
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 100

Go Back

Full Screen

Close

Quit

The Student’s Guide to the Secret Art of
Debugging

Professor Norm Matloff
UC Davis

September 17, 2001

c©2001

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 2 of 100

Go Back

Full Screen

Close

Quit

Why should you use a debugging tool in ALL of your program-
ming courses?

(a) To please your professors.

(b) To answer questions on debugging tools on final exams.

(c) Because professional programmers make heavy usage of de-
bugging tools.

(d) To save yourself time and frustration.

Answer: Choice (c) is true but the best answer is (d)!

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 3 of 100

Go Back

Full Screen

Close

Quit

We will use the Data Display Debugger (DDD) debugging tool.

• “You see one, you’ve seen ’em all.”

• DDD is a GUI to the gdb debugger.

• DDD usable on C, C++, Java (DDD version 3.3 onward),
perl, etc.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 4 of 100

Go Back

Full Screen

Close

Quit

Fundamental Principle of Debugging: Confirmation

Finding your bug is a process of confirming the many things
that you believe are true — until you find one which is not
true.

Examples of things to confirm:

• Your belief that a variable X = 12 at a certain time.

• Your belief that in a certain if-then-else statement, the
“else” gets executed.

• Your belief that in the function call F(Y,5), the parameters
Y and 5 are received correctly.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 5 of 100

Go Back

Full Screen

Close

Quit

So, how do you confirm such things? Use a debugging tool!

Use (for example) DDD to check each belief, until you find one
that is false.

Don’t use printf() or cout statements, as they

• make you lose precious time/concentration

• make you do lots of time-consuming editing and recompiling
to add/remove them

• are less informative

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 6 of 100

Go Back

Full Screen

Close

Quit

Our running example: An insert sort.

NumInputs numbers to be placed in array Y, ascending order.

Pseudocode:

set Y array to empty
get NumInputs numbers from command line
for I = 1 to NumInputs

get new element NewY
find first Y[J] for which NewY < Y[J]
shift Y[J], Y[J+1], ... to right,

to make room for NewY
set Y[J] = NewY

Call tree:

main() -> GetArgs()
-> ProcessData() -> Insert() -> ScootOver()
-> PrintResults()

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 7 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 8 of 100

Go Back

Full Screen

Close

Quit

Let’s try compiling (note -g option) and running the program:

% gcc -o ins -g Ins.c
% ins 12 5 9 3 2 25 8 19 200 10

(no output, no return to OS prompt)

Program just hangs!

OK, let’s apply DDD:

% ddd ins

Or:

% ddd --separate ins

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 9 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 10 of 100

Go Back

Full Screen

Close

Quit

DDD displays:

• The Source File window, displaying Ins.c.

• The Command Tool window, including buttons such as:

– Run: Run the program.

– Step: Execute the current source line, entering called
function if any.

– Next: Same as Step, but do not enter the called func-
tion.

– Cont: Continue execution, not single-stepping.

– Finish: Execute until we finish the current function.

• The Debugger Console window, showing:

– GDB commands.

– Keyboard input and screen output.

The windows will be separate if the –separate option was used
when you started DDD.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 11 of 100

Go Back

Full Screen

Close

Quit

Well, where should we start?

No magic formula, but a loose guide is:

The Binary Search Principle:

First try to confirm that everything is OK at the “approxi-
mate” halfway point in the program. If so, then check at the
approximate 3/4-way point; if not, check at the 1/4-way point.
Each time, narrow down the big’s location to one half of the
previous portion.

This of course is not a hard-and-fast, exact rule; it is just a way
to suggest where to get started in applying DDD in searching
for our bug.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 12 of 100

Go Back

Full Screen

Close

Quit

Where is our “approximate halfway point” here in Ins.c? A
look at main(),

GetArgs(Argc,Argv);
ProcessData();
PrintResults();

suggests we take as our first confirmation point the beginning
of ProcessData().

So, we will set a breakpoint — a place where DDD will make
execution of the program pause — at the call to ProcessData():

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 13 of 100

Go Back

Full Screen

Close

Quit

• Move the mouse cursor to the line where ProcessData() is
called.

• Click on the left end of the line.

• Click on Break (stop-sign icon).

A red stop sign will then appear on the line, showing that DDD
will stop there:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 14 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 15 of 100

Go Back

Full Screen

Close

Quit

Now, let’s run the program via DDD:

• Click on Program, then on Run to get the Run Program
window.

• Fill in the command line arguments (12, 5, ...) in that
window.

• Click on Run in that window.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 16 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 17 of 100

Go Back

Full Screen

Close

Quit

DDD runs our program, stopping at the breakpoint. The green
arrow shows our current line, i.e. the one about to be executed:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 18 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 19 of 100

Go Back

Full Screen

Close

Quit

Now, let’s confirm that the program is running correctly so far.
All it’s done is set NumInputs and the array X, so let’s check
them:

So, let’s verify that NumInputs = 10, and that X has the correct
values (12, 5, ...):

• Move the mouse cursor to any place where NumInputs ap-
pears in the Source Code window.

Rest there for a half second or so.

• The value of NumInputs will appear in a yellow box near
the mouse cursor (the cursor doesn’t appear here), and at
the edge below the Debugger Console.

• Do the same for X.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 20 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 21 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 22 of 100

Go Back

Full Screen

Close

Quit

OK, both NumInputs and X are all right.

But if there had been a bug within GetArgs(), say

X[I] = atoi(AV[I]);

we would have found it here, by checking the values of the AV
strings, etc.

By the way, if we had just wanted to check the value of X[I]
here, not all of X (what if X had had 10,000 elements instead of
just 10?), we could have used the mouse to highlight the whole
expression “X[I]”, then right-clicked on it and selected “Print
X[I]”. The value would be printed to the Debugger Console.

Or we could select “Display X[I]”, which would create a sub-
window in which X[I] would be continuously displayed.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 23 of 100

Go Back

Full Screen

Close

Quit

Let’s browse some more, say in Insert().

• Place a breakpoint in the definition of Insert().

• Hit Cont to continue to the next breakpoint, which will be
the one we just placed in Insert().

• Once we get into Insert(), the green arrow points to the line

if (NumY = 0) { // Y empty so far, easy case

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 24 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 25 of 100

Go Back

Full Screen

Close

Quit

• This is the first time we’ve hit Insert(), so NumY should be
0. But we need to confirm it, by moving the mouse cursor
to NumY. Yep, it’s 0.

• Hitting Step (or Next) that “should” take us to the line

Y[0] = NewY;

but once again, we must confirm it. Here’s what we get:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 26 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 27 of 100

Go Back

Full Screen

Close

Quit

Oh, no! It skipped right over the if, going straight to the for
loop!

So (NumY = 0) must have been false. But we confirmed that
NumY was 0!

Hmm...aha! The old classic C learner’s error – we used = in-
stead of ==! The if line should have been

if (NumY == 0) {

That’s what made the program hang: It kept assigning 0 to
NumY, so the Y array never grew.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 28 of 100

Go Back

Full Screen

Close

Quit

We recompile, then run the program outside of DDD, in another
window to see if it works now. We get:

% ins 12 5 9 3 2 25 8 19 200 10
Segmentation fault
%

A seg fault in Unix means an execution error due to the pro-
gram’s accessing memory which is not allocated to it.

Fundamental Principle for Execution Errors:
The first step to take after an execution error is to run the
program through DDD (if the error occurred when run without
DDD), to determine where the execution error occurred.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 29 of 100

Go Back

Full Screen

Close

Quit

So, let’s re-rerun the program within DDD.

• We don’t want to stop at the breakpoints, so:

– Go to each breakpoint.

– Right-click on the stop sign at the breakpoint.

– Choose Disable. (The red stop signs turn to gray.)

• We simply hit the Run button in the Command Tool win-
dow.

• DDD will automatically load the newly-compiled files.

• We don’t have to specify the command-line arguments
again, as they are re-used with each run within DDD unless
we change them.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 30 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 31 of 100

Go Back

Full Screen

Close

Quit

DDD’s red arrow tells us that the execution error occurred on
the line

Y[K] = Y[K-1];

Remember, a seg fault occurs when the program is accessing a
portion of memory to which it is not permitted access. So, we
suspect that K has a value outside the range of Y, which has
only 10 elements.

Let’s check, once again by moving the mouse cursor to any
place K appears:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 32 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 33 of 100

Go Back

Full Screen

Close

Quit

Whoa! K = 504 is way out of range.

(By the way, K = 10 or 11 did not cause a seg fault, as we were
still in the same page of virtual memory.)

Let’s look at the code which is setting K:

for (K = NumY-1; K > JJ; K++)
Y[K] = Y[K-1];

Recall that this code was supposed to shift the Ys over to the
right, first moving the rightmost Y, then shifting the next-to-
rightmost Y, etc.

In other words, this was supposed to be a “down” loop; K++
should be K–.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 34 of 100

Go Back

Full Screen

Close

Quit

OK, we recompile and then re-run:

% ins 12 5 9 3 2 25 8 19 200 10
2
3
5
0
0
0
0
0
0
0
%

Not correct yet, but at least the first 3 elements are correct.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 35 of 100

Go Back

Full Screen

Close

Quit

Let’s go to ProcessData() and do some spot checks for various
values of NumY in the loop there:

for (NumY = 0; NumY < NumInputs; NumY++)
// insert new Y in the proper place
// among Y[0],...,Y[NumY-1]
Insert(X[NumY]);

Trying the Binary Search Principle, let’s first do a check for the
NumY value which is halfway through, i.e. NumInputs/2 = 5:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 36 of 100

Go Back

Full Screen

Close

Quit

• Put a breakpoint on the line which calls Insert().

• Right-click on this breakpoint’s stop-sign icon.

• Select Properties.

• Specify Condition as NumY == 5 (not NumY = 5!).

• Hit the Run button.

DDD will stop at the call to Insert() when NumY is 5, skipping
the previous calls to Insert().

This is a small convenience for this case in which X is only 10
elements, but would be crucial of X had 10,000 elements.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 37 of 100

Go Back

Full Screen

Close

Quit

We then check Y (by moving mouse cursor to Y). It turns out
that

Y = {2,3,5,0,0,0,0,0,0,0}

just as after the end of full execution.

So, the problem occurred during “the first half.” Well, let’s
start at the beginning, since the first X, 12, doesn’t appear in
Y:

• Remove the Condition NumY == 5 from the breakpoint at
the call to Insert(): Right-click on its stop sign icon, choose
Properties, erase the Condition.

• Hit the Run button to restart.

• Each time DDD stops at the call to Insert(), do:

– Check Y (as usual, by moving the mouse to an instance
of Y anywhere in the code) to confirm it is what it
should be at this stage.

– Hit the Cont button to have DDD continue until the
next breakpoint (which will be this one again).

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 38 of 100

Go Back

Full Screen

Close

Quit

We find that the case NumY = 0 works fine, i.e. Y[0] = 12.
But the next case, NumY = 1, fails: Y[0] becomes 5, and the
12 disappears.

So, we’ve narrowed the problem down to the events within In-
sert() when NumY = 1.

Here’s the main part of Insert():

for (J = 0; J < NumY; J++) {
if (NewY < Y[J]) {

// shift Y[J], Y[J+1],... rightward
// before inserting NewY
ScootOver(J);
Y[J] = NewY;
return;

}
}

We need to step through these lines for this case NumY = 1:

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 39 of 100

Go Back

Full Screen

Close

Quit

• Re-run by hitting Run.

• The first time we hit the breakpoint at the call to Insert(),
NumY is 0, so hit Cont.

• Hit Step (not Next) to enter Insert().

• Hit Step or Next twice to get to the if within the for loop.

• Take a look around: Confirm our expected values for NumY
(should be 1), NewY (should be 5), and Y (should be 12,
0, 0, ...). Yes, all OK.

• Now (NewY < Y[J]) should be true; confirm it: Hit Step
or Next. Yes, we do go to the call to ScootOver().

• Let’s skip over ScootOver(), i.e. execute it but not enter it:
Hit Next (not Step).

• Let’s confirm that the Y array was shifted rightward: Move
the mouse cursor to display the values in Y. Aha! The 12
is still in Y[0], instead of in Y[1].

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 40 of 100

Go Back

Full Screen

Close

Quit

So, we need to go into ScootOver().

• Disable existing breakpoints, and add a new one at the call
to ScootOver().

• Re-run the program.

• The first time the breakpoint is hit, this should be the case
NumY = 1, but confirm it. Yes, OK.

• Hit Step (not Next) to enter ScootOver().

• Remember, at this time Y consists of just one element, 12,
which we must shift to the right to make room for NewY,
5, which is to be inserted. We will try to confirm this.

• Hit Step or Next to execute the first line.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 41 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 42 of 100

Go Back

Full Screen

Close

Quit

The loop to shift Y rightward wasn’t executed at all.

A closer look shows why: Since NumY was 1 and JJ was 0, the
loop amounted to

for (K = 0; K > 0; K--)

so the loop wasn’t executed.

A bit more thought reveals that the expression NumY-1 in the
loop should have been NumY.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 43 of 100

Go Back

Full Screen

Close

Quit

So, recompile and re-run:

% ins 12 5 9 3 2 25 8 19 200 10
2
3
5
8
9
10
12
0
0
0

Looks like we are almost done, possibly with just one bug re-
maining.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 44 of 100

Go Back

Full Screen

Close

Quit

The first element missing in the output above is 25, so let’s see
what happened when it was inserted into Y.

• Re-enable the breakpoint at the call to Insert().

• Add the condition X[NumY] == 25.

• Hit the Run button, then Step to enter Insert().

• We anticipate that we may be checking Y a lot, so it’s easier
to continuously display it:

– Go to any instance of Y in the Source File window.

– Right-click on it.

– Select “Display Y”.

– A Data window will open above the Source File window.

– You may wish to resize the DDD window, and the Data
and Source File windows.

• Keep hitting Next until we see a change in Y.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 45 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 46 of 100

Go Back

Full Screen

Close

Quit

Y never changed! The 25 was ignored.

After some thought, we realize that the for loop only handles
the case in which NewY is inserted within Y. We need separate
code for the case in which NewY is added at the right end of
Y.

After the for loop, add the code:

// one more case: NewY > all existing Y elements
Y[NumY] = NewY;

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 47 of 100

Go Back

Full Screen

Close

Quit

Examining arrays passed as function arguments:

Many people avoid using global variables. Suppose for example
the arrays X and Y in our insert-sort example had been declared
local to main(). The call to GetArgs(), for instance, would now
be

GetArgs(X,Argc,Argv);

and GetArgs() itself would look like this:

void GetArgs(int XX[], int AC, char **AV)

{ int I;

NumInputs = AC - 1;
for (I = 0; I < NumInputs; I++)

XX[I] = atoi(AV[I+1]);
}

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 48 of 100

Go Back

Full Screen

Close

Quit

Suppose we wish to examine XX while in GetArgs(). Our old
method of moving the mouse cursor to XX is no longer useful;
only the memory address in the pointer XX will be shown.

However, we can still easily view individual array elements, as
mentioned earlier. In this context we would:

• Use the mouse to highlight “XX[I]”.

• Right-click on the highlighted item.

• Select “Print XX[I]”. (Or choose “Display XX[I]” for con-
tinuous viewing in a Data window.)

• The value of XX[I] will be printed to the Debugger Console
window.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 49 of 100

Go Back

Full Screen

Close

Quit

Examining linked data structures:

Some debuggers, including DDD, GVD and JSwat, have nice
facilities for displaying linked data structures, which are of great
value. To illustrate how this is done in DDD, we’ve rewritten
Ins.c as Lnk.c, which implements Y as a linear linked list instead
of as an array:

struct ListElt {
int Elt;
struct ListElt *NextElt;

};

struct ListElt *Y; // ptr to workspace list

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 50 of 100

Go Back

Full Screen

Close

Quit

Here is how to display the list:

(a) Right-click anywhere Y appears in the Source File window,
and choose “Display *Y”.

(b) A Data window will be created, and a box will appear there
showing the contents of the struct pointed to by Y.

(c) If NextElt in that struct is nonnull, right-click on it, and
select “Display *()’.

(d) Repeat step (c) until the entire list (or the portion of inter-
est to you) is displayed.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 51 of 100

Go Back

Full Screen

Close

Quit

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 52 of 100

Go Back

Full Screen

Close

Quit

Using the display:

• The display will automatically update as you step through
the program (except when items are appended, in which
case you must add the new link manually).

• If the list is too large for the window, use the scrollbars to
view different sections of it.

• To delete part or all of the display, right-click on the dis-
played item and choose Undisplay.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 53 of 100

Go Back

Full Screen

Close

Quit

Summary:

A debugging tool cannot determine what your bug is, but it is
great value in determining where it is. You should use one in
all of your programming work.

(See related links, next slide.)

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 54 of 100

Go Back

Full Screen

Close

Quit

Good debugging tools:

My criteria:

• Free (especially helpful for classroom use).

• Advanced features (e.g. display of linked data structures).

• Small memory footprint.

• I prefer standalone debuggers, not integrated development
environments (IDEs) — I want to use my own favorite text
editor.

http://heather.cs.ucdavis.edu/~matloff/debug.html

Home Page

Title Page

Contents

JJ II

J I

Page 55 of 100

Go Back

Full Screen

Close

Quit

Standalone debuggers:

• DDD; featured here; http://heather.cs.ucdavis.
edu/~matloff/ddd.html.

• GVD: Very similar to DDD, less general but trim-
mer, faster-loading; available for both UNIX and Win-
dows; http://heather.cs.ucdavis.edu/~matloff/
gvd.html.

• JSwat: Excellent debugger for Java; works on most plat-
forms; can be used as standalone or with the JIPE IDE (see
below); http://heather.cs.ucdavis.edu/~matloff/
jswat.html.

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/ddd.html
http://heather.cs.ucdavis.edu/~matloff/ddd.html
http://heather.cs.ucdavis.edu/~matloff/gvd.html
http://heather.cs.ucdavis.edu/~matloff/gvd.html
http://heather.cs.ucdavis.edu/~matloff/jswat.html
http://heather.cs.ucdavis.edu/~matloff/jswat.html

Home Page

Title Page

Contents

JJ II

J I

Page 56 of 100

Go Back

Full Screen

Close

Quit

IDEs:

• KDevelop: For C/C++, on Linux under KDE.

• BlueJ: For Java, especially for learners; works on most plat-
forms; http://heather.cs.ucdavis.edu/~matloff/
bluej.html.

• JIPE: For Java; works on most platforms; http://jipe.
sourceforge.net/.

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/bluej.html
http://heather.cs.ucdavis.edu/~matloff/bluej.html
http://jipe.sourceforge.net/
http://jipe.sourceforge.net/

Home Page

Title Page

Contents

JJ II

J I

Page 57 of 100

Go Back

Full Screen

Close

Quit

Software development is faster and more pleasant if you make
good use of a text editor:

• My tutorial on general editing tips for program-
mers: http://heather.cs.ucdavis.edu/~matloff/
progedit.html.

• Vim: Very advanced extension of vi; very popu-
lar; multi-platform; free; http://heather.cs.ucdavis.
edu/~matloff/vim.html.

• Emacs: A classic; programmable; multi-platform;
free; http://heather.cs.ucdavis.edu/~matloff/
UnixAndC/Editors/Emacs.html.

• JEdit: Beautiful product; great features; for
C/C++/Java/etc; free; http://heather.cs.ucdavis.
edu/~matloff/jedit.html.

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/progedit.html
http://heather.cs.ucdavis.edu/~matloff/progedit.html
http://heather.cs.ucdavis.edu/~matloff/vim.html
http://heather.cs.ucdavis.edu/~matloff/vim.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/Emacs.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/Emacs.html
http://heather.cs.ucdavis.edu/~matloff/jedit.html
http://heather.cs.ucdavis.edu/~matloff/jedit.html

