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Where are we with Big Data?

e Role of statistics?
e Role of parallel computation?

e [nteractions between the two?
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Attitudes and worries:

e “With Big Data, you don’t need inference methods.”
e “With Machine Learning, you don't need statistics.”

e Stat community left out of the Big Data revolution (e.g.
Amstat News, June 2013).
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e The Curse of Dimensionality hasn't gone away.
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e Actually, stat is needed more than ever, e.g.:

e Inference is an issue even for big n, once one considers
subsets, where n becomes smaller. Same if do not have
p << n.

e Almost all machine learning techniques are revivals of old
stat methods. And if you don’t understand stat, you won't
be able to use ML methods effectively.

e An old stat technique—nonparametric curve
estimation—now more useful than ever, for Big Data
Graphics.

e The Curse of Dimensionality hasn't gone away. Impossible
to understand without stat.
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Consider the classical (though not universal) data format:

e n observations/cases/instances/ ...
e p variables/features/attributes/...

e Assumed i.i.d.

(Here I'm trying to include terminology from the nonstat
communities.)

Does "Big” Data mean big n or big p or both?

This talk will contain one “big n" section and two “big p”
section.
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Big n can generally be handled:
e Many (though certainly not all) computations “additive,”

thus “embarrassingly parallel.”

e Thus amenable to parallel computation, especially
distributed data, MapReduce etc.

e “Chunks averaging method” (CAM) (Fan et al, 2007;
Matloff, 2010; etc.) can turn most statistical computations
into embarrassingly parallel. (“Software alchemy.”)
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Chunk Averaging Method

Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

Example: Regression.

e Break observations into chunks.
o Fit regression equation to each chunk.
e Average the results.

Produces statistically equivalent results for large n.

Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.
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Issues:
e Can deal (a little bit) better with big-p if we can display
lots of variables on the same graph.
e Can't display all at once, but try to get at least several.
e Problems:

e Displaying > 2 variables on a 2-dimensional device.
o "“Black screen problem”—uwith big n, at least parts of the
screen become solid black.



Graphing Lots of Variables

«O»r <« F»

it
-

DA



Graphing Lots of Variables

«O»r <« F»

it
-

DA



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours:



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing.



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing. But hard to discern exact
relations, and suffers from black-screen problem.



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing. But hard to discern exact
relations, and suffers from black-screen problem.

e Parallel coordinates:



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing. But hard to discern exact
relations, and suffers from black-screen problem.

e Parallel coordinates: Draw one vertical axis for each
variable. Draw a set of connecting lines for each data
point.



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Graphing Lots of Variables

Some existing methods:

e Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing. But hard to discern exact
relations, and suffers from black-screen problem.

e Parallel coordinates: Draw one vertical axis for each
variable. Draw a set of connecting lines for each data
point.

Hard to understand noncontiguous axes, black screen
problem.
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Statistics to the rescue!

An obvious solution to the black-screen problem:
nonparametric curve estimation.
Example: Scatter plots.

Ordinary plot would fill the screen.

Solution: Draw the nonpar. 2-dim. density estimate
instead.

That makes 3 dimensions, but code third dimension
(density height) via color.

E.g. scatterSmooth() in R.
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The scatterSmooth() example actually shows how to display
3 variables in 2 dimensions:

Say have variables X, Y, Z.
e Plot regression function of Z, color coded, against X and
Y.
e Regression function: m(s,t) = E(Z | X =5, Y =1t) (i.e.
general, not assuming param. model).
e Use nonpar. estimation, e.g. nearest-neighbor.
e 3vars. in 2 dims.! (No perspective plotting.)
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| introduce here a new approach to plotting multiple variables
in 2 dims., based on “boundary curves.”

First, again consider 3 variables, X, Y and Z.

e For user-chosen b, boundary is the set

{(5,1): E(ZIX =5,Y = 1) = b} (1)
e User might set b = E(Z) (overall, unconditional mean).

e Plot estimate of the boundary curve.
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| introduce here a new approach to plotting multiple variables
in 2 dims., based on “boundary curves.”
First, again consider 3 variables, X, Y and Z.

e For user-chosen b, boundary is the set

{(5,1): E(ZIX =5,Y = 1) = b} (1)
e User might set b = E(Z) (overall, unconditional mean).

e Plot estimate of the boundary curve.

e Displaying 3 vars. in 2 dims.
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e Bank account data, UCI repository.
e X = age of customer, Y = current bank account, Z = say
Yes to open new type of account

eb=EZ=PZ=1)
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balance

1000-

z0

Bank Example

e Above line
means,
above-avg.
prob. sign up
for new
account.

e Near retire =
“hardest sell”!

e Those around
60 need a
large balance
before willing
to try new
account.
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e Plotting boundaries has been done before.

e But the idea here is to display several boundaries at once,
so as to display more variables in one 2-dim. graph.
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X = age, Y = education, Z = high income

But now add a 4th variable: W = gender

Plot 2 boundary curves, one male and one female.
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Example: Adult Data

UCI Adult data

X = age, Y = education, Z = high income

But now add a 4th variable: W = gender

Plot 2 boundary curves, one male and one female.

Thus display 4 variables in 2 dims.
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women

Adult Example

e Above line

means,
higher-than-
avg. prob. of
high income.
Before age
35, not much
difference.

After age 35,
women need
much more
education
than men to
likely have
high income.
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e X = departure delay, Y = distance, Z = arrival lateness,
W = originating airport (here, SFO, IAD, IAH), so again,
displaying 4 variables in 2 dims.

e 3 curves, one for each airport
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Example: Flight Lateness

Airline lateness data.

X = departure delay, Y = distance, Z = arrival lateness,
W = originating airport (here, SFO, IAD, IAH), so again,
displaying 4 variables in 2 dims.

3 curves, one for each airport

Could add V = daytime vs. evening, for 6 curves, thus
displaying 5 variables in 2 dims.
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Airline lateness data.

X = departure delay, Y = distance, Z = arrival lateness,
W = originating airport (here, SFO, IAD, IAH), so again,
displaying 4 variables in 2 dims.

3 curves, one for each airport

Could add V = daytime vs. evening, for 6 curves, thus
displaying 5 variables in 2 dims.

Could plot straight regressions too, but boundaries always
enable us to plot “one more variable.”
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2000~

Airline Example

100
dep delay

e Above line

means,
higher-than-
avg. mean
delay.

SFO seems to
be doing
better. Need
a very long
flight to have
above-avg.
delay, relative
to the others.



Computation

(O @ (=»

«E»

v



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Computation

e R’s (contour() not used (don't want “islands").



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Computation

e R’s (contour() not used (don't want “islands").
e Estimate regression (via fast kNN, FNN library).



Long Live
(Big .
Data'—F!ed) Com putatlon
Statistics!
Norm Matloff
University of
California at
Davis

e R’s (contour() not used (don't want “islands").
e Estimate regression (via fast kNN, FNN library).

e Find “boundary band,” all points near the estimate
boundary.
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Computation

R's (contour() not used (don't want “islands").
Estimate regression (via fast kNN, FNN library).

Find “boundary band,” all points near the estimate
boundary.

Smooth the band.
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e Parallel processing.
e Take advantage of superlinearity from CAM.

e Break into chunks, but only find near nghbrs. within
chunks, not across chunks.
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Parallel Computation

Computation can be voluminous.

e Parallel processing.
e Take advantage of superlinearity from CAM.

e Break into chunks, but only find near nghbrs. within
chunks, not across chunks.

e The"A” part of CAM comes in the smoothing of the band.
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Part lll: Big p and the
Curse of Dimensionality

Exorcizing the Curse of Dimensionality
Some small steps in that direction.
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Long Live
(Big .
Data-Fied) Bi gp

Statistics!

Norm Matloff

University of

California at
Davis

e Theoretical considerations imply that should have p < \/n
in regression case (Portnoy, 1968).

e Yet today p >> n is commonplace.



Long Live
(Big .
Data-Fied) Bi gp

Statistics!

Norm Matloff

University of

California at
Davis

e Theoretical considerations imply that should have p < \/n
in regression case (Portnoy, 1968).

e Yet today p >> n is commonplace.

e This causes “multiple inference” problems (e.g. familywise
error rates).



Long Live
(Big
Data-Fied)
Statistics!

Norm Matloff

University of

California at
Davis

Big p

Theoretical considerations imply that should have p < v/n
in regression case (Portnoy, 1968).

Yet today p >> n is commonplace.
This causes “multiple inference” problems (e.g. familywise
error rates).

So, e.g., Cl radii 1.96 std.err.(¢) might NOT be
“essentially 0.”
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e Theoretical considerations imply that should have p < \/n
in regression case (Portnoy, 1968).

e Yet today p >> n is commonplace.
e This causes “multiple inference” problems (e.g. familywise
error rates).

e So, e.g., Cl radii 1.96 std.err.(f) might NOT be
“essentially 0.” l.e., Big n not big after all.
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Big p

Theoretical considerations imply that should have p < v/n
in regression case (Portnoy, 1968).

Yet today p >> n is commonplace.

This causes “multiple inference” problems (e.g. familywise
error rates).

So, e.g., Cl radii 1.96 std.err.(¢) might NOT be
“essentially 0.” l.e., Big n not big after all.

And the ever-present Curse of Dimensionality.
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e Sample covariance matrix V has p(p-1)/2 distinct entries.
e Data matrix has np entries.
e So V is completely determined (except roundoff error) if np

= p(p-1)/2.
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e What sizes of p relative to n might be problematic for
PCA?

e Sample covariance matrix V has p(p-1)/2 distinct entries.

e Data matrix has np entries.

e So V is completely determined (except roundoff error) if np
= p(p-1)/2.

e So, have problem if p > 2n, roughly.
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PCA Experiment
Simulation experiment:

e Yi, Y5 indep. N(O,l); X1=Y1i+ Y, Xo =Y, — Yo,
X3, .., X, iid N(0,1), indep. of X1, Xa.

e First PC should be (1,0,0,...) or (0,1,0,...).
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PCA Experiment
Simulation experiment:

e Yi, Y5 indep. N(O,l); X1=Y1i+ Y, Xo =Y, — Yo,
X3y ..., Xp iid N(O,l), indep. of X7, Xo.
e First PC should be (1,0,0,...) or (0,1,0,...).

> sim
function(n,p) {
yl <— rnorm(n); y2 <— rnorm(n);
x1l <— yl4y2; x2 <— yl—y2; p2 <— p — 2
X <=
cbind (x1,x2, matrix(rnorm(n%p2),ncol=p2))
cvr <— cov(x)
which . max(
abs(eigen(cvr,symmetric=T)$vectors[,1]))
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Simulation, cont'd.

Return value from sim() should be 1 or 2. Let’s see:

> sim (500,400)
[1] 1

> sim (500,800)
[1] 1

> sim (500,800)
[1] 2

> sim(500,1200)
[1] 439

> sim(500,1200)
[1] 2

> sim(500,1200)
[1] 1

> sim(500,1200)
[1] 905
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e When n < p/2—very common in practicel—sometimes
right but sometimes get phantom PCs.

e On the other hand, results of Johnstone (2000) suggest
that as long as n > p/2 we might be OK.

e Moreover, in practice the variables are correlated, often

very highly so, in regular patterns. | suspect this makes it
“more OK.”
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proved that any 2 points are approximately the same
distance from each other!
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distance from each other!
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My own rough derivation:

e Suppose the p distance components are iid.
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The term curse of dimensionality goes back 50 years.

In last 10-15 years, it has gotten scarier: Berry(1999)
proved that any 2 points are approximately the same
distance from each other!

So, e.g., nearest-neighbor methods look iffy.
My own rough derivation:

e Suppose the p distance components are iid.

o /Var(distance)/E(distance) — 0 as p— > oo
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Exorcizing the Curse?

The term curse of dimensionality goes back 50 years.

In last 10-15 years, it has gotten scarier: Berry(1999)
proved that any 2 points are approximately the same
distance from each other!

So, e.g., nearest-neighbor methods look iffy.

My own rough derivation:

e Suppose the p distance components are iid.

o /Var(distance)/E(distance) — 0 as p— > oo

e So, distances are approximately constant.
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e Yet, arguably we should have weights, according to
importance of the variables.
e Then the above problem goes away. (Coef. of var. does
not go to 0.)
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Some Hope

Some Hope:

But all that involves equally-weighted components in
distance.

Yet, arguably we should have weights, according to
importance of the variables.

Then the above problem goes away. (Coef. of var. does
not go to 0.)

But how set the weights?
Stay tuned...
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Online materiasl:

The visualization code is available for your use and
comments/suggestions:
http://heather.cs.ucdavis.edu/BigDataVis.html
These slides are there too.
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