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On the Web

This PDF file contains my presentation at the R meeting. I’ve
extended the document by including material summarizing the
question-and-answer period of that talk, and will occasionally add
some updates as well.
The most up-to-date version of these slides, and associated R
code, will be available on the Web at
http://heather.cs.ucdavis.edu/barugApr11/.

http://heather.cs.ucdavis.edu/barugApr11/


The Setting

Problem: Large data sets and complex statistical methods
require large amounts of computation.

Solution: Use a multicore machine or cluster.

Problem: The above solution usually works well only for
embarrassingly parallel (EP) problems. (Especially for R, given
its functional programming approach.)

“Solution”: Run in parallel only if you have an
embarrassingly parallel algorithm. :-)
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How It Works

Suppose we wish to calculate an estimator θ̂, say regression
coefficients.

Have n data points, p processes (e.g. p = 2 for dual core on a
single machine).

Break into r chunks of n/p data points each.

For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i
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What Does That Give You?

The result, θ can be proven to have the same statistical
accuracy as the original θ̂. (Manuscript in preparation.)

But the computation of θ is EP even if θ̂ is non-EP.

Alchemy! Non-EP → EP.
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What chunking does here:

set up r R processes (via snow, Rmpi, Rdsm or whatever)

call lm() on each chunk (EP)

average the regression coefficients over all chunks

use those values as your coefficients

will have the same statistical accuracy, but will be faster
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Some Experiments with Regression

compared ordinary sequential lm(), my chunked method, and
gputools (R package to interface GPU cards)

n = number of data points, q = number of predictors, p =
number of processes (deg. of parallelism)

used 3 dual-core PCs, so p ≤ 6

regression is a non-EP problem
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Regression Experiments, cont’d.

Elapsed times in seconds (single runs):

n q p ordinary NM method gputools

500000 30 6 4.18 3.58 8.40

500000 50 6 9.41 6.61 exceeded mem.

100000 100 6 4.13 3.55 3.86

50000 150 6 4.14 3.36 2.92

NM method “handicapped”: used snow (which uses serialize()),
over a network.



Regression Experiments, cont’d.

Elapsed times in seconds (single runs):

n q p ordinary NM method gputools

500000 30 6 4.18 3.58 8.40

500000 50 6 9.41 6.61 exceeded mem.

100000 100 6 4.13 3.55 3.86

50000 150 6 4.14 3.36 2.92

NM method “handicapped”: used snow (which uses serialize()),
over a network.



Regression Experiments, cont’d.

Elapsed times in seconds (single runs):

n q p ordinary NM method gputools

500000 30 6 4.18 3.58 8.40

500000 50 6 9.41 6.61 exceeded mem.

100000 100 6 4.13 3.55 3.86

50000 150 6 4.14 3.36 2.92

NM method “handicapped”: used snow (which uses serialize()),
over a network.



Second Example: Quantile Regression

Model the population conditional quantiles, say medians, as a
linear function.

VERY non-EP.

Elapsed times in seconds (single runs):
n q p ordinary NM method

10000 50 2 2.39 1.50

10000 50 4 2.39 1.34

50000 50 4 36.10 13.43

50000 50 6 35.51 11.19
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Some Comments

How general is this method?

My proof applies to i.i.d. random samples.
Proof could be extended to designed-experiment settings, e.g.
clinical trials with pre-assigned sample sizes for treatment and
control groups.

I have R code available: General code to do the chunking in
snow or Rdsm, and the specific code used for the simulations
here.

Chunking has been used before for a different goal, that of
larger-than-memory data sets: R’s biglm(); Fan and Cheng
(2007)
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Q&A Period (slightly updated)

Question: Does this only work on linear regression problems?

No, the math works on any function of i.i.d. data.

I’ve tried it on logistic regression, principle components and
estimation of hazard functions from censored data, getting
modest to excellent speedups.

Note that if θ̂ is an unbiased estimator, then θ is also
unbiased.

Question: Is there a convergence rate issue in your asymptotics?

In my experiments I’ve found only tiny differences between θ
and θ̂.

The only problems that are worth parallelizing have very large
sample sizes, and thus the asymptotics have certainly taken
effect by then.


