An Extremely Quick and Simple Introduction to the Vi Text Editor

Norm Matloff

last updated October 18, 2003

Contents

1 Overview

A text editor is a program that can be used to create and modify text files. One of the most popular editors
on Unix systems (it is also available on Windows and many other platforms) is

2 5-Minute Introduction

As a brief introduction to vi, go through the following: First, type

at the Unix prompt. Assuming you did not already have a file named x, this command will create one. (If
you have tried this example before, x will already exist, &navill work on it. If you wish to start the
example from scratch, simply remove x first.)

The file will of course initially be empty. To put something in it, type the letter ‘i’ (it stands for “insert-text
mode”), and type the following (including hitting the Enter key at the end of each of the three lines):

The quick
brown
fox will return.

Then hit the Escape key, to end insert-text-mode.

This mode-oriented aspect of the vi editor differs from many other editors in this respect. With
modeless editors such as joe and emacs, for instance, to insert text at the cursor position, one simply
starts typing, and to stop inserting, one just stops typing! However, that means that in order to
perform most commands, one needs to use the Control key (in order to distinguish a command from

text to be inserted). This has given rise to jokes that heavy users of modeless editors develop gnarled
fingers.

Now save the file and exiti, by typing ‘ZZ’ (note the capitals).

Again, the key to learning vi is to keep in mind always the difference between insert-text mode and
command mode. In the latter mode, as its name implies, one issues commands, such as the ZZ above,
which we issued to save the file and exit The characters you type wiippear on the screen if you are

in insert-text mode, whereas they will nappear on the screen while you are in command mode. By far
the most frequent problem newir users have is that they forget they are in insert-text mode, and so their
commands are not obeyed.

For example, suppose a new user wants to type ZZ, to save the file and éxit he has forgotten to hit the
Escape key to terminate insert-text mode. Then the ZZ will appear on the screen, and will become part of
the text of the file—and the ZZ command will not be obeyed.

You now have a file named x. You can check its contents by typing (at the Unix shell prompt)
more X
which will yield

The quick
brown
fox will return.

just as expected.

Now let's see how we can usg again to modify that file. Type
Vi X

again, and make the following changes.

First, suppose we wish to say the fox wilht return: We need to first move the cursor to the word “return”.
To do this, type ‘/re’ and hit the Enter key, which instrugtgo move the cursor to the first instance of ‘re’
relative to the current cursor position. (Note that typing only ‘/r' would have moved the cursor to the first
instance of ‘r’, which would be the ‘r’ in ‘brown’, not what we want.)

Now use the ‘i’ command again: Hit ‘i’, then type ‘not ’ (note the space), and then hit Escape.

Next, let's delete the word ‘brown’. Type ‘/b’ to move the cursor there, and then hit ‘x’ five times, to delete
each of the five letters in ‘brown’. (This will still leave us with a blank line. If we did not want this, we
could have used the ‘dd’ command, which would have deleted the entire line.)

Now type ‘ZZ'’ to save the file and exit vi. Use ‘more’ again to convince yourself that you did indeed modify
the file.

3 Going Further: Other Frequently-Used Commands

You now know how to usei to insert text, move the cursor to text, and delete text. Technically, the bare-
bones set of commands introduced above is sufficient for any use of vi. However, if you limit yourself to
these few commands, you will be doing a large amount of unnecessary, tiresome typing.

So, you should also learn at least some of these other frequentlysuseshmands:

SO S —x—>

G
control-f
control-b

dw
cwW

W
q!
zZ

r filename

/string
?string
n

:s/sl/s2
JIr/s/sl/s2/g
‘map k s
:abb s1 s2

%

move cursor one character to left
move cursor one line down
move cursor one line up
move cursor one character to right
move cursor one word to right
move cursor one word to left
move cursor to beginning of line
move cursor to end of line
move cursor to line n

scroll forward one screen

scroll backward one screen

insert to left of current cursor position (end with ESC)
append to right of current cursor position (end with ESC)
delete current word (end with ESC)

change current word (end with ESC)

change current character

change case (upper-, lower-) of current character

delete current line

delete portion of current line to right of the cursor
delete current character

mark currrent position

delete everything from the marked position to here

go back to the marked position

dump out at current place your last deletion (“paste™)

undo the last command
repeat the last command

combine (“join”) next line with this one

write file to disk, stay in vi
quit VI, do not write file to disk,
write file to disk, quit vi

read in a copy of the specified file to the current
buffer

search forward for string (end with Enter)
search backward for string (end with Enter)
repeat the last search (“next search”)

replace (‘“substitute) (the first) s1 in this line by s2
replace all instances of sl in the line range Ir by s2
(Ir is of form ‘a,b’, where a and b are either explicit
line numbers, or . (current line) or $ (last line)
map the key k to a string of vi commands s (see below)
expand the string sl in append/insert mode to a string
s2 (see below)
go to the "mate," if one exists, of this parenthesis
or brace or bracket (very useful for programmers!)

All of the "’ commands end with your hitting the Enter key. (By the way, these are called “ex” commands,
after the name of the simpler editor from whiehis descended.)

The ‘a’ command, which puts text to the right of the cursor, does put you in insert-text mode, just like the
‘i command does.

By the way, if you need to insert a control character while in append/insert mode, hit control-v first. For
example, to insert control-g into the file being edited, type control-v then control-g.

One ofvi's advantages is easy cursor movement. Since the keys h,j,k,| are adjacent and easily accessible
with the fingers of your right hand, you can quickly reach them to move the cursor, instead of fumbling
around for the arrow keys as with many other editors (though they can be uged@). You will find that

this use of h,j,k,| become second nature to you very quickly, very much increasing your speed, efficiency
and enjoyment of text editing.

Many of the commands can be prefixed by a number. For example, 3dd means to delete (consecutive) three
lines, starting with the current one. As an another example, 4cw will delete the next four words.

The p command can be used for “cut-and-paste” and copy operations. For example, to move three lines
from place A to place B:

1. Move the cursor to A.
2. Type ‘3dd'.

3. Move the cursor to B.
4. Type ‘p.

The same steps can be used to copy text, except that p must be used twice, the first time being immediately
after Step 2 (to put back the text just deleted).

Note that you can do operations like cut-and-paste, cursor movement, and so on, much more easily using a
mouse. This requires a GUI versionwf which we will discuss later in this document.

4 Advanced Topics

4.1 Macros

When you are usingi, you can use the ‘map’ and ‘abb’ commands to save a lot of typing. For example, |
often accidentally transpose two letters when | am typing fast, say typing ‘taht’ instead of ‘that’. Since | do
this so often, | place the command

‘map v xp

which means that the v key now performs the operations ‘x’ and ‘p’, (try ‘xp’ yourself and you will see it
work), in my

“l.exrc

file ((without the colon; see below).

Also, since | often edit HTML files, | save myself typing by including lines like

4

abb cg

in my .exrc file. This means that whenever | am vi’'s insert/append mode and type “cg” and then hit the space
bar,vi will automatically expand it to “i{FONT color=greeng¢,”.

Here are some more examples:

map ; $
map - 1G
map \ $G

map K ~
map "X :.,$d"M

map! P “[a. "[hbmmi?\<[2h"zdt. @zZ"Mywmx'mP Xi
map! "N “[a. “ThbmmiN<“[2h"zdt. @Z"Mywmx'mP xi

abb taht that
abb wb http://heather.cs.ucdavis.edu/"matloff

The first three simply perform cursor movement (to end-of-line, start-of-file, end-of-file) Most of them
only saves one keystroke, but they require much less finger movement (for the standard touch-typing hand
position) and since they are such frequently-used operations they are worthwhile. The fourth map is for case
change, again (for me) a frequent operation.

The fifth map deletes all material from the current cursor position to the end of the file. | often find this
useful, when editing a reply to an e-mail message for instance, or when | use :r to import another file into
the one | am editing.

The sixth and seventh maps, which are labeled “map!” instead of “map” to indicate that they operate during
append or insert mode, are modifications of some macros which are “famous” in the vi user community.
They are used for “word completion,” an extremely useful trick to save typing. Suppose for example | am
currently in append/insert mode and | wish to type the word “investigation,” and that | have used the word
previously. If | just type, say, “inv” and then control-pi, will search for a word earlier in my file which
began with “inv” and complete my “inv” to that word, in this case “investigation . Typing control-n will do
the same thing, except that it will search forward instead of backwards.

Note again that in typing these macros in one’s .exrc file, one must hit control-v first. For example, to insert
control-g into the file being edited during append/insert mode, type control-v then control-g.

4.2 The .exrc Startup File

When you invoke thei editor, it will look for the file

“l.exrc

and obey any “ex” commands it finds there. For example, | have lines in my startup file corresponding to
the map and abb examples in the last section:

map v xp
abb cg

(Note that in the .exrc file we omit the colon, i.e. we type “map” instead of “:map”, becdusssumes
these are all “ex” commands.) That way | have those settings (and many others) permanently set, rather than
my needing to type them in again each time | use vi.

4.3 Mainly for Programmers

There are a number of editing commands availabld Bnd most other sophisticated text editors which are
especially useful for programmers. They are described in

http://heather.cs.ucdavis.edu/ matloff/progedit.html

The reader is urged to make daily use of these, which can really save a lot of time and effort.

4.4 Lots and Lots About Vi

There is a large compendium of information aboiuat
http://www.math.fu-berlin.de/"guckes/vi/
A nice compact reference fer commands is available at

http://www.ungerhu.com/jxh/vi.html

5 Other Editors, Including Other Versions of Vi

Arguments over the pros and cons of various editors become almost “religious” in their ferocity. | have tried
all of the major Unix text editors, but have always come back to

In my view, the best versions oi currently available arelvis andvim. Both have really good features,
especially their X11 GUI versions. It is much easier to do a cut-and-paste operation, for example, using the
mouse instead of “by hand.”

| have Web pages on both of these versions of vi, at
http://heather.cs.ucdavis.edu/"matloff/vim.html

and

http://heather.cs.ucdavis.edu/ "matloff/elvis.html

But in the end it is a matter of taste. | have useds the introductory editor here because it is so prevalent
in the Unix world, but you may wish to give others, say emacs or some of the X11-only editors, a try.

