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What IS Parallel Coordinates?

• Attempt to view multidimensional data on 2-dimensiohal
screen.

• Simple idea:

• Draw a vertical line for each variable (“parallel coords.”).
• For each data point, mark a dot on each vertical line, at

the value of that variable for that data point.
• For each data point, “connect the dots.”
• Resulting graph: a jagged line for each of your original

data point.
• Can then try to find relations between variables by looking

at line patterns.
• The operative word is “try.”
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Example: R cars data

• Each jagged line is one car.

• Vertical axes are the variables, Cyl, Disp, Hp, etc.

• ALREADY hard to interpret!

• Note: Variables are typically centered and scaled.
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Problems

Hard to interpret, except in “small n, small p” data.
(p = number of variables)
Problem 1: Hard to see relation between “far apart”
variables

Typical solution:
Allow user to interactively do various permutations of
the axes.

Problem 2: Screen clutter!!!!

Typical solutions:
1. α blending (making pixels less dark).
2. Plotting line density instead of lines (equiv. to
tonal, like α).
3. Look at random subset of the data.
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Example: Baseball Player data—height, weight, age (courtesy
of UCLA Stat. Dept.)
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Example: Wine Quality data—various chemical measures (UCI
Repository)



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Another Example of Clutter

Example: Wine Quality data—various chemical measures (UCI
Repository)



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Another Example of Clutter

Example: Wine Quality data—various chemical measures (UCI
Repository)



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Alpha Blending May Not Help
Much

α blending may not help much:

0

5

10

15

fixed.acidityvolatile.aciditycitric.acidresidual.sugarchloridesfree.sulfur.dioxidetotal.sulfur.dioxidedensity pH sulphatesalcohol
variable

va
lu

e

1.0

1.5

2.0

2.5

3.0
qual



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Alpha Blending May Not Help
Much

α blending may not help much:

0

5

10

15

fixed.acidityvolatile.aciditycitric.acidresidual.sugarchloridesfree.sulfur.dioxidetotal.sulfur.dioxidedensity pH sulphatesalcohol
variable

va
lu

e

1.0

1.5

2.0

2.5

3.0
qual



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Alpha Blending May Not Help
Much

α blending may not help much:

0

5

10

15

fixed.acidityvolatile.aciditycitric.acidresidual.sugarchloridesfree.sulfur.dioxidetotal.sulfur.dioxidedensity pH sulphatesalcohol
variable

va
lu

e

1.0

1.5

2.0

2.5

3.0
qual



Parallel
Coordinates—
REVISITED

Norm Matloff
University of
California at

Davis
(new

collaborator:
Yingkang Xie)

Yikes!

Comments:

• Yikes!

• “Don’t let the picture intimidate you!”—A. Inselberg, one
of the pioneers of parallel coordinates, speaking in general
of cluttered p.c. plots

• But it IS intimidating!

• Can TRY to exploit geometric properties, e.g.:

• X shape ⇒ negative ρ
• < shape ⇒ positive ρ
• Nice theory, from projective geometry, etc.
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Example of Clutter, cont’d.

Grouping by player position doesn’t help much:
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Clutter, cont’d.

Grouping by player position doesn’t help much—even in lattice
display.
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My Way

My approach: Plot only a few “typical” lines.

• “Typical” means highest estimated multivariate density.

• No clutter.

• Far-apart variables problem ameliorated.

• (Not related to parallel coordinate density plots.)
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Baseball Data, My Way

• “The monkeys stand
for honesty,
Giraffes are insincere,
Elephants are kindly
but they’re
dumb”—old Simon &
Garfunkel song ‘

• Pitchers are typically
tall, thin, young.

• Catchers typically are
much heavier, older.

• Infielders typically
shorter, thinner,
younger.
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Within-Group Variation

Now look at, say, the 25 most-typical data points in each
group, to gauge within-group variation.

• Pitchers have modest variation in height, very little in
weight and age.

• Catchers have much more variation.
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Cluster Hunting

• Find local maxima of the density.
• Pretend we don’t know about player position. Will the

algorithm discover it?

Suggests 3-7 groups. We have 4 in mind, but there could be
subclusters. So the plot is a hint to look more. Note: The
cluster data points are also printed out, to help find patterns.
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Outlier Hunting

To find outliers, find the points having the LOWEST density.

The unusual ones are thin catchers, fat infielders, very
tall/heavy pitchers.
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Computation

• R package available at
http://heather.cs.ucdavis.edu/bdgraphs.html

• Use k-NN density estimation.

• Use R’s FNN (“fast nearest neighbor”) library for some
speed.

• Use parallel computing for a lot more speed.
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