Discrete-Time Markov Chains

Norman Matloff
(adapted from

Probability Modeling and Computer Simulation
N.S. Matloff, PWS, 1988)

One of the most commonly used stochastic models is that of a Markov chain. To motivate
this discussion, we will start with a simple example: Consider a random walk on the set
of integers between 1 and 5, moving randomly through that set, say one move per second,
according to the following scheme. If we are currently at position i, then one time period
later we will be at either i-1, 1 or i+1, according to the outcome of rolling a fair die—we
move to i-1 if the die comes up 1 or 2, stay at i1 if the die comes up 3 or 4, and move to i+1
in the case of a 5 or 6. For the special cases of i = 1 and i = 5, we simply move to 2 or 4,
respectively.

The integers 1 through 5 form the state space for this process; if we are currently at 4, for
instance, we say we are in state 4. Letting X; represent the position of the particle at time
t, t = 0, 1,2,...which is called the state of the process at time t.

The random walk is a Markov process. The term Markov here has meaning similar to
that of the term memoryless used for the exponential distribution, in that we can “forget
the past”:

P(Xip1 = s3] Xy = 56, Xom1 = 5421, ..., Xo = s0) = P(Xpg1 = 501 | X = 54) (1)

Although this equation has a very complex look, it has a very simple meaning: The distribu-
tion of our next position, given our current position and all our past positions, is dependent
only on the current position. It is clear that the random walk process above does have this
property; for instance, if we are now at position 4, the probability that our next state will
be 3 is 1/3—no matter where we were in the past.

Continuing this example, let p;; denote the probability of going from position i to position ]
in one step. For example, py; = po3 = %, while pa4 = 0 (we can reach position 4 from position
2 in two steps, but not in one step). The numbers p;; are called the one-step transition
probabilities of the process. Denote by P the matrix whose entries are the p;;.



In typical applications we are interested in the long-run distribution of the process, for
example, the long-run proportion of the time that we are at position 4. For each state 1,

define

. N;
m = lim —2 (2)
t—oo
where N;; is the number of visits the process makes to state i among times 1, 2....; t. In

most practical cases, this proportion will exist and be independent of our initial position Xg.
(There are mathematical conditions under which this is guaranteed to occur, but they will
not be stated here.)

Intuitively, the existence of m; implies that as t approaches infinity, the system approaches
steady-state, in the sense that

lim P(X;, =1)=m (3)

=00

Though we will again avoid discussing mathematical conditions for this to occur, the point
here is that this last equation suggests a way to calculate the values m;, as follows.

First note that

P(Xpp1 = i) =) P(X; = k)pxi (4)

Then as t — oo in this equation, intuitively we would have

Ti = TkPki (5)
%

Letting 7 denote the row vector of the elements m;, these equations (one for each i) then
have the matrix form

m=mnP (6)

Note that there is also the constraint



This can be used to calculate the m;. For the random walk problem above, for instance, the

solution is [, &, i, i3, 77)- Thus in the long run we will spend 1/11 of our time at position

1, 3/11 of our time at position 2, and so on.

In the above example, the labels for the states consisted of single integers i. In some other
examples, convenient labels may be r-tuples, for example 2-tuples (i.j).

Example:

Consider a serial communication line. Let Bj, By, Bs, ... denote the sequence of bits trans-
mitted on this line. It is reasonable to assume the B; to be independent, and that P(B; = 0)
and P(B; = 1) both being equal to 0.5.

Suppose that the receiver will eventually fail, with the type of failure being stuck at 0,
meaning that after failure it will report all future received bits to be 0, regardless of their
true value. Once failed, the receiver stays failed, and should be replaced. Eventually the
new receiver will also fail, and we will replace it; we continue this process indefinitely.

However, the problem is that we will not know whether a receiver has failed (unless we test
it once in a while, which we are not including in this example). If the receiver reports a long
string of 0s, we should suspect that the receiver has failed, but of course we cannot be sure
that it has; it is still possible that the message being transmitted just happened to contain
a long string of 0s.

Suppose we adopt the policy that, if we receive k consecutive 0s, we will replace the receiver
with a new unit. Here k is a design parameter; what value should we choose for it? If we
use a very small value, then we will incur great expense, due to the fact that we will be
replacing receiver units at a very high rate. On the other hand, if we make k too large, then
we will often wait too long to replace the receiver, and the resulting error rate in received
bits will be sizable. Resolution of this tradeoff between expense and accuracy depends on
the relative importance of the two. (There are also other possibilities, involving the addition
of redundant bits for error detection, such as parity bits. For simplicity, we will not consider
such refinements here. However, the analysis of more complex systems would be similar to
the one below.)

A natural state space in this example would be

{(i,7):i=0,1,...,i—1;5=0,1;i+j # 0} (8)

where i represents the number of consecutive Os that we have received so far, and j represents
the state of the receiver (0 for failed, 1 for nonfailed). Suppose the lifetime of the receiver,
that is, the time to failure, is geometrically distributed with “success” probability p, i.e. the
probability of failing on receipt of the i-th bit after the receiver is installed is (1 — ,0)2_1,0, for
1=1273,...



Then calculation of the transition matrix P is straightforward. For example, suppose the
current state is (2,1), and that we are investigating the expense and accuracy corresponding
to a policy having k = 5. What can happen upon receipt of the next bit? The next bit will
have a true value of either 0 or 1, with probability 0.5 each. The receiver will change from
working to failed status with probability p. Thus our next state could be:

e (3,1),if a 0 arrives, and the receiver does not fail;
e (0,1),if a 1 arrives, and the receiver does not fail; or

e (3,0), if the receiver fails

The probabilities of these three transitions out of state (2,1) are:

P11 = 0.5(1 —p) (9)
p(271)7(071) = 05(1 — p) (10)
P(2,1),(3,0) = P (11)

Other entries of the matrix P can be computed similarly.

Formally specifying the matrix P using the 2-tuple notation would be very cumbersome. In
this case, it would be much easier to map to a one-dimensional labeling. For example, if k
= 5, the nine states (1,0),...,(4,0),(0,1),(1,1),...,(4,1) could be renamed states 1,2,...,9. Then
we could form P under this labeling, and the transition probabilities above would appear as

prs = 0.5(1 — p) (12)
prs = 0.5(1 — p) (13)
pPr3=p (14)

After the m; are determined, we can find the error rate ¢, and the mean time (i.e., the mean
number of bit receptions) between receiver replacements, . We can find both ¢ and p in
terms of the m;, in the following manner.



The quantity € is the proportion of the time that the true value of the received bit is 1 but
the receiver is down, which is 0.5 times the proportion of the time spent in states of the form

(i,0):

€ =0.5(my + m2 + 73 + m4) (15)

Now to get i in terms of the m; note that since p is the mean number of bits between receiver
replacements, it is then the reciprocal of the proportion of bits that result in replacements.
For example, if 5% of the received bits result in replacement of the receiver, then (speaking on
an intuitive level) the “average” set of 20 bits will contain one bit which makes us replace the
receiver, and there will thus be an average of 20 bits between replacements. A replacement
will occur only from states of the form (4.j), and even then only under the condition that the
next reported bit is a 0. In other words, there are three possible ways in which replacement
can occur:

(a) We are in state (4,0). Here, since the receiver has failed, the next reported bit will
definitely be a 0, regardless of that bit’s true value. We will then have a total of k =
5 consecutive received 0s, and therefore will replace the receiver.

(b) We are in the state (4,1), and the next bit to arrive is a true 0. It then will be reported
as a 0, our fifth consecutive 0, and we will replace the receiver, as in (a).

(c) We are in the state (4,1), and the next bit to arrive is a true 1, but the receiver fails
at that time, resulting in the reported value being a 0. Again we have five consecutive
reported Os, so we replace the receiver.

Therefore,

p~ 1 =my 4+ mg(0.5 4 0.5p) (16)

This kind of analysis could be used as the core of a cost-benefit tradeoff investigation to
determine a good value of k. (Note that the m; are functions of k, and that the above
equations for the case k = 5 must be modified for other values of k.)



