumer. Some of the attributes may be characteristics of a
consumer, say age, income or gender (say 1 for male, 0 for female), while others will record whether the consumer bought
certain items (1 for yes, 0 for no).

The vector(X(1)
i , ..., X

(d)
i ), representing the values in theith observation of all our attributes will be denoted byXi. In

relational database terms, this vector is theith row in our relation.

2.2 Sampling from Populations, Real or Conceptual

In considering our database to be a “statistical sample,” we mean that it is a sample from some “population.” This
interpretation is, in our view, key. The population may be tangible, as in the “basket” example, where we are sampling from
the population of all customers of this business.

Or, the population may be more conceptual in nature. A database consisting of students in a new major in a university
could be considered as a sample from the conceptual population of all students at this university, who might be in this
major. If for example we imagine the university overall enrollment had been 20 percent larger this year, with no change in
demographic or other makeup of the enrollment, then some of the increased overall enrollment would have been students
choosing this major.

Here is an example of a “population” which is even more conceptual in nature. Consider the subject of quadratic equations,
studied in school algebra classes:

ax2 + bx+ c = 0 (1)

The students learn that this equation has a real root if and only thediscriminantb2 − 4ac is nonnegative. Suppose one did
not know this rule, and tried to find it using KDD.

This sounds like an inherently non-statistical problem. Yet one could convert it to a statistical problem in the following
way. One could sample randomly froma/b/c space, and for each triplet from this space, determine somehow (say by
graphing the quadratic polynomial) whether a real root exists. One could then apply variousstatistical regression models(see
below), trying to predict the 0-1 variablew from a, b andc. In this manner, we might possibly stumble on the discriminant
rule. discriminant rule

2.3 Relation to Probability Distributions

It is important to relate the abstract mathematical variables to the population being studied. When we speak of the
distribution ofX(j), what we really mean is the distribution of that attribute in the population. SayX(1) is age of the
customer. When we say, for instance, thatP (X(1) > 32) = 0.22, we mean that 22 percent of all customers in this population
are older than 32.

A similar point holds for expected value. Some KDD practitioners with an engineering background might be accustomed
to interpretingE(X(1)) in terms of the physics metaphor of center of gravity. Yet for statistical applications such as KDD,
the relevant interpretation of this quantity is as the mean age of all customers in this population.

3 Prediction

The essence of the statistical nature of KDD is prediction. For notational convenience, in the remainder of this paper, let
us suppose that we are usingX(1), ..., X(d−1) to predictX(d), and rename the latter variableY .

Our focus here will be on predictingdichotomous, i.e. 0/1-valued, variables Y here. (We do not make this restriction on
the variablesX(j).)
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3.1 Statement of the Problem

Suppose for the moment that we know the population distributions of the attributes, and we wish to minimize the overall
probability of misclassification.1 Suppose that we observeX(j) to have the valuevj , j = 1,...,d-1. Then we would guessY to
be either 0 or 1, according to whether

q(v) = q(v1, ..., vd−1)

= P (Y = 1|X(1) = v1, ..., X
(d−1) = vd−1) (2)

is less than 0.5 or greater than 0.5, respectively, wherev = q(v1, ..., vd−1)).

3.2 Classification Vs. Regression

Some authors, e.g. Han [], consider the case of dichotomousY to be a conceptually separate case from that of continuous
Y , and refer to it asclassificationinstead of prediction, but mathematically it is the same problem, in the following sense.

Classically, the problem of predicting a general variableY from a vector of attributesX = (X(1), ..., X(d−1)) is posed as
finding a function h() that minimizes

E[(Y − h(X))2] (3)

One can easily show that the solution is theregression function, h(t) defined by

h(t) = E(Y |X = t) (4)

Now, if Y is dichotomous, i.e.Y takes on the values 0 and 1, then

E(Y |X = t) =
1 · P (Y = 1|X = t)+

0 · P (Y = 0|X = t) = q(t) (5)

In other words, the general formulation of the prediction problem yields the function q() anyway.
This is not just a semantic issue. A vast literature exists on the general regression problem, with much relevant material,2

and it would be a loss not to draw upon it. Note by the way that the computation in the case of the logistic classification
model described below is done via (nonlinear) regression algorithms.3

3.3 The Function q() Must Be Estimated from Sample Data

This is complicated by the fact that we do notthe population distributions of the attributes, as assumed in the previous
paragraph. We thus do not know the functionq() above, and need to estimate it from the observations in our database.

The estimated function,̂q(v), is obtained either by parametric or nonparametric means. A common parametric approach,
for instance, uses the logistic regression model [], which postulates thatq(v) has the form

q(v1, ..., vd−1) =
1

1 + exp[−(β0 + β1v1 + ...+ βd−1vd−1)]

The parametersβj are estimated from our sample dataX(j)
i , yielding the estimated parametersβ̂j and the estimated q(v):

1The latter would not be the case if we assigned different costs to different types of errors. It may be more costly to false guessY to be 1 than to false
guess it to be 0, for example.

2A large separate literature on the classification problem has also been developed, but much of it draws upon the material on regression.
3See for example thelrm procedure in the R statistical package []. By the way, some of these points are also noted (albeit rather abstractly) in Friedman

[].
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q̂(v) =
1

1 + exp[−(β̂0 + β̂1v1 + ...+ β̂d−1vd−1)]

A nonparametric method often used in KDD for estimating q(v) is CART [].
Note that we will make a classification error ifq(v) andq̂(v) are on opposite sides of the value 0.5.

3.4 “Noise Mining”

There is a lot of talk about “noise mining,” “overfitting” and the like in the KDD literature, but again this is rarely precisely
defined.

In some cases, the literature does point out that the “average” discrepancy betweenq̂(v) andq(v) can be shown to consist
of two components—abiascomponent,

E[(Eq̂(v)− q(v))2] (6)

and avariancecomponent,

E[(q̂(v)− Eq̂(v))2] (7)

Note thatv is fixed here, not random. Instead, the randomness involves the fact that these expected values are averages
over all possible samples from the given population.4 This interpretation is very important when one is assessing various
competing types of prediction methodology, and especially important in understanding the bias/variance problem (Section
3.4).

A large bias is due to using too simple a model in the parametric case, or to using too large a granularity in the nonpara-
metric case (e.g. leaf nodes too large in CART). In both cases, one common source of the problem is that we are using too
few predictor attributes.

However, any efforts to reduce the bias will increase the variance, i.e. increase the amount of “noise.” This is due to
having an insufficient sample size n for the given model. In CART, for example, a given rectangle might contain very few
observations, thus renderinĝq() inaccurate within the rectangle. The same rectangle, applied to a larger sample from the
same population, might work fine.

Clearly, there is a tradeoff between bias and variance for fixed n. As finer models are fitted, the bias is reduced but the
variance increases. If too much attention is paid to minimizing bias rather than variance, the decision rules found from the
analysis may be spurious, hence the termnoise mining.

4 Worked-Out Example

Recall that our theme here has been that empirical research work in KDD should include a mathematically precise state-
ment of the problem, and present mathematical treatment of at least a small but illustrative model of the effects being studied.
In that light, we now present such a model of the “noise fitting” problem.

Continue to assume the setting described at the beginning of Section 3, but with the additional specialization that all the
predictor attributesX(j), j = 1,...,d-1 are dichotomous.

Suppose thatX(j), j = 1,...,d-1 all “coin tosses,” i.e. have probability 0.5 of taking on the value 1 and are statistically
independent. Suppose in addition thatP (Y = 1|X(1) = v1) is equal to 0.6 forv1 = 1 and equal to 0.4 forv1 = 0.

Under these circumstances,X(j), j = 2,...,d-1 have no predictive power for Y at all, and

q(v1, v2, ..., vd−1) = P (Y = 1|X(1) = v1) (8)

independent ofv2, ..., vd−1.
But we would not know this, since we would not have the population data. We would have onlysampleestimates of q(v)

to work with, q̂(v). The point then is that that estimate will be subject to the bias/variance issues discussed here. We discuss
the variance issue first, and focus our attention on the estimation of q(1,1,...,1).

4So, our “population” here can be viewed as the n-fold cartesian product of the original population, with the expected value being an average over all
points in that meta-population.
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One decision we would need to make is which of the attributesX(j) to use as predictors. Let us compare the effects of
using justX(1) alone to predict Y, versus usingX(1), X(2), ..., X(d−1) for that prediction. In the former situation, note again
that we would be modeling q(v) to be a function which does not depend onX(2), ..., X(d−1) (see Equation (8)). Again, this
modeling assumption would be correct, but we would not know this.

Suppose we are not using a parametric model, and instead are simply using straight sample proportions to estimate q().
Then if we use onlyX(1) as our predictor, as discussed above, our estimate of q(1,1,...,1) would be the proportion of records
in our database for which Y = 1, among those for whichX(1) = 1, i.e.

q̂(1, 1, ..., 1) =
∑
iX

(1)
i X

(d)
i∑

iX
(1)
i

=
T1

U1
(9)

The question at hand is, “What is the probability thatq̂() will make the right decision for us in this situation, which is to
guess that Y = 1?”5 Well, this is

P (q̂(1, 1, ..., 1) > 0.5) = P (T1 > 0.5U1) (10)

To evaluation this probability, note that just asT1 andU1, being binomially distributed,6 have approximate normal distri-
butions, their bivariate distribution approximates that of a bivariate normal.7 The means and variances ofT1 andU1 are then
np, nq, np(1-p) and nq(1-q), wherep = P (X(1) = X(d) = 1) = 0.3 andq = P (X(1) = 1) = 0.5. The covariance is

Cov(T1, U1)
= n[E(X(1)X(d)X(1))− E(X(1)X(d)) · EX(1)]
= np(1− q) (11)

Any linear combination ofT1 andU1, sayaT1 + bU1, then has an approximate normal distribution with mean n(ap+bq),
and variance

a2V ar(T1) + b2V ar(U1) + 2abCov(T1, U1) (12)

In our case here, a = 1 and b = -0.5. After doing the calculations we find thatE(T1 − 0.5U1) = −0.05n andV ar(T1 −
0.5U1) = 0.1225n,

and thus

P (T1 > 0.5U1) ≈ P (Z > −0.64
√
n) (13)

where Z is a standard N(0,1) variate.
So, Equation (9) is the probability that we make the right decision if we predict Y from onlyX(1). Let’s see how that

probability changes if we predict Y fromX(1), ..., X(d−1).
In this setting, Equation (8) reverts to (2), and (9) becomes

q̂(1, 1, ..., 1) =
∑
iX

(1)
i X

(2)
i ...X

(d−1)
i X

(d)
i∑

iX
(1)
i X

(2)
i ...X

(d−1)
i

=
Td−1

Ud−1
(14)

Equation (13) then becomes (after a bit of algebraic approximation)

P (Td−1 > 0.5Ud−1) ≈ P (Z > −0.5d/2
√
n) (15)

Compare Equations (13) and (15), focusing on the roles of d and n. They are both of the form P(Z ¿ c) for a negative c,
and the algebraically smaller (i.e. more negative) c is, the better. So, for fixed n, the larger d is, the worse is our predictive
ability for Y.

5This is the right decision in the sense that it is the best guess givenX(1). It doesn’t necessarily mean that that guess will be correct.
6The variableW = X(1)X(d) is 0-1 valued, so the sumT1 is binomial.
7This stems from the fact the vector form of the Central Limit Theorem.

5



Now, remember the context: We devised a model here in whichX
(2)
i ...X

(d−1)
i had no predictive ability at all for Y in the

population distribution, though the analyst would not know this.In other words, not only will the analyst not gain predictive
ability by using these attributes, he/she would actually lose predictive power by using them, i.e. we “overfit.”

So, this is the variance side of the bias/variance tradeoff. The number of records in our sample which haveX(1) =
1, X(2) = 1, ..., X(d−1) = 1 will be very small for large d (similar to having a small leaf node in CART), leading to a high
variance for̂q(1, 1, ..., 1).

Equation (15) also shows the role of n in the overfitting issue: For fixed d, as n increases the harmful effect of overfitting
will diminish.

Now, what about the bias side of the bias/variance tradeoff? Suppose we are considering usingX(1), X(2)..., X(k) as our
predictor attributes. Due to the nature of the model here, the bias in using any k in the range1 ≤ k < d − 1 is 0. So, if we
use k greater than 1, we are incurring the problem of increasing variance without reducing bias.

On the other hand, using k = 0 would produce a bias, sinceX(1) does have some predictive value for Y: If k were taken
to be 0, then the population value of q(1,1,...,1) would reduce to the unconditional probability P(Y = 1) = 0.5, rather than the
true value 0.6.

Again, our point in devising this model here is to illustrate our theme that even empirical KDD research should anchor its
presentation with (a) a precise mathematical statement of the problem being studied, and (b) a simple mathematical model
which explicitly illustrates the issues.

The wordexplicitly in (b) should be emphasized. Equation (15) explicitly shows the roles of d and n. One sees that for a
fixed value of n, use of a larger d increases the variance, possibly more than the bias is reduced. As d increases, at some point
our predictive ability based on sample data will begin to diminish, i.e. we will overfit. One also sees, though, that for a larger
value of n, that crossover point will occur for a larger d, i.e. we can use more attributes as our predictors.

6


