A Novel Regularization Approach to Fair Machine Learning

Norman Matloff
University of California, Davis

Wenxi Zhang
Columbia University.

Bay Area R Users Group
GRAIL
July 18, 2023
Plan of this talk:
Here we will introduce a new method for fair machine learning.
Package code is available in
https://github.com/matlof/EDFfair
Overview

Fairness in ML:

• The usual ML: predict Y from vector X.
• But X includes a sensitive variable S (race, gender, age etc.)
• Wish to exclude S or at least minimize its impact.
• But there may be covariates C in X that are proxies for S, so that you end up “including” S anyway.
• Fairness-Utility Tradeoff: The greater the influence we allow for C, the greater our utility (pred. acc.), but the lesser our fairness.
A Novel Regularization Approach to Fair Machine Learning

Norman Matloff
University of California, Davis

Wenxi Zhang
Columbia University.

Overview

Fairness in ML:

• The usual ML: predict Y from vector X.
• But X includes a sensitive variable S (race, gender, age etc.)
• Wish to exclude S or at least minimize its impact.
• But there may be covariates C in X that are proxies for S, so that you end up “including” S anyway.
• Fairness-Utility Tradeoff: The greater the influence we allow for C, the greater our utility (pred. acc.), but the lesser our fairness.
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
- But X includes a sensitive variable S (race, gender, age etc.)
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
- But X includes a sensitive variable S (race, gender, age etc.)
- Wish to exclude S or at least minimize its impact.
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
- But X includes a sensitive variable S (race, gender, age etc.)
- Wish to exclude S or at least minimize its impact.
- But there may be covariates C in X that are proxies for S,
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
- But X includes a sensitive variable S (race, gender, age etc.)
- Wish to exclude S or at least minimize its impact.
- But there may be covariates C in X that are proxies for S, so that you end up “including” S anyway.
Overview

Fairness in ML:

- The usual ML: predict Y from vector X.
- But X includes a sensitive variable S (race, gender, age etc.)
- Wish to exclude S or at least minimize its impact.
- But there may be covariates C in X that are proxies for S, so that you end up “including” S anyway.
- Fairness-Utility Tradeoff: The greater the influence we allow for C, the greater our utility (pred. acc.), but the lesser our fairness.
Example

The “Hello World” of Fair ML: COMPAS algorithm
The “Hello World” of Fair ML: COMPAS algorithm

• Northpointe developed commercial product, COMPAS, to predict recidivism.
The “Hello World” of Fair ML: COMPAS algorithm

- Northpointe developed commercial product, COMPAS, to predict recidivism.
- Used by judges to aid in determining sentence for convicted criminals.
The “Hello World” of Fair ML: COMPAS algorithm

- Northpointe developed commercial product, COMPAS, to predict recidivism.
- Used by judges to aid in determining sentence for convicted criminals.
- *ProPublica* expose’ claimed COMPAS biased against Black defendants.
The “Hello World” of Fair ML: COMPAS algorithm

- Northpointe developed commercial product, COMPAS, to predict recidivism.
- Used by judges to aid in determining sentence for convicted criminals.
- *ProPublica* expose’ claimed COMPAS biased against Black defendants.
- \(S = \text{race}, \ C \text{ includes } \# \text{ of priors, educ. level etc.} \)
Criteria for “Fairness”

Many criteria have been proposed.
Criteria for “Fairness”

Many criteria have been proposed. (This is a research area, after all. :-))
Criteria for “Fairness”

Many criteria have been proposed. (This is a research area, after all. :-))

Why does the criterion one uses matter?

- Criterion itself may be biased. (Northpointe claimed this about ProPublica.)
- Many ML unfairness remedies are based on exactly satisfying some chosen fairness criterion.
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} =$ predicted value or class. Some common criteria:

- **Demographic Parity** \hat{Y}, S independent

- **Equalized Odds** \hat{Y} independent of S, given Y

 Retrospective, e.g. among those who end up not recidivating, \hat{Y} should not have been affected by S.

There are various others that are popular in the research realm. These can also be phrased in terms of FPR, TPR etc.
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} =$ predicted value or class.
Some common criteria:
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} = \text{predicted value or class}$.
Some common criteria:

- Demographic Parity
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} = \text{predicted value or class}$. Some common criteria:

- Demographic Parity
 \hat{Y}, S independent
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} =$ predicted value or class.

Some common criteria:

- Demographic Parity \hat{Y}, S independent
- Equalized Odds
Example Criteria

Say S is categorical (e.g. race, gender). Set $\hat{Y} = \text{predicted value or class}$.

Some common criteria:

- **Demographic Parity**
 \hat{Y}, S independent

- **Equalized Odds**
 \hat{Y} independent of S, given Y
 Retrospective, e.g. among those who end up *not* recidivating, \hat{Y} should not have been affected by S.

There are various others that are popular in the research realm. These can also be phrased in terms of FPR, TPR etc.
Relaxing a Criterion

• Allow the criterion to be only approximately met.
• Set a “slider” with which the user can select a point in the Fairness-Utility spectrum.
• For continuous Y, use correlation.
• For binary case, we use $R(T, W)$. T and W are \hat{Y} and S if Y is continuous, $\hat{P}(Y=1|X)$ if Y is binary, similarly if S is binary.
Relaxing a Criterion

• Allow the criterion to be only approximately met.
Relaxing a Criterion

- Allow the criterion to be only approximately met.
- Set a “slider” with which the user can select a point in the Fairness-Utility spectrum.
Relaxing a Criterion

- Allow the criterion to be only approximately met.
- Set a “slider” with which the user can select a point in the Fairness-Utility spectrum.
- For continuous Y, use correlation.

For binary case, we use $R(T, W)$. T and W are \hat{Y} and S if Y is continuous, $\hat{P}(Y = 1 | X)$ if Y is binary, similarly if S is binary.
Relaxing a Criterion

• Allow the criterion to be only approximately met.
• Set a “slider” with which the user can select a point in the Fairness-Utility spectrum.
• For continuous Y, use correlation.
• For binary case, we use $R(T, W)$. T and W are \hat{Y} and S if Y is continuous, $\hat{P}(Y = 1|X)$ if Y is binary, similarly if S is binary.
Work by Komiyama et al and Scutari et al

• (Many others, just two examples.)
• Regress Y on S, then regress the residuals U on $\tilde{X} = X$ without the X component.
• User sets an upper bound on $R^2(\hat{Y}, S)$ to set the level of Fairness-Utility Tradeoff.
• Komiyama use quadratic programming optimization, thus iterative.
• Scutari approach the problem via ridge regression (with λ for the regression on U).
• Scutari is implemented in their fairml package on CRAN.
Scutari Approach

• Scutari et al (2022), "Achieving Fairness with a Simple Ridge Penalty"
Scutari Approach

- Scutari et al (2022), "Achieving Fairness with a Simple Ridge Penalty"
- Lots of technical detail. Summary: first linear regress Y on S, then linear ridge-regress residuals on (non-S part of) X.
Our Approach (Linear Case)

• Again use ridge, but differently.

\[
\text{argmin}_b \ | |Y - Xb| |^2 + | |Db| |^2
\]

(1)
Our Approach (Linear Case)

- Again use ridge, but differently.

$$\arg\min_b ||Y - Xb||^2 + ||Db||^2$$ \hspace{1cm} (1)

- $D = \text{diag}(d_1, \ldots, d_p)$ is a hyperparameter, set to desirable point in Fairness-Utility Tradeoff.
Our Approach (Linear Case)

- Again use ridge, but differently.

\[\text{argmin}_b \ | | Y - Xb | |^2 + | | Db | |^2 \] \hspace{1cm} (1)

- \(D = \text{diag}(d_1, ..., d_p) \) is a hyperparameter, set to desirable point in Fairness-Utility Tradeoff.

- Presumably \(d_{i_S} = 0 \).
Our Approach (Linear Case)

- Again use ridge, but differently.

\[
\text{argmin}_b \ |\!\! |Y - Xb|\!\! |^2 + |\!\! |Db|\!\! |^2 \tag{1}
\]

- \(D = \text{diag}(d_1, \ldots, d_p)\) is a hyperparameter, set to desirable point in Fairness-Utility Tradeoff.

- Presumably \(d_{i_S} = 0\).

- The positive \(d_j\) are for the proxies, i.e. C.
Our Approach (Linear Case)

- Again use ridge, but differently.
 \[
 \arg\min_b ||Y - Xb||^2 + ||Db||^2
 \]
 (1)

- \(D = \text{diag}(d_1, ..., d_p)\) is a hyperparameter, set to desirable point in Fairness-Utility Tradeoff.
- Presumably \(d_i = 0\).
- The positive \(d_j\) are for the proxies, i.e. \(C\).
- Advantage over Scutari et al: Not “One size fits all,” different \(d_i\) for different \(S_i\).
Our Approach (Linear Case)

- Again use ridge, but differently.

\[
\text{argmin}_b \ | |Y - Xb| |^2 + | |Db| |^2
\]

(1)

- \(D = \text{diag}(d_1, ..., d_p) \) is a hyperparameter, set to desirable point in Fairness-Utility Tradeoff.

- Presumably \(d_{i_S} = 0 \).

- The positive \(d_j \) are for the proxies, i.e. \(C \).

- Advantage over Scutari et al: Not “One size fits all,” different \(d_i \) for different \(S_i \).

- Closed-form solution for \(b \):

\[
b = [X'X + D^2]^{-1}X'Y
\]
Computational Trick

A well-known trick for ridge-regression generalizes to our setting.
Computational Trick

A well-known trick for ridge-regression generalizes to our setting.

- Set

\[A = \begin{pmatrix} X \\ D \end{pmatrix} \] \hspace{1cm} (2)

\[B = \begin{pmatrix} Y \\ 0 \end{pmatrix} \] \hspace{1cm} (3)
A well-known trick for ridge-regression generalizes to our setting.

- Set

\[
A = \begin{pmatrix} X \\ D \end{pmatrix} \quad (2)
\]

\[
B = \begin{pmatrix} \mathbf{Y} \\ 0 \end{pmatrix} \quad (3)
\]

- Then run `lm()` as usual, using A and B as the design matrix and response variable data, instead of \(X \) and \(\mathbf{Y} \).
Computational Trick

A well-known trick for ridge-regression generalizes to our setting.

• Set

\[A = \begin{pmatrix} X \\ D \end{pmatrix} \] \hspace{1cm} (2)

\[B = \begin{pmatrix} Y \\ 0 \end{pmatrix} \] \hspace{1cm} (3)

• Then run \texttt{lm()} as usual, using \(A \) and \(B \) as the design matrix and response variable data, instead of \(X \) and \(Y \).

• This gives us our desired ridge estimator.
A Novel Regularization Approach to Fair Machine Learning

Norman Matloff
University of California, Davis
Wenxi Zhang
Columbia University.

Example

Package in https://github.com/matloff, small issues.

```r
> data(compas)
> z <- qeFairRidgeLog(compas, 'two_year_recid',
> list(decile_score=0.8, gender=0.8,
>     priors_count=0.8, age=0.8),
>     'race', yesYVal='Yes', holdout=NULL)
# try a prediction, like row 1 but age 33 not 69
> newx <- compas[1,-9]
> newx['age'] <- 33
> predict(z, newx)
1
0.2854387  # 28.5% chance to recidivate
```
Extension to Other ML Algorithms

• Random forests: Set node-split probability lower for features in C than in the rest of X. (The `ranger` package could be used.)

• k-nearest neighbors (k-NN): In defining the distance metric, place smaller weight on the coordinates corresponding to C. (Could use `qeKNN` in my forthcoming `qeML` package.)

• Support vector machines: Apply an ℓ_2 constraint on the portion of the vector w of hyperplane coefficients corresponding to C.
Extension to Other ML Algorithms

- Random forests: Set node-split probability lower for features in C than in the rest of X. (The `ranger` package could be used.)
Extension to Other ML Algorithms

- Random forests: Set node-split probability lower for features in C than in the rest of X. (The *ranger* package could be used.)

- k-nearest neighbors (k-NN): In defining the distance metric, place smaller weight on the coordinates corresponding to C. (Could use *qeKNN* in my forthcoming *qeML* package.)
Extension to Other ML Algorithms

• Random forests: Set node-split probability lower for features in C than in the rest of X. (The \texttt{ranger} package could be used.)

• k-nearest neighbors (k-NN): In defining the distance metric, place smaller weight on the coordinates corresponding to C. (Could use \texttt{qeKNN} in my forthcoming \texttt{qeML} package.)

• Support vector machines: Apply an ℓ_2 constraint on the portion of the vector w of hyperplane coefficients corresponding to C.
A Related Package

• dsld, Data Science Looks at Discrimination
 • Race, gender, age etc.
 • “Statistical discrimination analysis in a box”
 • Will include paired Quarto book teaching the stat concepts needed for investigation of discrimination.
 • Part I: General discrimination analysis—effect of S. Part II: Fair ML—predict while avoiding use of S.

• Anticipated usage includes:
 • Teaching and research in the social sciences/economics.
 • Litigation support.
 • Government agencies.
 • Corporate HR analysis.
 • Consulting.
A Related Package

Coming Soon!

- `dsla`, Data Science Looks at Discrimination
- Race, gender, age etc.
A Related Package

Coming Soon!

- **dsld**, Data Science Looks at Discrimination
- Race, gender, age etc.
- “Statistical discrimination analysis in a box”
A Related Package

Coming Soon!

- **dsld**, Data Science Looks at Discrimination
- Race, gender, age etc.
- “Statistical discrimination analysis in a box”
- Will include paired Quarto book teaching the stat concepts needed for investigation of discrimination.
Coming Soon!

- **dsld**, Data Science Looks at Discrimination
- Race, gender, age etc.
- “Statistical discrimination analysis in a box”
- Will include paired Quarto book teaching the stat concepts needed for investigation of discrimination.
- Part I: General discrimination analysis—effect of S. Part II: Fair ML—predict while avoiding use of S.
A Related Package

Coming Soon!

- **dsld**, Data Science Looks at Discrimination
- Race, gender, age etc.
- “Statistical discrimination analysis in a box”
- Will include paired Quarto book teaching the stat concepts needed for investigation of discrimination.
- Part I: General discrimination analysis—effect of S. Part II: Fair ML—predict while avoiding use of S.
- Anticipated usage includes:
 - Teaching and research in the social sciences/economics.
 - Litigation support.
 - Government agencies.
 - Corporate HR analysis.
 - Consulting.