
Chapter0
A Look UndertheHood

NormanMatloff
Universityof CaliforniaatDavis

c
�

2001,N. Matloff

February4, 2001

Throughout thesechapters,we will useananalogyof computersto automobiles.A look underthehoodof
a cargivesusaview of theengine,thesourceof powerwhichwe utilizewhenwe drive thecar. In thecase
of acomputer, theanalogyof “driving” is programmingin ahigh-level language(HLL) suchasC/C++,and
therearetwo sourcesof power:

� thehardware,including thecentralprocessingunit whichexecutesthecomputer’smachinelanguage,

� the low-level software,consisting of variousservicesthat the operatingsystem makesavailable to
programs.

Whenyou write a programin an HLL, the compilerwill translateyour HLL statementsinto the machine
languageof that computer, andto calls to subroutineswithin the operatingsystem. And of course,it is
this translatedversionof your programthat is actuallyexecuted,not your HLL programitself. Thusthe
hardwareandoperatingsystemdoindeedform the“engine”of thecomputer.

It is our goal to demystify this engine,by giving the readeran introductory “look underthe hood.” Note
carefully that this engineconsists of both hardwareand software components,eachof which is equally
important.1

Theskeptical readerwill point out here,quitecorrectly, thatonedoesnot needto know aboutautomobile
enginesin order to be a gooddriver. This raisesthe questionas to whetheroneneedsto know abouta
computer’shardwareandoperatingsystemin orderto beagoodprogrammer. Theanswerto thisquestionis
thatsuch knowledgeis actuallyvital to goodprogramming. Professionaldevelopersof softwareneedmuch,
muchmorethanmereprogrammingskills—they doneedto know how thecomputer’s“engine”works.And
again,it is equallyimportantto understandboththehardwareandthesoftwarecomponentsof thisengine.

For example,considerthe following C code,which finds the sumof two variablesX andY of type int,
storingthetotal in an int variableSum:

Sum = X + Y;
1Thetermhardware in this bookwill refer to themajorphysical componentsof a computer. Our discussionwill concernthe

functionsof thesecomponents,i.e. whatis known ascomputer architecture, but not thedetailsof theelectronicimplementation,
whicharebeyond our scopehere.Thusnobackgroundonelectronicsis neededor used.

1



Supposethatyou know thatbothX andY arenonnegative. Thenyou would expectthatthevalueof Sum,
after thestatementis executed,will be nonnegative. But actually, it is entirely possible that Sumwill turn
out to havea negativevalue. For example,supposethatX is 28,502andY is 12,344,andtheprogramis run
onamachinewith 16-bitword size (donotworry aboutthis term,whichwewill discusslater).Thenvalue
of Sumwill be-24,689!

How couldSumbecomenegative? After you learnhow thehardwarestorespositive andnegative integers,
a negative valuefor Sumwill benomysteryto youat all. But imaginehow helplessyou would bewithout
this knowledge.Supposeyour programweremorecomplex thanour simplified exampleabove. Thenyou
might spendhoursor evendayssearchingfor thebug,a searchwhich would bein vain,sincetheproblem
would beaconceptualerrorconcerningthecomputer’sengine,notaprogrammingerror.

Similarly, a C programwhich works just fine on onemachinemight fail on another, due to the order in
which dataarestoredinternally within the hardware.Somemachinesusebig-endian datastoragewhile
othersuselittle-endian storarge. We will explain thesetermsin Chapter1, but thepoint now is thatagain
evena high-level languageprogrammerneedsto know whathappens“underthehood.”

In anotherexample,the authorwasonceinvolved in a large softwaredevelopmentprojectfor a database
application. After thedevelopmentteamfinishedtheproductandpresentedit to theclient for testing, the
client pronouncedthe productasbeingcompletelyunacceptable.The programmerswereshocked,since
the client confirmedthat the programwasproducingcorrectresults. But theclient, who hadusedsimilar
productsbefore,saidthattheprogramwastoo slow. Theprogramwastakingabout15 secondsto respond
to his commands,while from experiencewith otherprogramsof this type, he wasexpectingessentially
instantaneousresponse.Uponlooking closerat theprogram,thedevelopmentteamfounda subtleproblem
which madethe program’s useof the operatingsystemextremely inefficient, resulting in the 15-second
delaywhichhadbeenupsetting theclient. After they changedthemannerin whichtheprogramwasmaking
callsto operatingsystemservices,theresponsetime did becomeinstantaneous,andtheclientwaspleased.
Soasin the lastexample,we againseethat it is not enoughto be just a goodprogrammer—knowledgeof
theunderlyingenginecanbecrucial to thesuccessof theprogram.

Anotherexamplein whichthisknowledgeis importantis theareaof computersecurity, which is becoming
of centralinterestin many organizations. Most attacksby “hackers”to invadecomputersystemsarebased
on exploitation of “under the hood” aspectsof thosesystems,so defenseagainst those attacksrequires
equallythoroughunderstandingof thoseaspects.

The examplesabove, which are just a few amongthe many which occur in real-worldsoftware develop-
ment, show why an understandingof the computer’s engineis importanteven whenwriting in an HLL.
Furthermore,in someapplicationswe mustprogramin the computer’s machinelanguagedirectly, rather
thanindirectly throughan HLL. Thereasonfor this is thatsomeapplications requirethatour programac-
cesssomespecialfeatureof our particularhardware. This is impossible in an HLL, sinceHLLs are by
definitionmachine-independentlanguages,so we mustwrite suchapplications directly in our computer’s
machinelanguage.

This situation arises,for example,in embedded applications, in which a computeris usedto control a
machine,suchasan automaticbankteller machine,a robot, andeven commonhousehold itemssuchas
washing machinesandautofocuscameras.Computersarein all thesemachines,andthe programswhich
runon themdoneedto accessmachine-specificitems.

On theotherhand,machinelanguage(ML) programmingis inconvenientandhardfor othersto read. For
thisreason,themodernsoftwareengineeringphilosophyis thatwhenever a situation arisesin whichML is
needed,weminimizetheusageof it by writing mostof theprogramin anHLL andonly thecrucialsection
of theprogramin ML.

Look UndertheHood:2



Finally, onemustunderstandthedifferencesamongvariouscomputerengineswhenmakingdecisionsasto
whatcomputing equipmentshould bepurchasedfor agivenapplication—whetherit involvesrecommending
to anemployeror clientwhatworkstationsaremostappropriatefor his/hersetting,or answeringyourUncle
Bill’ squestionasto whatkind of personalcomputerheshouldbuy for homeuse.

For all thesereasons,ourgoalwill beto getathorough“look underthehood”atmoderncomputersystems.
It is of coursevital thatwe maketheconceptsconcrete,by working with specificcomputertypes,andthat
we look atbothmajorphilosophiescommonin computersusedtoday:

� Complex Instruction SetComputers(CISC): The chipsinsidethesecomputersarecapableof many
differentfundamentaloperations, calledinstructions.

� ReducedInstruction SetComputers(RISC): Thenameherecamefrom thefact thatthechipsinside
thesecomputersoriginally hadonly a few instruction types. That is not necessarilytrue today, but
whatis retainedis theveryprimitivenatureof their instructions.In many cases,in orderto achievethe
sameeffect thata CISCmachinemightaccomplishin a single instruction,RISCmachinesmayhave
to applyseveral instructionsin concert.For example,virtually every CISC machinehasinstructions
to do additionandmultiplication, but someRISC machinescanonly do addition; in orderto do a
multiplication, suchmachinesmustsetup a loop of additioninstructions (or resortto someother
suchtrick). But RISC proponentssaysthat this is morethancompensatedby the fact that the lean
instructionsetof aRISCmachineallowsit to run faster—“leanandmean.”

Themainexampleof CISCtodayis theIntel family, suchasthePentiumchip(andits ancestors,suchasthe
i386) foundin PCs.

Most newer chipsareof theRISC type, including MIPS (usedin Silicon Graphicsworkstations),SPARC
(Sunworkstations),Alpha(producedby Compaq)andPowerPC(Macintoshes).

We will beusingpublic-domainsimulatorsfor DLX andMac-1which areavailablevia theInternet(more
detailslater).

In the courseof working throughthesechapters,you will becomeproficientat writing machinelanguage
programs,2 But rememberthat this is not our goalat all. Thegoal is not to “learn yetanotherlanguage,”
but ratherto ill ustrateprinciplesof computersystems.Theprogrammingis thusa means,notanend.

2Actually, youwill write in assembly language, whichyouwill seeis essentially thesameasmachine language.

Look UndertheHood:3


