ChaptelO
A Look UndertheHood

NormanMatloff
Universityof Californiaat Davis
(©2001,N. Matloff

February, 2001

Throughait thesechapterswe will useananalogyof computergo automobiés. A look underthe hoodof
acargivesusaview of theengine the sourceof powerwhichwe utilizewhenwe drive thecar. In thecase
of acomputertheanalogyof “driving” is programmingn a high-level languaggHLL) suchasC/C++,and
therearetwo sourcef power:

¢ thehardwarejncluding thecentralprocessinginit which executegshe computers machindanguag,

o the low-level software,consisting of variousservicesthat the operatingsysem makesavailabke to
programs.

Whenyou write a programin anHLL, the compilerwill translateyour HLL statement#nto the machine
languageof that computey andto callsto subroutheswithin the operatingsystem. And of course,it is

this translatedversionof your programthat is actuallyexecuted,not your HLL programitself. Thusthe

hardwareandoperatingsystemdoindeedform the“engine” of the computer

It is our goalto demystiy this engine,by giving the readeranintroducbry “look underthe hood.” Note
carefully that this engineconsiss of both hardwareand softwae componentseachof which is equally
important!

The skeptcal readerwill pointout here,quite correctly thatonedoesnot needto know aboutautomobile
enginesin orderto be a gooddriver. This raisesthe questionasto whetherone needsto know abouta
computers hardwareandoperatingsysemin orderto beagoodprogrammerTheansweto thisquestioris
thatsud knowledges actuallyvital to goodprogramming Professionatievelopersof softwae needmuch,
muchmorethanmereprogrammingskills—they do needto know how thecomputers“engine”works. And
again,it is equallyimportantto understandboththe hardwareandthe softwarecomponentsf thisengine.

For example, considerthe following C code, which finds the sum of two variablesX andY of typeint,
storingthetotalin anint variableSum:

Sum = X + Y;

Theterm hardwarein this bookwill referto the major physcal compomntsof a computer Our discissionwill corcernthe
functionsof thesecompormnts,i.e. whatis knowvn ascomputer architecture, but notthe detailsof theelectronicimplementation,
which arebeyord our scpehere. Thusno baclgroundon electronicds neeedor used.




Supposeahatyou know thatbothX andY arenonngative. Thenyouwould expectthatthe valueof Sum,
after the statements executedwill be nonngaive. But actually it is entirely possble that Sumwill turn
outto havea negativevalue For example,suppaethatX is 28,502andY is 12,344 andtheprogramis run
onamachinewith 16-bitwor d size (do notworry aboutthisterm,whichwe will discusdater). Thenvalue
of Sumwill be-24,689!

How could Sumbecomenggative? After you learnhow the hardwarestorespositve andnegative integers,
anegative valuefor Sumwill be nomysteryto youatall. Butimaginehow helplessyouwould bewithout

this knowledge. Suppose/our programweremore comple thanour simplified exampleabore. Thenyou
might spendhoursor even dayssearchingor the bug, a searchwhich would bein vain, sincethe problem
would beaconceptuakrror concerninghe computers engine notaprogrammingerror.

Similarly, a C programwhich works just fine on one machinemight fail on another dueto the orderin
which dataare storedinternally within the hardware. Somemachinesusebig-endian datastoragewhile
othersuselittle-endian storage. We will explainthesetermsin Chapterl, but the poirt now is thatagain
evena high-level languaggrogrammeneeddo know whathappensunderthehood.”

In anotherexample,the authorwasonceinvolved in a large softwaredevelopmentprojectfor a database
application. After the developmentteamfinishedthe productandpresentedt to the client for testng, the
client pronouncedhe productas being completelyunacceptable The programmersvere shocked since
the client confirmedthatthe programwas producingcorrectresults But the client, who hadusedsimilar
productshefore,saidthatthe programwastoo slow. The programwastakingabout15 secondso respond
to his commandswhile from experiencewith otherprogramsof this type, he was expectingessentiajt
instananeougesponseUponlooking closeratthe program the developmenteamfounda subtleprobem
which madethe programs useof the operatingsystemextremely inefficient, resultng in the 15-second
delaywhichhadbeenupsettig theclient. After they changedhe manneiin which theprogramwasmaking
callsto operatingsysem servicestheresponséime did becomeanstantaneos, andthe clientwaspleased.
Soasin thelastexample,we againseethatit is not enoughto be justa goodprogrammer-knowledgeof
theunderlyng enginecanbe crucialto the succes®f the program.

Anotherexamplein which this knowledgeis importantis the areaof computersecurity whichis becoming
of centralinterestin mary organizatios. Most attacksby “hackers”to invadecomputersystemsarebased
on exploitation of “under the hood” aspectof thosesystemsso defenseagainsg thos attacksrequires
equallythoroughundersandingof thoseaspects.

The examplesabove, which are just a few amongthe mary which occurin real-world softwae develop-
ment, shav why an understindingof the computers engineis importanteven whenwriting in an HLL.
Furthermorejn someapplicatonswe mustprogramin the computers machinelanguagedirectly, rather
thanindirectly throughan HLL. Thereasorfor this is thatsomeapplicatiors requirethatour programac-
cesssomespecialfeatureof our particularhardware. This is imposéble in an HLL, sinceHLLs are by
definition machine-independetdanguagesso we mustwrite suchapplicatios directly in our computers
machindanguage.

This situatbn arises,for example,in embedded applications, in which a computeris usedto control a
machine,suchasan automaticbankteller machine,a robot, and even commonhousehta itemssuchas
washig machinesandautofocuscameras.Computersarein all thesemachinesandthe programswhich
runonthemdo needto accessnachine-specifiitems.

Onthe otherhand,machinelanguaggML) programmings incorvenientandhardfor othersto read. For
thisreasonthe modernsoftwareengineeringhilosophyis thatwhenever a situaton arisesin which ML is
neededye minimizetheusageof it by writing mostof the programin anHLL andonly thecrucialsection
of theprogramin ML.

Look UndertheHood: 2



Finally, onemustunderstandhe differencesamongvariouscomputerenginesvhenmakingdecisiors asto
whatcomputirg equipmenshoutl be purchasedbr a givenapplication—whetheit involvesrecommending
to anemployeror clientwhatworkstaionsaremostappropriatdor hishersettng, or answering/ourUncle
Bill' squestdn asto whatkind of personabomputete shouldbuy for homeuse.

For all thesereasonsour goalwill beto getathorough‘look underthehood”atmoderncomputersysems.
It is of coursevital thatwe makethe conceptsoncrete py working with specificcomputertypes,andthat
we look atbothmajorphilosophiescommonin computersisedtoday:

e Comple Instructon Set ComputergCISC): The chipsinsidethesecomputersare capableof mary
differentftundamentabperationscalledinstructions.

e Reducednstructon SetComputergRISC): The nameherecamefrom the fact thatthe chipsinside
thesecomputersoriginally hadonly a few instructiontypes. Thatis not necessarilyrue today but
whatis retaineds thevery primitive natureof theirinstructions.In mary casesin orderto achieve the
sameeffectthata CISC machinemightaccomplishin a sinde instructbn, RISC machinesnay have
to apply severalinstructonsin concert.For example,virtually every CISC machinehasinstructions
to do additionand multiplication, but someRISC machinescan only do addition; in orderto do a
multiplication, suchmachinesmustsetup a loop of additioninstructons (or resortto someother
suchtrick). But RISC proponentsaysthatthisis morethancompensatetly the fact thatthe lean
instructionsetof a RISC machineallowsit to run faster—“leanandmean.”

Themainexampleof CISCtodayis thelntel family, suchasthe Pentiumchip (andits ancestorssuchasthe
i386)foundin PCs.

Most newer chipsareof the RISC type, including MIPS (usedin Silicon Graphicsworkstaions), SFARC
(Sunworksttions),Alpha (producedy Compaqg)andPoverPC(Macintoshes).

We will beusingpublic-domainsimulatorsfor DLX andMac-1which areavailablevia the Internet(more
detailslater).

In the courseof working throughthesechaptersyou will becomeproficientat writing machinelanguage
programs’, Butremembethatthis is notour goalat all. Thegoalis notto “learn yetanotherlanguage,”
but ratherto ill ustrate principlesof computersystemsTheprogrammingis thusa meanspotanend.

2Actually, youwill write in assembly language, whichyouwill seeis essetially thesameasmacline language

Look UndertheHood: 3



