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1 Cons3.py: A Simple Example to Get Started

Here we present our first simulation program. It will be written in Python, but don’t worry if you don’t have
any background in Python, as it is easy to read and you’ll pick it up quickly.1

To get a feeling for the topic, let’s look at a simple example. Suppose a coin is tossed until we get three
consecutive heads. Let X be the number of tosses needed. Let’s find P(X > 6) and E(X).

1 # Cons3.py, Python simulation example: keep tossing a coin until get 3
2 # heads in a row; let X be the number of tosses needed; find P(X > 6),
3 # E(X)
4

5 # usage: python Cons3.py
6

7 import random # load the library
8

9 r = random.Random(98765) # sets random number generator seed
10 sumx = 0 # sum of all X values
11 count = 0 # number of times X > 6
12 for rep in range(10000): # rep = 0,1,...,9999

1See my Python tutorial for details, at http://heather.cs.ucdavis.edu/˜matloff/python.html.
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13 x = 0
14 consechds = 0
15 while True:
16 u = r.uniform(0.0,1.0) # generate random number in (0,1)
17 if u < 0.5: # heads
18 consechds += 1
19 else: # tails
20 consechds = 0
21 x += 1
22 if consechds == 3: break
23 if x > 6: count += 1
24 sumx += x
25 print ’probability more than 6 tosses are needed =’, count/10000.0
26 print ’mean number of tosses to get 3 consecutive heads =’, sumx/10000.0

I regard the key to understanding here to be the notion of a “repeatable experiment.” Here the experiment
consists of tossing the coin until we get three heads in a row. Our Python for loop here, in lines 13-24, we
are repeating the experiment 10000 times; lines 13-24 do the experiment once.2

Since E(X) is the long-run average of X—overly infinitely many repetitions of the experiment—we approx-
imate it by the short-run average, which is the average of X over those 10000 repetitions. That is done in
line 24.

A probability is the long-run proportion of time an event occurs. Here the event X > 6 occurs on some
of those 10000 repetitions, and our approximate value of P(X > 6) is the proportion of those repetitions in
which the event occurs. That is computed in line 23.

Now let’s see how the experiment is simulated. Look at line 16. Here we are calling a library function,
uniform(), which generates uniformly-distributed random numbers in [0,1).3 The way we simulate the
tossing of the coin is to say the coin came up heads if the random uniform variate comes out smaller than
0.5, and say it’s tails otherwise. This is done in lines 17-22.

A bit more on the function uniform: It’s part of a Python library class random. In line 7, we tell Python
we wish to bring in that library for our use. It does require initializing what is known as a seed for random
number generation, which we do in line 9. We’ll find out in a later unit what this really is, but at this point
it doesn’t matter much which number we use. My choice of 98765 was pretty abitrary. What is important,
though, is that an object is returned from the random class, which we assign to r. We’ll always need to do
things through that object, as you can see by the “r.” in line 16.

One more point: We mentioned that the output of our program consists of short-run approximations to long-
run averages and proportions. In this case, “short-run” was 10000 repetitions of the experiment. Is that
enough? We will answer this question too in a later unit.

2 Bit More Realism

Let’s now move away from the realm of coins to examplex a little more reflective of the types of problems
people simulate in the real world.

We’ll also make a bit more sophisticated use of Python, in particular Python classes. See my Python tutorial
2Note that Python defines blocks by indentation. The fact that lines 13-24 are indented tells the Python interpreter that we intend

these lines as a block.
3We’ll see in a later unit why the interval includes 0 but excludes 1. But it is not important. Recall that for continuous random

variables, the probability of a particular point is 0 anyway.
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at http://heather.cs.ucdavis.edu/˜matloff/python.html if you are not familiar with
these.

In our first case, our realm is the design of computer networks.

2.1 Aloha.py

Today’s Ethernet evolved from an experimental network developed at the University of Hawaii, called
ALOHA. A number of network nodes would occasionally try to use the same radio channel to commu-
nicate with a central computer. The nodes couldn’t hear each other, due to the obstruction of mountains
between them. If only one of them made an attempt to send, it would be successful, and it would receive an
acknowledgement message in response from the central computer. But if more than one node were to trans-
mit, a collision would occur, garbling all the messages. The sending nodes would timeout after waiting for
an acknowledgement which never came, and try sending again later. To avoid having too many collisions,
nodes would engage in backoff, meaning that they would refrain from sending for a while even though they
had something to send.

In designing such a network, the key is to allow enough backoff to avoid having too many collisions, but not
so much that a node often refrains from trying to send even though no other node tries.

One variation is slotted ALOHA, which divides time into discrete intervals which I will call “epochs.” The
simulation program below finds the probability that k nodes currently have messages to send at epoch m.

Note that in any simulation, you have to decide how much detail to put into your model, and which param-
eters to incorporate. Here we had two central parameters, one being a probability p that models the amount
of backoff. In the version we will consider here, in each epoch, if a node is “active,” i.e. has a message to
send, it will either send or refrain from sending, with probability p and 1-p. (Real Ethernet hardware really
does something like this, using a random number generator inside the chip.)

The other parameter q is the probability that a node which had been “inactive” generates a message during
an epoch, and thus becomes “active.” Assume for simplicity that this happens just before the time that all
the active nodes decide whether to try to send, so that a newly-arrived message might be sent in the same
epoch.

Be sure to keep in mind that in our simple model here, during the time a node is active, it won’t generate
any additional new messages.

Note that in real life q is basically imposed on us. We have a certain amount of traffic in our network, and
we must deal with it. But we can control p, and indeed different values of q would require different values
of p for best results.

Here is the program below. Some comments have been added concerning Python itself, to ease the reader’s
transition to that language.

1 # Aloha.py, Python simulation example: a form of slotted ALOHA
2

3 # here we will look finite time, finding the probability that there are
4 # k active nodes at the end of epoch m
5

6 # usage: python Aloha.py s p q m k
7

8 import random, sys
9
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10 class node: # one object of this class models one network node
11 # some class variables
12 s = int(sys.argv[1]) # number of nodes
13 p = float(sys.argv[2]) # transmit probability
14 q = float(sys.argv[3]) # msg creation probability
15 activeset = [] # which nodes are active now
16 inactiveset = [] # which nodes are inactive now
17 r = random.Random(98765) # set seed
18 def __init__(self): # object constructor
19 # start this node in inactive mode
20 node.inactiveset.append(self)
21 # class (i.e. not instance) methods
22 def checkgoactive(): # determine which nodes will go active
23 for n in node.inactiveset:
24 if node.r.uniform(0,1) < node.q:
25 node.inactiveset.remove(n)
26 node.activeset.append(n)
27 checkgoactive = staticmethod(checkgoactive)
28 def trysend():
29 numnodestried = 0 # number of nodes which have tried to send
30 # during the current epoch
31 whotried = None # which node tried to send (last)
32 # determine which nodes try to send
33 for n in node.activeset:
34 if node.r.uniform(0,1) < node.p:
35 whotried = n
36 numnodestried += 1
37 # we’ll have a successful transmission if and only if exactly one
38 # node has tried to send
39 if numnodestried == 1:
40 node.activeset.remove(whotried)
41 node.inactiveset.append(whotried)
42 trysend = staticmethod(trysend)
43 def reset(): # resets variables after a repetition of the experiment
44 for n in node.activeset:
45 node.activeset.remove(n)
46 node.inactiveset.append(n)
47 reset = staticmethod(reset)
48

49 def main():
50 m = int(sys.argv[4])
51 k = int(sys.argv[5])
52 # set up the s nodes
53 for i in range(node.s): node()
54 count = 0
55 for rep in range(10000):
56 # run the process for m epochs
57 for epoch in range(m):
58 node.checkgoactive()
59 node.trysend()
60 # len() gives the length of an object
61 if len(node.activeset) == k: count += 1
62 node.reset()
63 print ’P(k active at time m) =’, count/10000.0
64

65 # technical device to make debugging easier, etc.
66 if __name__ == ’__main__’: main()

Python arrays, called lists, are wonderfully flexible. Among other things, they’re nice for modeling set
membership, so I set up arrays active and inactive. Python’s in operator enables me to test for set member-
ship, as seen for instance in line 23. There we have a for loop that says we will loop through each of the
inactive nodes, and check to see whether they generate a new message and become active (line 24). In lines
25 and 26, we use the Python list types built-in methods remove() and append() to move this node, which
has just become active, from the inactive to the active set.
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In lines 33-36, we simulate each active node deciding whether to try to send or not, and in line 39 we check
to see if only one such attempt was made. If so, that attempt succeeds, and we move that node to the inactive
set (lines 40-41).

Note the function reset() in lines 43-46, which allows us to reinitialize between repetitions of the experiment.
Failure to do so would give us wrong answers. This is a common type of bug in simulation programming.

2.2 Inv.py

1 # Inv.py, inventory simulation example
2

3 # each day during the daytime, a number of orders for widgets arrives,
4 # uniformly distributed on {0,1,2,...,k}; the number of widgets in an order
5 # is uniformly distributed on {1,2,...,m}; each evening, if the inventory has
6 # fallen below r during the day, the inventory is restocked to level s;
7 # inventory is initially s
8

9 # we will find E(N), where N is the number of days until the first
10 # instance of an unfilled order; N = 1,2,...
11

12 # usage: python Inv.py r s k m nreps
13

14 import random, sys
15

16 class g: # global variables
17 r = int(sys.argv[1]) # restocking signal level
18 s = int(sys.argv[2]) # restocking replenishment level
19 k = int(sys.argv[3]) # range for distr of number of orders
20 m = int(sys.argv[4]) # range for distr of number of widgets per order
21 tottimetobl = 0 # total wait time for those msgs
22 inv = None # inventory level
23 rnd = random.Random(98765) # set seed
24

25 def simdaytime():
26 norders = g.rnd.randint(0,g.k)
27 for o in range(norders):
28 nwidgets = g.rnd.randint(1,g.m)
29 g.inv -= nwidgets
30

31 def simevening():
32 if g.inv < g.r: g.inv = g.s
33

34 def main():
35 nreps = int(sys.argv[5])
36 for rep in range(nreps): # simulate nreps repetitions of the experiment
37 day = 1
38 g.inv = g.s # inventory full at first
39 while True:
40 simdaytime()
41 if g.inv < 0: break
42 simevening()
43 day += 1
44 g.tottimetobl += day
45 print ’mean time to get a backlog =’, g.tottimetobl/float(nreps)
46

47 if __name__ == ’__main__’: main()
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3 Moving to “Time Average” Models

Here, instead of the notion of a “repeatable” experiment, the situation here is that of a “continuing” experi-
ment. In our ALOHA example above, we were interested in how things behave at a fixed epoch (m). But we
could ask what happens further and further back in time. For example, we could ask, what is the long-run
mean wait for messages to be sent successfully, with “long-run” meaning infinitely many epochs. For fixed
q, what is the best value of p, i.e. what value of p minimizes the mean wait?

Implicit in such questions is the assumption that things converge to a limit. For example, let Xi denote the
time the ith message must wait to get through, and let Nm denote the number of messages that have been
successfully transmitted by epoch m. Then the mean wait for messages through epoch m is

X̄m =
X1 + X2 + ... + XNm

Nm

For many types of systems, one can show that

lim
m→∞

X̄m

exists and is equal to some constant c. That’s why such a simulation is sometimes called a steady-state sim-
ulation (the term ergodic is also used), with the type we looked at earlier being referred to as a terminating
simulation (with our earlier examples being of nonterminating simulations).

Our job is to use simulation to approximate c. Our programs below do exactly that.

3.1 Aloha2.py

1 # Aloha2.py, Python simulation example: a form of slotted ALOHA
2

3 # goal is to study response time (mean number of attempts needed to send
4 # a message), as a function of p
5

6 # usage: python Aloha2.py s p q
7

8 import random, sys
9

10 class node: # models one network node
11 # some class variables
12 s = int(sys.argv[1]) # number of nodes
13 p = float(sys.argv[2]) # transmit probability
14 q = float(sys.argv[3]) # msg creation probability
15 totsent = 0 # number of msgs sent successfully by all nodes so far
16 totwait = 0 # total wait time for those msgs
17 activeset = [] # which nodes are active now (empty list for now)
18 inactiveset = [] # which nodes are inactive now
19 r = random.Random(98765) # set seed
20 def __init__(self): # object constructor
21 # start this node in inactive mode
22 node.inactiveset.append(self)
23 # the number of epochs this node’s current msg has been waiting:
24 self.wait = None # currently undefined
25 # class methods
26 def checkgoactive(): # determine which nodes will go active
27 for n in node.inactiveset: # n is local to this function
28 if node.r.uniform(0,1) < node.q:
29 node.inactiveset.remove(n)
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30 node.activeset.append(n)
31 n.wait = 0
32 checkgoactive = staticmethod(checkgoactive) # make this a class method
33 def trysend():
34 numnodestried = 0 # number of nodes which have tried to send
35 # during the current epoch
36 whotried = None # which node tried to send (last)
37 # determine which nodes try to send
38 for n in node.activeset:
39 n.wait += 1
40 if node.r.uniform(0,1) < node.p:
41 whotried = n
42 numnodestried += 1
43 if numnodestried == 1:
44 node.totsent += 1
45 node.totwait += whotried.wait
46 node.activeset.remove(whotried)
47 node.inactiveset.append(whotried)
48 trysend = staticmethod(trysend)
49

50 def main():
51 for i in range(node.s): node()
52 for epoch in range(10000): # simulate 10000 (approx. "infinity") epochs
53 node.checkgoactive()
54 node.trysend()
55 print ’mean time to get through =’, node.totwait/float(node.totsent)
56

57 if __name__ == ’__main__’: main()

You probably noticed that we added a few things needed for our bookkeeping regarding wait times. Look
at line 31, for instance. In the loop here in lines 27-31, we’re going through all nodes n in the inactive list,
simulating their possible generation of new messsages. If a node does generate a new messsage (line 28),
we move it from the inactive to the active set (lines 29-30)—AND we “start the wait clock” for this message
on line 31.4

Similarly, at each epoch, each waiting message will see its wait clock advance by 1, in line 39. When a
message finally does get through (line 43), we increment our count of successfully transmitted messages
(line 44) and their total wait (line 45). Our final simulation output for mean wait (i.e. “c” above) is done in
line 55.

But did you notice something missing? In our earlier ALOHA example, we did 10000 repetitions of simu-
lating the ALOHA system through epoch m. But here we do only one repetition but simulate the system
through 10000 epochs. How can we get away with this?

The answer won’t really emerge until a later unit, but the intuition is that after a large number of epochs, the
process has “settled down”, and from that point onward we are in effect doing something like repetitions of
a repeatable experiment.

3.2 Inv2.py

Here is another inventory example:

1 # Inv2.py, inventory simulation example; like Inv.py, except that it is
2 # ergodic, and the inventory policy is simply to have a new shipment of

4We inititalized that variable to None rather than 0 in line 24. This wasn’t necessary, but it is good documentation, with the
value None reminding the reader of the program that there is no message yet, and thus no wait time. In fact, it would be nice to add
a line after line 47, resetting whotried.wait back to None, for this reason.
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3 # r widgets come in each day, though not more than the warehouse
4 # capacity w
5

6 # we will find E(X), where X is the number of days until a widget is
7 # shipped; X = 0 if it is shipped out the first day
8

9 # usage: python Inv2.py r w k m startinv nepochs
10

11 import random, sys
12

13 class g: # globals
14 r = None # restocking level
15 w = None # warehouse capacity
16 k = None # range for distr of number of orders
17 m = None # range for distr of number of widgets per order
18 inv = None # inventory level
19 day = 1 # day number in our simulated time
20 rnd = random.Random(98765) # set seed
21

22 class orderclass: # one object of this class represents one order
23 # class variables
24 queue = [] # queue of orders
25 qlen = 0 # number of orders in queue
26 nshipped = 0 # number of widgets shipped so far
27 totwait = 0 # total wait time for the widgets shipped so far
28 nshippedq = 0 # number of widgets shipped so far which had
29 # encountered a queue from previous night at arrival
30 totwaitq = 0 # total wait time for the widgets shipped so far which
31 # had encountered a queue from previous night at arrival
32 qleftoverfromlastnight = False # backlog left from previous night?
33 def __init__(self,nw): # new order of nw widgets
34 self.numpending = nw # widgets not shipped yet
35 self.dayorderreceived = g.day # day the order was received
36 # boolean to record whether there had been a queue left over from
37 # last night when this order arrived
38 self.arrivedtoq = orderclass.qleftoverfromlastnight
39 # join the queue
40 orderclass.queue.append(self)
41 orderclass.qlen += 1
42 def simdaytime():
43 orderclass.qleftoverfromlastnight = len(orderclass.queue) > 0
44 # giving priority to the old orders is equivalent to adding the new
45 # orders at the end of the queue
46 numneworders = g.rnd.randint(0,g.k)
47 for o in range(numneworders):
48 nwidgets = g.rnd.randint(1,g.m)
49 neworder = orderclass(nwidgets)
50 while True: # go through all the pending orders, until inventory gone
51 if orderclass.queue == []: return
52 o = orderclass.queue[0] # current head of queue
53 if o.numpending <= g.inv: # enough inventory for this order?
54 partfill = False # did not just do a partial fill of the order
55 orderclass.queue.remove(o)
56 orderclass.qlen -= 1
57 sendtoday = o.numpending
58 g.inv -= sendtoday
59 else: # fill only part of the order
60 partfill = True
61 sendtoday = g.inv
62 o.numpending -= g.inv
63 g.inv = 0
64 orderclass.nshipped += sendtoday
65 waittime = g.day - o.dayorderreceived
66 orderclass.totwait += sendtoday * waittime
67 if o.arrivedtoq:
68 orderclass.nshippedq += sendtoday
69 orderclass.totwaitq += sendtoday * waittime
70 if partfill: return # don’t look at any more orders today
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71 # o.__dict__ (this comment for debugging!)
72 simdaytime = staticmethod(simdaytime)
73 def simevening():
74 if g.inv + g.r <= g.w: g.inv += g.r
75 else: g.inv = g.w
76 simevening = staticmethod(simevening)
77

78 def main():
79 g.r = int(sys.argv[1])
80 g.w = int(sys.argv[2])
81 g.k = int(sys.argv[3])
82 g.m = int(sys.argv[4])
83 g.inv = int(sys.argv[5]) # inventory level
84 ndays = int(sys.argv[6]) # number of days to be simulated
85 for g.day in range(ndays):
86 orderclass.simdaytime()
87 orderclass.simevening()
88 print ’mean wait =’, orderclass.totwait/float(orderclass.nshipped)
89 print ’mean wait for those encountering a queue =’, \
90 orderclass.totwaitq/float(orderclass.nshippedq)
91

92 if __name__ == ’__main__’: main()
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