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1 Goals of This Unit

In this unit we will look at the physical properties of media which are used in computer networks. Our main
emphasis is on the capacity of a network, meaning the maximum number of bits per second which can be
loaded onto it. We will use the mathematical technique ofFourier seriesto illustrate the role ofbandwidth
in our network and in our data.

This will help not only to understand the physical limitations of networks, but also to lay the groundwork
for our later unit onmultiplexing .

2 Media, Signals, Data

2.1 Media

Network signals might be propagated throughguided media such as metal wires (twisted pairs, coaxial
cable, etc.) or optical fibers (flashing light, off for 0, on for 1), or in free space, such as with radio waves or
microwaves.

2.2 Signal Types

A signal may be indigital form, e.g. 0-1 bits with a low voltage meaning 0 and a high voltage meaning 1.
The graph of a digital signal over time has a “square wave” shape.

On the other hand,analog forms look “wavy.” A modem, for instance, sends a low-pitched sound for a 0
and a high pitch for a 1; the sounds themselves look like sine waves when graphed against time.

2.3 Data Types

Just as the signals of interest can be either digital or analog, the data encoded by those signals could be either
digital, such as numbers or characters, or analog, such as voices.

Either type of data can be encoded within either type of signal. We noted above, for instance, that a modem
encodes digital data onto analog signals. Voice data, on the other hand, though inherently analog, can be
digitized: A person’s voice graphed against time is a continuous curve, but we can sample it at regular
intervals, typically 8,000 times per second. At each sample point, we record the numerical height of the
curve (i.e. the numerical value of the loudness). This gives us numbers, which comprise digital data. These
can be stored in a disk file as with a game program, sent through the Internet as with Real Audio transmission
of radio programs, and so on.

3 Spectral Analysis

3.1 Fourier Series

Recall from calculus that we can write a function x(t) as a Taylor series, which is an “infinite polynomial”:
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x(t) =
∞∑

n=0

cntn (1)

For instance, foret,

et =
∞∑

n=0

1
n!

tn (2)

Recall also that we say a function x(t) (where t is time) isperiodic with period T if if x(u+T) = x(u) for all
u. Thefundamental frequencyof x is then defined to be the number of periods per unit time,

f0 =
1
T

(3)

Suppose x(t) is a digital or analog periodic signal transmitted in some medium. We can write x as an “infinite
trig polynomial,” i.e. aFourier series:

x(t) =
∞∑

n=0

an cos(2πnf0t) +
∞∑

n=1

bn sin(2πnf0t) (4)

(The second summation starts at n = 0 too, but the sine term in that case is zero.) Here, instead of having a
series of terms

1, t, t2, t3, ... (5)

as in a Taylor series, we have a series of terms

1, cos(2πf0t), cos(4πf0t), cos(6πf0t), ... (6)

and similar sine terms. Note that the frequences in those cosines are integer multiples, calledharmonics, of
the fundamental frequency of x,f0.

The set of coefficients{an}, {bn} is called thefrequency spectrumof x. The coefficients are calculated as
follows:

a0 =
1
T

∫ T

0
x(t)dt (7)

an =
2
T

∫ T

0
x(t)cos(2πnf0t)dt (8)

bn =
2
T

∫ T

0
x(t)sin(2πnf0t)dt (9)

Because of the periodic nature of the functions involved, we can shift the range of integration by equal
amounts on the lower and upper bounds, and it is often convenient to do so if we are calculating the integrals
by hand. Any lower and upper bounds which differ by the amount T will give the same answer.
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We say that x(t) is theenergy levelof the signal. For example, if x(t) is a graph of your voice over time, x(t)
is the loudness of your voice at time t. Thean andbn then show how the energy of the signal break down
into different frequencies; in fact, the average squared energy of the signal is the sum of the squares of these
coefficients:

1
T

∫ T

0
x2(t)dt = a2

0 +
1
2

∞∑
n=1

(a2
n + b2

n)

We say that x(t) is thetime domain version of the signal, andan andbn comprise thefrequency domain.

We can also write x as an integralof trig functions, rather than a sum of such functions. Then the spectrum
is a continuous range of numbers, rather than the discrete pointsan and bn. This is called theFourier
Transform of the original periodic function.

3.2 Example: Time- and Frequency-Domain Graphs for a Vibrating Reed

Here is a time-domain graph of the sound made by a vibrating reed:1

Now here is the frequency-domain version:2

1Reproduced here by permission of Prof. Peter Hamburger, Indiana-Purdue University, Fort Wayne. See
http://www.ipfw.edu/math/Workshop/PBC.html

2The vertical axis represents the Fourier-transform analog of(a2
n + b2

n)0.5 .
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Note that this graph is very “spiky.” In other words, most of the power of the signal is at a few frequencies
which arise from the physical properties of a reed. By contrast, you would not see this spiky behavior in a
graph for the human voice, which is much more complex.

3.3 Application to Transmitted Signals

Suppose for example x(t) is the loudness of your voice at time t, and we are transmitting it (without change)
through some medium. Your voice is a sum of components at various frequencies, andan andbn in Equation
(4) represent the loudness of the n-th frequency.

The same is true if we are transmitting data, say the bit sequence 10110101..., with x(t) being of square-wave
form. We can still represent x(t) as a Fourier series.

Of course, all this assumes a periodic signal. But strictly speaking, the signals we send are not periodic.
Consider, for example, a text file transfer, transmitted as a digital signal. The characters in the file do not
follow a periodic pattern, and thus the bits we send do not follow a periodic pattern, and the graph of the
signal against time will not be periodic. However, for the purpose of analyzing the speed capacity of a given
physical medium to transmit the data, we can imagine the signal to be periodic. If for instance the text file
includes the sentence “The quick brown fox jumped,” we can ask how fast the medium could transmit the
corresponding signals if the sentence were to be transmitted again and again (resulting in periodic signals).
And for voice data transmitted in analog form, for instance, the signals are periodic during short time
intervals.
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3.4 Independence of Bit Rate

Note that if we are transmitting data, thean andbn are independent of our bit rate, i.e. the number of bits
per second we transmit. Here is how to see this:

Suppose for example that we are sending the periodic data sequence 110101101011010... (i.e. we repeatedly
send the bit pattern 11010) at a rate of c bits per second. Then each bit takes 1/c seconds to send. The
waveform x(t) would have the value 1 between 0 and 1/c, 1 again between 1/c and 2/c, then have the value
0 between 2/c and 3/c, etc. , and T = 5/c.

Now suppose we were to send the same signal but at half the bit rate, say because we changed modems. Call
the new signal y(t) and the new period T’. Then y(t) = x(0.5t), and T’ = 2T. The period in terms of numbers
of bits, 5, has not changed, but the time to send those bits has doubled.

Then

an =
2
T ′

∫ T ′

0
y(t)cos(2πn

1
T ′ t)dt

If one uses the facts that y(t) = x(0.5t), and T’ = 2T, and then one does the change-of-variable u = 0.5t, we
find we get the same integral foran for y(t) as for x(t), and a similar statement would hold forbn.

The intuition here is that although the graph of the curve y(t) would be a “stretched out” version of x(t), it
would still have the same shape, and the same relative weighting would occur for all the sine and cosine
terms (since they are “stretched out” too).

3.5 Bandwidth: How to Read theSan Francisco ChronicleBusiness Section

The popular press, especially business or technical sections, often uses the termbandwidth. What does this
mean?

Any transmission medium has a natural range [fmin,fmax] of frequencies that it can handle well. For
example, an ordinary voice-grade telephone line can do a good job of transmitting signals of frequencies
in the range 0 Hz to 4000 Hz, where “Hz” means cycles per second. Signals of frequencies outside this
range suffer fade in strength, i.e areattenuated, as they pass through the phone line. We call the frequency
interval [0,4000] theeffective bandwidth (or just thebandwidth) of the phone line.

In addition to the bandwidth of amedium, we also speak of the bandwidth of asignal. For instance,
although your voice is a mixture of many different frequencies, represented in the Fourier series for your
voice’s waveform, the really low and really high frequency components, outside the range [340,3400], have
very low power, i.e. theiran andbn coefficients are small. Most of the power of your voice signal is in that
range of frequencies, which we would call the effective bandwidth of your voice waveform.3

Obviously, in order for your voice to be heard well on the other end of your phone connection, the bandwidth
of the phone line must be at least as broad as that of your voice signal, and that is the case. However, the
phone line’s bandwidth is not much broader than that of your voice signal. So, some of the frequencies in
your voice will fade out before they reach the other person, and thus some degree of distortion will occur.
It is common, for example, for the letter ‘f’ spoken on one end to be mis-heard as ‘s’on the other end. This

3This is also the reason why digitized speech is sampled at the rate of 8,000 samples per second. A famous theorem, due to
Nyquist, shows that the sampling rate should be double the maximum frequency. Here the number 3,400 is “rounded up” to 4,000,
and after doubling we get 8,000.
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also explains why your voice sounds a little different on the phone than in person. Still, most frequencies
are reproduced well and phone conversations work well.

We often use the term “bandwidth” to literally refer to width, i.e. the width of the interval [fmin,fmax],
fmax − fmin.

There is huge variation in bandwidth among transmission media. As we have seen, phone lines have band-
width intervals covering values on the order of103. For optical fibers, these numbers are more on the order
of 1015. Suppose that for a given mediumfmin = 0 andfmax = N f0. Then the signal

x(t) =
∞∑

n=0

an cos(2πnf0t) +
∞∑

n=1

bn sin(2πnf0t) (10)

is in effect truncated by the transmission medium to

xN (t) =
N∑

n=0

an cos(2πnf0t) +
N∑

n=1

bn sin(2πnf0t) (11)

i.e. an error is made and x(t) is distorted. The larger N is, the less distortion. For any given signal, the higher
fmax of the transmission medium, the less distortion.4

Now from calculus, for any given signal x(t),an, bn → 0 asn → ∞. Thus, thean andbn get small after a
while, say, afteraM andbM . So,

x(t) ≈
M∑

n=0

an cos(2πnf0t) +
M∑

n=1

bn sin(2πnf0t) (12)

In other words, the effective bandwidth of the signal is [0,Mf0]. As long as we send x(t) along a transmission
medium for whichN ≥ M , x(t) will be received with reasonable fidelity.

3.6 Effect of Bandwidth on Transmission Rates

In order to get an idea of the relation of bandwidth to transmission rate, suppose we are sending the bit pattern
101010101010..., and that in our transmission medium a level (say volts, tenths of volts, or whatever) of +1
represents a 1 bit and a -1 represents a 0. Note that we are just using 101010101010... as an example; our
transmission medium must be able to send all bit patterns. But we will use this one to illustrate the issues
involved, so we can see the how the bandwidth of our transmission medium limits how fast we can send
bits.

Suppose we wish to send at the rate of2 × 106 bits per second. What will be the period for the signal
101010101010 above? In terms of bit times, the period is two bit times. How much is that in seconds? At
our 2 million bits/sec rate, each bit takes 0.5 millionths of a second, i.e. 0.5 microsecond. Thus our period
is T = 1 microsecond, and the fundamental frequencyf0 is 1 megaherz (MHz), i.e. 1 million cycles per
second. (Recall thatf0 = 1/T .)

4level of quality we consider acceptable for a received signal, the larger N is, the more signals we canmultiplex onto the given
medium. This will be explored later.
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The period consists of two bit times, specifically one 1 bit and one 0 bit, each taking T/2 time to transmit.
We could describe x(t) as having the value 1 from 0 toT

2 , the value -1 fromT
2 to T, and so on, repeating in

this manner from−∞ to∞.

Using the formulas, we find that: allbn are 0; all even-numberedan are 0; anda1, a3, a5 and so on are
4
π ,− 4

3π , 4
5π , et cetera. Note that sincef0 is 1 MHz, these nonzero coefficients will be for cosine terms with

frequencies 1 MHz, 3 MHz, 5 MHz, et cetera.

Now suppose our transmission medium only transmits frequencies up to 5 MHz. Then even though we place
onto our transmission medium x(t)—a squarewave with values 1, -1, 1, -1, etc.—the medium will distort
x(t) to the function

4
π

[cos(2π · f0t)−
1
3
cos(2π · 3f0t) +

1
5
cos(2π · 5f0t)] (13)

Using microseconds for our horizontal axis (since T = 1 microsecond), a plot of this series would look like
this:

So, even though x(t) is distorted, the result is not a bad approximation to the original waveform! We could
design circuitry that would be able to distinguish well between a 1 bit and a 0 bit in this case.5 For example,
we could design the receiver to treat any signal which is greater than 0.8 during 80% of a bit time as a 1, and
any signal which is less than -0.8 during 80% of a bit time as a -1.

In other words, a medium which transmitted all frequencies up to 5 MHz would be able to successfully send
at the proposed rate of 2,000,000 bits per second, at least for the bit pattern we have looked at here, 101010...

The point of all this is that the bandwidth of the transmission medium determines the maximum bit
rate at which one can send.Suppose for instance that the transmission medium only passes frequencies up
to 4 MHz. Then if we were to send 101010... at the proposed rate of 2,000,000 bits per second, we would
only get two cosine terms, and thus a much poorer approximation to x(t), probably so poor that it would

5Of course, this is not accounting for other factors, such as further distortion of the waveform, such as by line noise.
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produce bit-recognition errors. In order to get three cosine terms (which we found was sufficient to keep
x(t) from getting distorted too much), we would be forced to transmit at a lower rate.

How much lower? Well, we would need to have5f0 = 4000000, so we would need T = 1.25 microseconds.
Since each period consists of two bit times, that would be 0.625 microseconds per bit, thus a bit rate of
1,600,000 bits per second, considerably lower than our hoped-for 2,000,000 bits per second.

Note even though thean andbn are independent of the bit rate,f0 does implicitly incorporate the bit rate.
Say that a period consists of b bits. For example, b = 2 in our 101010... example above, since the 2-bit
pattern 10 repeats, while 101110111011 would have b = 4, since the 4-bit pattern 1011 repeats. Say we send
bits at the rate of s bits per second, so each bit takes time 1/s. Then T = b x (1/s), so

f0 = s/b (14)

4 Bit Encodings

Where does one bit start and the next begin? For instance, suppose our line has a high voltage for a 1 and a
low voltage for a 0, and suppose that our sending device were to send 10 1s in a row. Then the line would
be high for 10 bit times, but how would the receiver know that this is not, for example, only nine 1s? There
is no “boundary” between bits.

Theoretically speaking, this problem is solved by having a clock on the receiver end, carefully marking
off bit times. If we are sending at, say, 10,000 bits per second, that would mean that each bit takes 100
millionths of a second, i.e. 100 microseconds. So if the receiver sees the line is high for 1000 microseconds,
then the receiver knows that this must be 1000/100 = 10 1 bits.

The problem with this is that there will be discrepancies between the sender and receiver clocks. Over time,
this discrepancy will accumulate and eventually the receiver will be off a full bit time from the sender—and
thus the receiver will look at the wrong bit.

In order to deal with this, we design the receiver to frequently resynchronize itself with the sender. The way
this is typically done is to have the receiver look forline transitions, i.e. changes from 1 to 0 or vice versa.
Since a transition occurs between two consecutive bits, the receiver can use this to resynchronize its clock
with that of the sender.

But if we happen to send a long string of 1s, the receiving clock won’t have this chance to resynchronize.
One method of dealing with this isnon-return-to-zero-inverted (NRZI) coding, which works as follows.
If we wish to send a 1 bit, we place a voltage opposite to what we sent in the previous bit. In other words, if
the previous line level had been low, we now put a high value on the line, and vice versa. If we wish to send
a 0, we send the same voltage level as in the previous bit.

The idea here is to force frequent line transitions. This scheme does this, since every 1 bit will be coded as
a line transition. Thus the receiver has frequent opportunities to resynchronize its clock.

That solves the problem of having a long string of 1s in our message, but it doesn’t cover cases in which we
happen to send long strings of 0s. Both problems are addressed byManchestercoding, which forces a bit
transition ineachbit time. Under this system, if we wish to send a 0 bit, we hold the line at low voltage for
one transmission bit time (which will be half a data bit time) and then bring it up to high voltage for one
transmission bit time. If we wish to send a 1 bit, we have the line high for a transmission bit time and then
low for a transmission bit time. This guarantees a line transition during each data bit, so the receiver has a
chance to resynchronize its clock during every data bit.
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But Manchester is wasteful—each data bit now needs two transmission bit times to send. Thus for any
given transmission line, and thus for any given maximum line bandwidth, and thus for any given maximum
transmission bit rate, it cuts down the allowable data bit transmission rate by half.

Note that Manchester coding also changes the pattern in which we uses our transition line’s frequency
bandwidth. For instance, recall our earlier example, in which we were transmitting at 2 MHz, and our
message consisted of 101010... Using Manchester coding, the values on our line would be 100110011001...,
which has a quite different Fourier series than would the 101010... pattern we would use without Manchester
coding.

So, compromise schemes have been developed, such as the famous 4B/5B system. Under this scheme, each
group of four message bits is coded in five bit times. Here is the translation table:

data coding
---- ------
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

The five-bit code is then sent using NRZI. For example, suppose we wish to send 1011, and that the last state
of the line had been high. Then we would send 1011 as low-low-high-low-high. (Make sure you understand
this point.)

Note that in all the five-bit codes above, there is never more than one leading 0 and never more than two
trailing 0s. So, if two data items are sent back-to-back, we cannot have more than three consecutive 0s.
This solves the original NRZI problem concerning long strings of 0s discussed earlier, and since NRZI itself
handles the problem of long strings of 1s, you can see that the 4B/5B scheme works pretty well.
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