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Preface

Let’s start by clarifying: This book is NOT about assembly language programming. True, there is assembly
language sprinkled throughout the book, so you will in fact learn assembly language—but only as a means to
a different end, the latter being understanding of computer systems. Specifically, you will learn about high-
level hardware, the large differences between one machine and the next, and low-level software, meaning
operating systems and to some degree compilers.

I submit that if you pursue a career in the computer field, this may be one of the most important courses you
ever take. It will help you decide which computer to buy, whether for your yourself or for your employer; it
will help you understand what makes a computer fast, or not; it will help you to deal with emergencies.

Here is an example of the latter: A couple of years ago, a young family friend spent a summer studying
abroad, and of course took lots of pictures, which she stored on her laptop. Unfortunately, when she returned
home, her little sister dropped the laptop, and subsequently the laptop refused to boot up. A local electronics
store wanted $300 to fix it, but I told the family that I’d do it. Utilizing my knowledge of how a computer
boots up and how OS file structures work—which you will learn in this book—I was able to quickly rescue
most of the young lady’s photos.

The book features a chapter on multicore processors. These are of tremendous importance today, as it is hard
to buy a desktop or even a smart phone without one. Yet programming a multicore system, for all but the
so-called embarrassingly parallel applications, requires an intimate knowledge of the underlying hardware.

Many years ago there was an athlete, Bo Jackson, who played both professional baseball and football. A
clever TV commercial featuring him began with “Bo knows baseball. Bo knows football” but then conceded,
no, Bo doesn’t know hockey. Well, if you master the material in this book, YOU will know computers.

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United States Li-
cense. The details may be viewed at http://creativecommons.org/licenses/by-nd/3.0/
us/, but in essence it states that you are free to use, copy and distribute the work, but you must attribute the
work to me and not “alter, transform, or build upon” it. If you are using the book, either in teaching a class
or for your own learning, I would appreciate your informing me. I retain copyright in all non-U.S. jurisdic-
tions, but permission to use these materials in teaching is still granted, provided the licensing information
here is displayed.

xiii

http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/
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Chapter 1

Information Representation and Storage

1.1 Introduction

A computer can store many types of information. A high-level language (HLL) will typically have several
data types, such as the C/C++ language’s int, float, and char. Yet a computer can not directly store any
of these data types. Instead, a computer only stores 0s and 1s. Thus the question arises as to how one can
represent the abstract data types of C/C++ or other HLLs in terms of 0s and 1s. What, for example, does a
char variable look like when viewed from “under the hood”?

A related question is how we can use 0s and 1s to represent our program itself, meaning the machine
language instructions that are generated when our C/C++ or other HLL program is compiled. In this chapter,
we will discuss how to represent various types of information in terms of 0s and 1s. And, in addition to this
question of how items are stored, we will also begin to address the question of where they are stored, i.e.
where they are placed within the structure of a computer’s main memory.

1.2 Bits and Bytes

1.2.1 “Binary Digits”

The 0s and 1s used to store information in a computer are called bits. The term comes from binary digit,
i.e. a digit in the base-2 form of a number (though once again, keep in mind that not all kinds of items that
a computer stores are numeric). The physical nature of bit storage, such as using a high voltage to represent
a 1 and a low voltage to represent a 0, is beyond the scope of this book, but the point is that every piece of
information must be expressed as a string of bits.

1
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For most computers, it is customary to label individual bits within a bit string from right to left, starting with
0. For example, in the bit string 1101, we say Bit 0 = 1, Bit 1 = 0, Bit 2 = 1 and Bit 3 = 1.

If we happen to be using an n-bit string to represent a nonnegative integer, we say that Bit n-1, i.e. the
leftmost bit, is the most significant bit (MSB). To see why this terminology makes sense, think of the base-
10 case. Suppose the price of an item is $237. A mistake by a sales clerk in the digit 2 would be much
more serious than a mistake in the digit 7, i.e. the 2 is the most significant of the three digits in this price.
Similarly, in an n-bit string, Bit 0, the rightmost bit, is called the least significant bit (LSB).

A bit is said to be set if it is 1, and cleared if it is 0.

A string of eight bits is usually called a byte. Bit strings of eight bits are important for two reasons. First,
in storing characters, we typically store each character as an 8-bit string. Second, computer storage cells are
typically composed of an integral number of bytes, i.e. an even multiple of eight bits, with 16 bits and 32
bits being the most commonly encountered cell sizes.

The whimsical pioneers of the computer world extended the pun, “byte” to the term nibble, meaning a 4-bit
string. So, each hex digit (see below) is called a nibble.

1.2.2 Hex Notation

We will need to define a “shorthand” notation to use for writing long bit strings. For example, imagine how
cumbersome it would be for us humans to keep reading and writing a string such as 1001110010101110.
So, let us agree to use hexadecimal notation, which consists of grouping a bit string into 4-bit substrings,
and then giving a single-character name to each substring.

For example, for the string 1001110010101110, the grouping would be

1001 1100 1010 1110

Next, we give a name to each 4-bit substring. To do this, we treat each 4-bit substring as if it were a base-2
number. For example, the leftmost substring above, 1001, is the base-2 representation for the number 9,
since

1 · (23) + 0 · (22) + 0 · (21) + 1 · (20) = 9,

so, for convenience we will call that substring “9.” The second substring, 1100, is the base-2 form for the
number 12, so we will call it “12.” However, we want to use a single-character name, so we will call it “c,”
because we will call 10 “a,” 11 “b,” 12 “c,” and so on, until 15, which we will call “f.”

In other words, we will refer to the string 1001110010101110 as 0x9cae. This is certainly much more
convenient, since it involves writing only 4 characters, instead of 16 0s and 1s. However, keep in mind that
we are doing this only as a quick shorthand form, for use by us humans. The computer is storing the string
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in its original form, 1001110010101110, not as 0x9cae.

We say 0x9cae is the hexadecimal, or “hex,” form of the the bit string 1001110010101110. Often we will
use the C-language notation, prepending “0x” to signify hex, in this case 0x9cae.

Recall that we use bit strings to represent many different types of information, with some types being
numeric and others being nonnumeric. If we happen to be using a bit string as a nonnegative number, then
the hex form of that bit string has an additional meaning, namely the base-16 representation of that number.

For example, the above string 1001110010101110, if representing a nonnegative base-2 number, is equal to

1(215) + 0(214) + 0(213) + 1(212) + 1(211) + 1(210) + 0(29) + 0(28)

+ 1(27) + 0(26) + 1(25) + 0(24) + 1(23) + 1(22) + 1(21) + 0(20) = 40, 110.

If the hex form of this bit string, 0x9cae, is treated as a base-16 number, its value is

9(163) + 12(162) + 10(161) + 14(160) = 40, 110,

verifying that indeed the hex form is the base-16 version of the number. That is in fact the origin of the term
“hexadecimal,” which means “pertaining to 16.” [But there is no relation of this name to the fact that in this
particular example our bit string is 16 bits long; we will use hexadecimal notation for strings of any length.]

The fact that the hex version of a number is also the base-16 representation of that number comes in handy
in converting a binary number to its base-10 form. We could do such conversion by expanding the powers
of 2 as above, but it is much faster to group the binary form into hex, and then expand the powers of 16, as
we did in the second equation.

The opposite conversion—from base-10 to binary—can be expedited in the same way, by first converting
from base-10 to base-16, and then degrouping the hex into binary form. The conversion of decimal to base-
16 is done by repeatedly dividing by 16 until we get a quotient less than 16; the hex digits then are obtained
as the remainders and the very last quotient. To make this concrete, let’s convert the decimal number 21602
to binary:

Divide 21602 by 16, yielding 1350, remainder 2.
Divide 1350 by 16, yielding 84, remainder 6.
Divide 84 by 16, yielding 5, remainder 4.
The hex form of 21602 is thus 5462.
The binary form is thus 0101 0100 0110 0010, i.e. 0101010001100010.

The main ingredient here is the repeated division by 16. By dividing by 16 again and again, we are building
up powers of 16. For example, in the line
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Divide 1350 by 16, yielding 84, remainder 6.

above, that is our second division by 16, so it is a cumulative division by 162. [Note that this is why we are
dividing by 16, not because the number has 16 bits.]

1.2.3 There Is No Such Thing As “Hex” Storage at the Machine Level!

Remember, hex is merely a convenient notation for us humans. It is wrong to say something like “The
machine stores the number in hex,” “The compiler converts the number to hex,” and so on. It is crucial that
you avoid this kind of thinking, as it will lead to major misunderstandings later on.

1.3 Main Memory Organization

During the time a program is executing, both the program’s data and the program itself, i.e. the machine
instructions, are stored in main memory. In this section, we will introduce main memory structure. (We will
usually refer to main memory as simply “memory.”)

1.3.1 Bytes, Words and Addresses

640 K ought to be enough for anybody—Bill Gates, 1981

1.3.1.1 The Basics

Memory (this means RAM/ROM) can be viewed as a long string of consecutive bytes. Each byte has an
identification number, called an address. Again, an address is just an “i.d. number,” like a Social Security
Number identifies a person, a license number identifies a car, and an account number identifies a bank
account. Byte addresses are consecutive integers, so that the memory consists of Byte 0, Byte 1, Byte 2, and
so on.

On each machine, a certain number of consecutive bytes is called a word. The number of bytes or bits
(there are eight times as many bits as bytes, since a byte consists of eight bits) in a word in a given machine
is called the machine’s word size. This is usually defined in terms of the size of number which the CPU
addition circuitry can handle, which in recent years has typically been 32 bits. In other words, the CPU’s
adder inputs two 32-bit numbers, and outputs a 32-bit sum, so we say the word size is 32 bits.

Early members of the Intel CPU family had 16-bit words, while the later ones were extended to 32-bit and
then 64-bit size. In order to ensure that programs written for the early chips would run on the later ones,
Intel designed the later CPUs to be capable of running in several modes, one for each bit size.
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Note carefully that most machines do not allow overlapping words. That means, for example, that on a
32-bit machine, Bytes 0-3 will form a word and Bytes 4-7 will form a word, but Bytes 1-4 do NOT form a
word. If your program tries to access the “word” consisting of Bytes 1-4, it may cause an execution error.
On Linux systems, for instance, you may get the error message “bus error.”

However, an exception to this is Intel chips, which do not require alignment on word boundaries like this.
However, note that if your program uses unaligned words, each time you access such a word, the CPU must
get two words from memory, slowing things down.

Just as a bit string has its most significant and least significant bits, a word will have its most significant and
least significant bytes. To illustrate this, suppose word size is 32 bits and consider storage of the integer 25,
which is

00000000000000000000000000011001

in bit form and 0x00000019 as hex. Three bytes will each contain 0x00 and the fourth 0x19, with the 0x19
byte being the least significant and the first 0x00 byte being most significant.

Not only does each byte have an address, but also each word has one too. The address of a word will be the
address of its lowest-address byte. So for instance Bytes 4-7 comprise Word 4.

1.3.1.2 Most Examples Here Will Be for 32-bit Machines

As of this writing, September 2012, most desktop and laptop machines have 64-bit word size, while most
cell phone CPUs have 32-bit words.

Our examples in this book will mainly use a 32-bit, or even 16-bit, word size. This is purely for simplicity,
and the principles apply in the same manner to the 64-bit case.

1.3.1.3 Word Addresses

1.3.1.4 “Endian-ness”

Recall that the word size of a machine is the size of the largest bit string on which the hardware is capable
of performing addition. A question arises as to whether the lowest-address byte in a word is treated by the
hardware as the most or least significant byte.

The Intel family handles this in a little-endian manner, meaning that the least significant byte within a word
has the lowest address. For instance, consider the above example of the integer 25. Suppose it is stored
in Word 204, which on any 32-bit machine will consist of Bytes 204, 205, 206 and 207. On a 32-bit Intel
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machine (or any other 32-bit little-endian machine), Byte 204 will be the least significant byte, and thus in
this example will contain 0x19.

Note carefully that when we say that Byte 204 contains the least significant byte, what this really means is
that the arithmetic hardware in our machine will treat it as such. If for example we tell the hardware to add
the contents of Word 204 and the contents of Word 520, the hardware will start at Bytes 204 and 520, not
at Bytes 207 and 523. First Byte 204 will be added to Byte 520, recording the carry, if any. Then Byte 205
will be added to Byte 521, plus the carry if any from the preceding byte addition, and so on, through Bytes
207 and 523.

SPARC chips, on the other hand, assign the least significant byte to the highest address, a big-endian
scheme. This is the case for IBM mainframes too, as well as for the Java Virtual Machine.

Some chips, such as MIPS and PowerPC, even give the operating system a choice as to which rules the CPU
will follow; when the OS is booted, it establishes which “endian-ness” will be used. Later SPARC chips do
this, as well as the ARM chips used in many phones.

The endian-ness problem also arises on the Internet. If someone is running a Web browser on a little-endian
machine but the Web site’s server is big-endian, they won’t be able to communicate. Thus as a standard, the
Internet uses big-endian order. There is a Unix system call, htons(), which takes a byte string and does the
conversion, if necessary.

Here is a function that can be used to test the endian-ness of the machine on which it is run:

1 int Endian() // returns 1 if the machine is little-endian, else 0
2

3 { int X;
4 char *PC;
5

6 X = 1;
7 PC = (char *) &X;
8 return *PC;
9 }

As we will discuss in detail later, compilers usually choose to store int variables one per word, and char
variables one per byte. So, in this little program, X will occupy four bytes on a 32-bit machine, which we
assume here; PC will be used to point to one of those bytes.

Suppose for example that X is in memory word 4000, so &X is 4000. Then PC will be 4000 too. Word
4000 consists of bytes 4000, 4001, 4002 and 4003. Since X is 1, i.e. 000...00︸ ︷︷ ︸

31 0s

1, one of those four bytes will

contain 00000001, i.e. the value 1 and the others will contain 0. The 1 will be in byte 4000 if and only the
machine is little-endian. In the return line, PC is pointing to byte 4000, so the return value will be either
1 or 0, depending on whether the machine is little- or big-endian, just what we wanted.

Note that within a byte there is no endian-ness issue. Remember, the endian-ness issue is defined at the
word level, in terms of addresses of bytes within words; the question at hand is, “Which byte within a word
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is treated as most significant—the lowest-numbered-address byte, or the highest one?” This is because there
is no addressing of bits within a byte, thus no such issue at the byte level.

Note that a C compiler treats hex as base-16, and thus the endian-ness of the machine will be an issue. For
example, suppose we have the code

int Z = 0x12345678;

and &Z is 240.

As mentioned, compilers usually store an int variable in one word. So, Z will occupy Bytes 240, 241,
242 and 243. So far, all of this holds independent of whether the machine is big- or little-endian. But the
endian-ness will affect which bytes of Z are stored in those four addresses.

On a little-endian machine, the byte 0x78, for instance, will be stored in location 240, while on a big-endian
machine it would be in location 243.

Similarly, a call to printf() with %x format will report the highest-address byte first on a little-endian
machine, but on a big-endian machine the call would report the lowest-address byte first. The reason for
this is that the C standard was written with the assumption that one would want to use %x format only in
situations in which the programmer intends the quantity to be an integer. Thus the endian-ness will be a
factor. This is a very important point to remember if you are using a call to printf() with %x format to
determine the actual bit contents of a word which might not be intended as an integer.

There are some situations in which one can exploit the endian-ness of a machine. An example is given in
Section 1.10.

1.3.1.5 Other Issues

As we saw above, the address of a word is defined to be the address of its lowest-numbered byte. This
presents a problem: How can we specify that we want to access, say, Byte 52 instead of Word 52? The
answer is that for machine instruction types which allow both byte and word access (some instructions do,
others do not), the instruction itself will indicate whether we want to access Byte x or Word x.

For example, we mentioned earlier that the Intel instruction 0xc7070100 in 16-bit mode puts the value 1
into a certain “cell” of memory. Since we now have the terms word and byte to work with, we can be more
specific than simply using the word cell: The instruction 0xc7070100 puts the value 1 into a certain word
of memory; by contrast, the instruction 0xc60701 puts the value 1 into a certain byte of memory. You will
see the details in later chapters, but for now you can see that differentiating between byte access and word
access is possible, and is indicated in the bit pattern of the instruction itself.

Note that the word size determines capacity, depending on what type of information we wish to store. For
example:
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(a) Suppose we are using an n-bit word to store a nonnegative integer. Then the range of numbers that
we can store will be 0 to 2n − 1, which for n = 16 will be 0 to 65,535, and for n = 32 will be 0 to
4,294,967,295.

(b) If we are storing a signed integer in an n-bit word, then the information presented in Section 1.4.1 will
show that the range will be −2n−1 to 2n−1 − 1, which will be -32,768 to +32,767 for 16-bit words,
and -2,147,483,648 to +2,147,483,647 for 32-bit words.

(c) Suppose we wish to store characters. Recall that an ASCII character will take up seven bits, not eight.
But it is typical that the seven is “rounded off” to eight, with 1 bit being left unused (or used for some
other purpose, such as a technique called parity, which is used to help detect errors). In that case,
machines with 16-bit words can store two characters per word, while 32-bit machines can store four
characters per word.

(d) Suppose we are storing machine instructions. Some machines use a fixed instruction length, equal to
the word size. These are the so-called RISC machines, to be discussed in Chapter ??. On the other
hand, most older machines have instructions are of variable lengths.

On earlier Intel machines, for instance, instructions were of lengths one to six bytes (and the range has
grown much further since then). Since the word size on those machines was 16 bits, i.e. two bytes, we
see that a memory word might contain two instructions in some cases, while in some other cases an
instruction would be spread out over several words. The instruction 0xc7070100 mentioned earlier,
for example, takes up four bytes (count them!), thus two words of memory.1

It is helpful to make an analogy of memory cells (bytes or words) to bank accounts, as mentioned above.
Each individual bank account has an account number and a balance. Similarly, each memory has its address
and its contents.

As with anything else in a computer, an address is given in terms of 0s and 1s, i.e. as a base-2 representation
of an unsigned integer. The number of bits in an address is called the address size. Among earlier Intel
machines, the address size grew from 20 bits on the models based on the 8086 CPU, to 24 bits on the 80286
model, and then to 32 bits for the 80386, 80486 and Pentium. The current trend is to 64 bits.

The address size is crucial, since it puts an upper bound on how many memory bytes our system can have. If
the address size is n, then addresses will range from 0 to 2n−1, so we can have at most 2n bytes of memory
in our system. It is similar to the case of automobile license plates. If for example, license plates in a certain
state consist of three letters and three digits, then there will be only 263103 = 17, 560, 000 possible plates.
That would mean we could have only 17,560,000 cars and trucks in the state.

With 32-bit addresses, GCC limits us to arrays of about 500 million long. With 64-bit addresses, our
possibilities are huge. (Note, though, that you must use the command line option -mcmodel=medium when
running GCC.)

1Intel machinese today are still of the CISC type.
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Keep in mind that an address is considered as unsigned integer. For example, suppose our address size is, to
keep the example simple, four bits. Then the address 1111 is considered to be +15, not -1.

IMPORTANT NOTATION:

We will use the notation c( ) to mean “contents of,” e.g. c(0x2b410) means the contents of memory
word 0x2b410. Keep this in mind, as we will use it throughout the course

Today it is customary to design machines with address size equal to word size. To see why this makes sense,
consider this code:

int X,*P;
...
P = &X;

The variable P is a pointer and thus contains an address. But P is a variable in its own right, and thus will
be stored in some word. For example, we may have &X and P equal to 200 and 344, respectively. Then we
will have c(344) = 200, i.e. an address will be stored in a word. So it makes sense to have address size equal
to word size.

1.4 Representing Information as Bit Strings

We may now address the questions raised at the beginning of the chapter. How can the various abstract data
types used in HLLs, and also the computer’s machine instructions, be represented using strings of 0s and
1s?2

1.4.1 Representing Integer Data

Representing nonnegative integer values is straightforward: We just use the base-2 representation, such
as 010 for the number +2. For example, the C/C++ language data type unsigned int (also called simply
unsigned) interprets bit strings using this representation.

But what about integers which can be either positive or negative, i.e. which are signed? For example, what
about the data type int in C?

Suppose for simplicity that we will be using 3-bit strings to store integer variables. [Note: We will assume
this size for bit strings in the next few paragraphs.] Since each bit can take on either of two values, 0 or 1,
there are 23 = 8 possible 3-bit strings. So, we can represent eight different integer values. In other words,
we could, for example, represent any integer from -4 to +3, or -2 to +5, or whatever. Most systems opt for

2The word string here does not refer to a character string. It simply means a group of bits.
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a range in which about half the representable numbers are positive and about half are negative. The range
-2 to +5, for example, has many more representable positive numbers than negative numbers. This might be
useful in some applications, but since most computers are designed as general-purpose machines, they use
integer representation schemes which are as symmetric around 0 as possible. The two major systems below
use ranges of -3 to +3 and -4 to +3.

But this still leaves open the question as to which bit strings represent which numbers. The two major
systems, signed-magnitude and 2s complement, answer this question in different ways. Both systems
store the nonnegative numbers in the same way, by storing the base-2 form of the number: 000 represents
0, 001 represents +1, 010 represents +2, and 011 represents +3. However, the two systems differ in the way
they store the negative numbers, in the following way.

The signed-magnitude system stores a 3-bit negative number first as a 1 bit, followed by the base-2 rep-
resentation of the magnitude, i.e. absolute value, of that number. For example, consider how the number
-3 would be stored. The magnitude of this number is 3, whose base-2 representation is 11. So, the 3-bit,
signed-magnitude representation of -3 is 1 followed by 11, i.e. 111. The number -2 would be stored as 1
followed by 10, i.e. 110, and so on. The reader should verify that the resulting range of numbers repre-
sentable in three bits under this system would then be -3 to +3. The reader should also note that the number
0 actually has two representations, 000 and 100. The latter could be considered “-0,” which of course has
no meaning, and 000 and 100 should be considered to be identical. Note too that we see that 100, which in
an unsigned system would represent +4, does not do so here; indeed, +4 is not representable at all, since our
range is -3 to +3.

The 2s complement system handles the negative numbers differently. To explain how, first think of strings
of three decimal digits, instead of three bits. For concreteness, think of a 3-digit odometer or trip meter in
an automobile. Think about how we could store positive and negative numbers on this trip meter, if we had
the desire to do so. Since there are 10 choices for each digit (0,1,...,9), and there are three digits, there are
103 = 1000 possible patterns. So, we would be able to store numbers which are approximately in the range
-500 to +500.

Suppose we can wind the odometer forward or backward with some manual control. Let us initially set the
odometer to 000, i.e. set all three digits to 0. If we were to wind forward from 000 once, we would get 001;
if we were to wind forward from 000 twice, we would get 002; and so on. So we would use the odometer
pattern 000 to represent 0, 001 to represent +1, 002 to represent +2, ..., and 499 to represent +499. If we
were to wind backward from 000 once, we would get 999; if we were to wind backward twice, we would
get 998; and so on. So we would use the odometer pattern 999 to represent -1, use 998 to represent -2, ...,
and use 500 to represent -500 (since the odometer would read 500 if we were to wind backward 500 times).
This would give us a range -500 to +499 of representable numbers.

Getting back to strings of three binary digits instead of three decimal digits, we apply the same principle. If
we wind backward once from 000, we get 111, so we use 111 to represent -1. If we wind backward twice
from 000, we get 110, so 110 will be used to represent -2. Similarly, 101 will mean -3, and 100 will mean
-4. If we wind backward one more time, we get 011, which we already reserved to represent +3, so -4 will
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be our most negative representable number. So, under the 2s complement system, 3-bit strings can represent
any integer in the range -4 to +3.

This may at first seem to the reader like a strange system, but it has a very powerful advantage: We can
do addition of two numbers without worrying about their signs; whether the two addends are both positive,
both negative or of mixed signs, we will do addition in the same manner. For example, look at the base-10
case above, and suppose we wish to add +23 and -6. These have the “trip meter” representations 023 and
994. Adding 023 and 994 yields 1017, but since we are working with 3-digit quantities, the leading 1 in
1017 is lost, and we get 017. 017 is the “trip meter” representation of +17, so our answer is +17—exactly as
it should be, since we wanted to add +23 and -6. The reason this works is that we have first wound forward
23 times (to 023) but then wound backward 6 times (the 994), for a net winding forward 17 times.

The importance of this is that in building a computer, the hardware to do addition is greatly simplified. The
same hardware will work for all cases of signs of addends. For this reason, most modern computers are
designed to use the 2s-complement system.

For instance, consider the example above, in which we want to find the representation of -29 in an 8-bit
string. We first find the representation of +29, which is 00011101 [note that we remembered to include the
three leading 0s, as specified in (a) above]. Applying Step (b) to this, we get 11100010. Adding 1, we get
11100011. So, the 8-bit 2s complement representation of -29 is 11100011. We would get this same string if
we wound back from 000000 29 times, but the method here is much quicker.

This transformation is idempotent, meaning that it is its own inverse: If you take the 2s complement rep-
resentation of a negative number -x and apply Steps (b) and (c) above, you will get +x. The reader should
verify this in the example in the last paragraph: Apply Steps (b) and (c) to the bit string 11100011 repre-
senting -29, and verify that the resulting bit string does represent +29. In this way, one can find the base-10
representation of a negative number for which you have the 2s complement form.

By the way, the n-bit representation of a negative integer -x is equal to the base-2 representation of 2n − x.
You can see this by noting first that the base-2 representation of 2n is 1 000...00︸ ︷︷ ︸

n 0s

. That means that the n-bit

2s complement “representation” of 2n—it is out of range for n bits, but we can talk about its truncation to n
bits—is 000...00︸ ︷︷ ︸

n 0s

. Since the 2s complement representation of -x is the result of winding backwards x times

from 000...00︸ ︷︷ ︸
n 0s

, that is the result of winding backwards x times from 2n, which is 2n − x.

For example, consider 4-bit 2s complement storage. Winding backward 3 times from 0000, we get 1101 for
the representation of -3. But taken as an unsigned number, 1101 is 13, which sure enough is 24 − 3.

Although we have used the “winding backward” concept as our informal definition of 2s complement repre-
sentation of negative integers, it should be noted that in actual computation—both by us humans and by the
hardware—it is inconvenient to find representations this way. For example, suppose we are working with
8-bit strings, which allow numbers in the range -128 to +127. Suppose we wish to find the representation of
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-29. We could wind backward from 00000000 29 times, but this would be very tedious.

Fortunately, a “shortcut” method exists: To find the n-bit 2s complement representation of a negative number
-x, do the following.

(a) Find the n-bit base-2 representation of +x, making sure to include any leading 0s.

(b) In the result of (a), replace 0s by 1s and 1s by 0s. (This is called the 1s complement of x.)

(c) Add 1 to the result of (b), ignoring any carry coming out of the Most Significant Bit.

Here’s why the shortcut works: Say we have a number x whose 2s complement form we know, and we want
to find the 2s complement form for -x. Let x’ be the 1s complement of x, i.e. the result of interchanging 1s
and 0s in x. Then x+x’ is equal to 111...11︸ ︷︷ ︸

n 1s

, so x+x’ = -1. That means that -x = x’+1, which is exactly the

shortcut above.

Here very important properties of 2s-complement storage:

(i) The range of integers which is supported by the n-bit, 2s complement representation is −2n−1 to
2n−1 − 1.

(ii) The values −2n−1 and 2n−1 − 1 are represented by 10000...000 and 01111...111, respectively.

(iii) All nonnegative numbers have a 0 in Bit n-1, and all negative numbers have a 1 in that bit position.

The reader should verify these properties with a couple of example in the case of 4-bit strings.

By the way, due to the slight asymmetry in the range in (i) above, you can see that we can not use the
“shortcut” method if we need to find the 2s complement representation of the number −2n − 1; Step (a) of
that method would be impossible, since the number 2n − 1 is not representable. Instead, we just use (ii).

Now consider the C/C++ statement

Sum = X + Y;

The value of Sum might become negative, even if both the values X and Y are positive. Here is why, say
for 16-bit word size: With X = 28,502 and Y = 12,344, the resulting value of Sum will be -24,690. Most
machines have special bits which can be used to detect such situations, so that we do not use misleading
information.

Again, most modern machines use the 2s complement system for storing signed integers. We will assume
this system from this point on, except where stated otherwise.
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1.4.2 Representing Real Number Data

The main idea here is to use scientific notation, familiar from physics or chemistry, say 3.2× 10−4 for the
number 0.00032. In this example, 3.2 is called the mantissa and -4 is called the exponent.

The same idea is used to store real numbers, i.e. numbers which are not necessarily integers (also called
floating-point numbers), in a computer. The representation is essentially of the form

m× 2n (1.1)

with m and n being stored as individual bit strings.

1.4.2.1 “Toy” Example

Say for example we were to store real numbers as 16-bit strings, we might devote 10 bits, say Bits 15-6, to
the mantissa m, and 6 bits, say Bits 5-0, to the exponent n. Then the number 1.25 might be represented as

5× 2−2 (1.2)

that is, with m = 5 and n = -2. As a 10-bit 2s complement number, 5 is represented by the bit string
0000000101, while as a 6-bit 2s complement number, -2 is represented by 111110. Thus we would store the
number 1.25 as the 16-bit string 0000000101 111110 i.e.

0000000101111110 = 0x017e

Note the design tradeoff here: The more bits I devote to the exponent, the wider the range of numbers I can
store. But the more bits I devote to the mantissa, the less roundoff error I will have during computations.
Once I have decided on the string size for my machine, in this example 16 bits, the question of partitioning
these bits into mantissa and exponent sections then becomes one of balancing accuracy and range.

1.4.2.2 IEEE Standard

The floating-point representation commonly used on today’s machines is a standard of the Institute of Elec-
trical and Electronic Engineers (IEEE). The 32-bit case, which we will study here, follows the same basic
principles as with our simple example above, but it has a couple of refinements to the simplest mantissa/-
exponent format. It consists of a Sign Bit, an 8-bit Exponent Field, and 23-bit Mantissa Field. These fields
will now be explained. Keep in mind that there will be a distinction made between the terms mantissa and
Mantissa Field, and between exponent and Exponent Field.
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Recall that in base-10, digits to the right of the decimal point are associated with negative powers of 10. For
example, 4.38 means

4(100) + 3(10−1) + 8(10−2) (1.3)

It is the same principle in base-2, of course, with the base-2 number 1.101 meaning

1(20) + 1(2−1) + 0(2−2) + 1(2−3) (1.4)

that is, 1.625 in base-10.

Under the IEEE format, the mantissa must be in the form±1.x, where ‘x’ is some bit string. In other words,
the absolute value of the mantissa must be a number between 1 and 2. The number 1.625 is 1.101 in base-2,
as seen above, so it already has this form. Thus we would take the exponent to be 0, that is, we would
represent 1.625 as

1.101× 20 (1.5)

What about the number 0.375? In base-2 this number is 0.011, so we could write 0.375 as

0.011× 20 (1.6)

but again, the IEEE format insists on a mantissa of the form ±1.x So, we would write 0.375 instead as

1.1× 2−2 (1.7)

which of course is equivalent, but the point is that it fits IEEE’s convention.

Now since that convention requires that the leading bit of the mantissa be 1, there is no point in storing it!
Thus the Mantissa Field only contains the bits to the right of that leading 1, so that the mantissa consists of
±1.x, where ‘x’ means the bits stored in the Mantissa field. The sign of the mantissa is given by the Sign
Bit, 0 for positive, 1 for negative.3 The circuitry in the machine will be set up so that it restores the leading
“1.” at the time a computation is done, but meanwhile we save one bit per float.4

3Again, keep in mind the distinction between the mantissa and the Mantissa field. Here the mantissa is ±1.x while the Mantissa
field is just x.

4This doesn’t actually make storage shorter; it simply gives us an extra bit position to use otherwise, thus increasing accuracy.
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Note that the Mantissa Field, being 23 bits long, represents the fractional portion of the number to 23
“decimal places,” i.e. 23 binary digits. So for our example of 1.625, which is 1.101 base 2, we have to write
1.101 as 1.10100000000000000000000.5 So the Mantissa Field here would be 10100000000000000000000.

The Exponent Field actually does not directly contain the exponent; instead, it stores the exponent plus
a bias of 127. The Exponent Field itself is considered as an 8-bit unsigned number, and thus has values
ranging from 0 to 255. However, the values 0 and 255 are reserved for “special” quantities: 0 means
that the floating-point number is 0, and 255 means that it is in a sense “infinity,” the result of dividing by
0, for example. Thus the Exponent Field has a range of 1 to 254, which after accounting for the bias term
mentioned above means that the exponent is a number in the range -126 to +127 (1-127) = -126 and 254-127
= +127).

Note that the floating-point number is being stored is (except for the sign) equal to

(1 +M/223)× 2(E−127) (1.8)

where M is the Mantissa and E is the Exponent. Make sure you agree with this.

With all this in mind, let us find the representation for the example number 1.625 mentioned above. We found
that the mantissa is 1.101 and the exponent is 0, and as noted earlier, the Mantissa Field is 10100000000000000000000.
The Exponent Field is 0 + 127 = 127, or in bit form, 01111111.

The Sign Bit is 0, since 1.625 is a positive number.

So, how are the three fields then stored altogether in one 32-bit string? Well, 32 bits fill four bytes, say at
addresses n, n+1, n+2 and n+3. The format for storing the three fields is then as follows:

• Byte n: least significant eight bits of the Mantissa Field

• Byte n+1: middle eight bits of the Mantissa Field

• Byte n+2: least significant bit of the Exponent Field, and most significant seven bits of the Mantissa
Field

• Byte n+3: Sign Bit, and most significant seven bits of the Exponent Field

Suppose for example, we have a variable, say T, of type float in C, which the compiler has decided to store
beginning at Byte 0x304a0. If the current value of T is 1.625, the bit pattern will be

Byte 0x304a0: 0x00; Byte 0x304a1: 0x00; Byte 0x304a2: 0xd0; Byte
0x304a3: 0x3f

5Note that trailing 0s do not change things in the fractional part of a number. In base 10, for instance, the number 1.570000 is
the same as the number 1.57.
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The reader should also verify that if the four bytes’ contents are 0xe1 0x7a 0x60 0x42, then the number
being represented is 56.12.

Note carefully: The storage we’ve been discussing here is NOT base-10. It’s not even base-2, though certain
components within the format are base-2. It’s a different kind of representation, not “base-based.”

1.4.3 Representing Character Data

This is merely a matter of choosing which bit patterns will represent which characters. The two most
famous systems are the American Standard Code for Information Interchange (ASCII) and the Extended
Binary Coded Decimal Information Code (EBCDIC). ASCII stores each character as the base-2 form of a
number between 0 and 127. For example, ‘A’ is stored as 6510 (01000001 = 0x41), ‘%’ as 3710 (00100101
= 0x25), and so on.

A complete list of standard ASCII codes may be obtained by typing

man ascii

on most Linux systems. Note that even keys such as Carriage Return, Line Feed, and so on, are considered
characters, and have ASCII codes.

Since ASCII codes are taken from numbers in the range 0 to 27 − 1 = 127, each code consists of seven
bits. The EBCDIC system consists of eight bits, and thus can code 256 different characters, as opposed to
ASCII’s 128. In either system, a character can be stored in one byte. The vast majority of machines today
use the ASCII system.

What about characters in languages other than English? Codings exist for them too. Consider for example
Chinese. Given that there are tens of thousands of characters, far more than 256, two bytes are used for
each Chinese character. Since documents will often contain both Chinese and English text, there needs to
be a way to distinguish the two. Big5 and Guobiao, two of the most widely-used coding systems used for
Chinese, work as follows. The first of the two bytes in a Chinese character will have its most significant bit
set to 1. This distinguishes it from ASCII (English) characters, whose most significant bits are 0s, which
allows software to deal with documents with mixed English and Chinese.

Such software will inspect the high bit of a byte in the file. If that bit is 0, then the byte will be interpreted
as an ASCII character; if it is 1, then that byte and the one following it will be interpreted as a Chinese
character.6

6Though in the Chinese case the character will consist of two bytes whether we use the Big5 or Guobiao systems, with the first
bit being 1 in either cased, the remaining 15 bits will be the different under the Guobiao encoding than under the Big5 one. There
is also the Unicode system, which covers over 100 languages/scripts.



1.4. REPRESENTING INFORMATION AS BIT STRINGS 17

1.4.4 Representing Machine Instructions

Each computer type has a set of binary codes used to specify various operations done by the computer’s
Central Processing Unit (CPU). For example, in the Intel CPU chip family, the code 0xc7070100, i.e.

11000111000001110000000100000000,

means to put the value 1 into a certain cell of the computer’s memory. The circuitry in the computer is
designed to recognize such patterns and act accordingly. You will learn how to generate these patterns in
later chapters, but for now, the thing to keep in mind is that a computer’s machine instructions consist of
patterns of 0s and 1s.

Note that an instruction can get into the computer in one of two ways:

(a) We write a program in machine language (or assembly language, which we will see is essentially the
same), directly producing instructions such as the one above.

(b) We write a program in a high-level language (HLL) such as C, and the compiler translates that program
into instructions like the one above.

[By the way, the reader should keep in mind that the compilers themselves are programs. Thus they consist
of machine language instructions, though of course these instructions might have themselves been generated
from an HLL source too.]

1.4.5 What Type of Information is Stored Here?

A natural question to ask at this point would be how the computer “knows” what kind of information is
being stored in a given bit string. For example, suppose we have the 16-bit string 0111010000101011, i.e.
in hex form 0x742b, on a machine using an Intel CPU chip in 16-bit mode. Then

(a) if this string is being used by the programmer to store a signed integer, then its value will be 29,739;

(b) if this string is being by the programmer used to store characters, then its contents will be the charac-
ters ‘t’ and ‘+’;

(c) if this string is being used by the programmer to store a machine instruction, then the instruction says
to “jump” (like a goto in C) forward 43 bytes.

So, in this context the question raised above is,
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How does the computer “know” which of the above three kinds (or other kinds) of information
is being stored in the bit string 0x742b? Is it 29,739? Is it ‘t’ and ‘+’? Or is it a jump-ahead-43-
bytes machine instruction?

The answer is, “The computer does not know!” As far as the computer is concerned, this is just a string of 16
0s and 1s, with no special meaning. So, the responsibility rests with the person who writes the program—he
or she must remember what kind of information he or she stored in that bit string. If the programmer makes
a mistake, the computer will not notice, and will carry out the programmer’s instruction, no matter how
ridiculous it is. For example, suppose the programmer had stored characters in each of two bit strings, but
forgets this and mistakenly thinks that he/she had stored integers in those strings. If the programmer tells
the computer to multiply those two “numbers,” the computer will dutifully obey!

The discussion in the last paragraph refers to the case in which we program in machine language directly.
What about the case in which we program in an HLL, say C, in which the compiler is producing this machine
language from our HLL source? In this case, during the time the compiler is translating the HLL source to
machine language, the compiler must “remember” the type of each variable, and react accordingly. In other
words, the responsibility for handling various data types properly is now in the hands of the compiler, rather
than directly in the hands of the programmer—but still not in the hands of the hardware, which as indicated
above, remains ignorant of type.

1.5 Examples of the Theme, “There Are No Types at the Hardware Level”

In the previous sections we mentioned several times that the hardware is ignorant of data type. We found
that it is the software which enforces data types (or not), rather than the hardware. This is such an important
point that in this section we present a number of examples with this theme. Another theme will be the issue
of the roles of hardware and software, and in the latter case, the roles of your own software versus the OS
and compiler.

1.5.1 Example

As an example, suppose in a C program X and Y are both declared of type char, and the program includes
the statement

X += Y;

Of course, that statement is nonnsense. But the hardware knows nothing about type, so the hardware
wouldn’t care if the compiler were to generate an add machine instruction from this statement. Thus the
only gatekeeper, if any, would be the compiler. The compiler could either (a) just ignore the oddity, and
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generate the add instruction, or (b) refuse to generate the instruction, and issue an error message. In fact the
compiler will do (a), but the main point here is that the compiler is the only possible gatekeeper here; the
hardware doesn’t care.

So, the compiler won’t prevent us from doing the above statement, and will produce machine code from it.
However, the compiler will produce different machine code depending on whether the variables are of type
int or char. On an Intel-based machine, for example, there are two7 forms of the addition instruction, one
named addl which operates on 32-bit quantities and another named addb which works on 8-bit quantities.
The compiler will store int variables in 32-bit cells but will store char variables in 8-bit cells.8 So, the
compiler will react to the C code

X += Y;

by generating an addl instruction if X and Y are both of type int or generating an addb instruction, if they
are of type char.

The point here, again, is that it is the software which is controlling this, not the hardware. The hardware
will obey whichever machine instructions you give it, even if they are nonsense.

1.5.2 Example

So, the machine doesn’t know whether we humans intend the bit string we have stored in a 4-byte memory
cell to be interpreted as an integer or as a 4-element character string or whatever. To the machine, it is just a
bit string, 32 bits long.

The place the notion of types arises is at the compiler/language level, not the machine level. The C/C++
language has its notion of types, e.g. int and char, and the compiler produces machine code accordingly.9

But that machine code itself does not recognize type. Again, the machine cannot tell whether the contents
of a given word are being thought of by the programmer as an integer or as a 4-character string or whatever
else.

For example, consider this code:

...
int Y; // local variable
...
strncpy(&Y,"abcd",4);
...

7More than two, actually.
8Details below.
9For example, as we saw above, the compiler will generate word-accessing machine instructions for ints and byte-accessing

machine instructions for chars.
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At first, you may believe that this code would not even compile successfully, let alone run correctly. After
all, the first argument to strncpy() is supposed to be of type char *, yet we have the argument as type int
*. But the C compiler, say GCC, will indeed compile this code without error,10 and the machine code will
indeed run correctly, placing “abcd” into Y. The machine won’t know about our argument type mismatch.

If we run the same code through a C++ compiler, say g++, then the compiler will give us an error message,
since C++ is strongly typed. We will then be forced to use a cast:

strncpy((char *) &Y,"abcd",4);

1.5.3 Example

When we say that the hardware doesn’t know types, that includes array types. Consider the following
program:

1 main()
2

3 { int X[5],Y[20],I;
4

5 X[0] = 12;
6 scanf("%d",&I); // read in I = 20
7 Y[I] = 15;
8 printf("X[0] = %d\n",X[0]); // prints out 15!
9 }

There appears to be a glaring problem with Y here. We assign 15 to Y[20], even though to us humans there
is no such thing as Y[20]; the last element of Y is Y[19]. Yet the program will indeed run without any error
message, and 15 will be printed out.

To understand why, keep in mind that at the machine level there is really no such thing as an array. Y is just
a name for the first word of the 20 words we humans think of as comprising one package here. When we
write the C/C++ expression Y[I], the compiler merely translates that to machine code which accesses “the
location I ints after Y.”

This should make sense to you since another way to write Y[I] is Y+I. So, there is nothing syntactically
wrong with the expression Y[20]. Now, where is “Y[20]”? C/C++ rules require that local variables be stored
in reverse order,11 i.e. Y first and then X. So, X[0] will follow immediately after Y[19]. Thus “Y[20]” is
really X[0], and thus X[0] will become equal to 15!

Note that the compiler could be designed to generate machine code which checks for the condition Y > 19.
But the official C/C++ standards do not require this, and it is not usually done. In any case, the point is again

10It may give a warning message, though.
11Details below.
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that it is the software which might do this, not the hardware. Indeed, the hardware doesn’t even know that
we have variables X and Y, that Y is an array, etc.

1.5.4 Example

As another example, consider the C/C++ library function printf(), which is used to write the values of
program variables to the screen. Consider the C code

1 int W;
2 ...
3 W = -32697;
4 printf("%d %u %c\n",W,W,W);

again on a machine using an Intel CPU chip in 16-bit mode. We are printing the bit string in W to the screen
three times, but are telling printf(), “We want this bit string to first be interpreted as a decimal signed integer
(%d); then as a decimal unsigned integer (%u); then as an ASCII character (%c). Here is the output that
would appear on the screen:

-32697 32839 G

The bit string in W is 0x8047. Interpreted as a 16-bit 2s complement number, this string represents the
number -32,697. Interpreted as an unsigned number, this string represents 32,839. If the least significant 8
bits of this string are interpreted as an ASCII character (which is the convention for %c), they represent the
character ‘G’.

But remember, the key point is that the hardware is ignorant; it has no idea as to what type of data we
intended to be stored in W’s memory location. The interpretation of data types was solely in the software.
As far as the hardware is concerned, the contents of a memory location is just a bit string, nothing more.

1.5.5 Example

In fact, we can view that bit string without interpretation as some data type, by using the %x format in the
call to printf(). This will result in the bit string itself being printed out (in hex notation). In other words, we
are telling printf(), “Just tell me what bits are in this string; don’t do any interpretation.” Remember, hex
notation is just that—notation, a shorthand system to make things easier on us humans, saving us the misery
of writing out lengthy bit strings in longhand. So here we are just asking printf() to tells us what bits are in
the variable being queried.12

A similar situation occurs with input. Say on a machine with 32-bit memory cells we have the statement
12But the endian-ness of the machine will play a role, as explained earlier.
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scanf("%x",&X);

and we input bbc0a168.13 Then we are saying, “Put 0xb, i.e. 1011, in the first 4 bits of X (i.e. the most-
significant 4 bits of X), then put 1011 in the next 4 bits, then put 1100 in the next 4 bits, etc. Don’t do
any interpretation of the meaning of the string; just copy these bits to the memory cell named X.” So, the
memory cell X will consist of the bits 10111011110000001010000101101000.

By contrast, if we have the statement

scanf("%d",&X);

and we input, say, 168, then we are saying, “Interpret the characters typed at the keyboard as describing the
base-10 representation of an integer, then calculate that number (do 1×100+6×10+8), and store that num-
ber in base-2 form in X.” So, the memory cell X will consist of the bits 00000000000000000000000010101000.

So, in summary, in the first of the two scanf() calls above we are simply giving the machine specific bits to
store in X, while in the second one we are asking the machine to convert what we input into some bit string
and place that in X.

1.5.6 Example

By the way, printf() is only a function within the C/C++ library, and thus does not itself directly do I/O.
Instead, printf() calls another function, write(), which is in the operating system (and thus the call is referred
to as a system call).14 All printf() does is convert what we want to write to the proper sequence of bytes,
and then write() does the actually writing to the screen.

So,

int W = 25;
...
printf("%d",W);

......
.

.

.
.

.
.

............

13Note that we do not type “0x”.
14The name of the function is write() on Linux; the name is different in other OSs.
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Then printf() will take the memory cell W, which will contain 00000000000000000000000000011001,
determine that we want the characters ‘2’ and ‘5’ to be sent to the screen, and then call write() with the
ASCII codes for those two characters (0110010 and 0110101, respectively). Then write() will actually send
0110010 and 0110101 to the screen.

Similarly, when we call scanf(), it in turn calls the system function read(), which does the actual reading
from the keyboard.

1.6 Visual Display

1.6.1 The Basics

Let us continue the 16-bit example above, in which “-32697” is printed, in order to learn more about how
computer monitors work.

The machine instructions in write() print out the character string “-32697” to the screen. In other words,
those instructions will first send 0x2d, the ASCII code for the character ‘-’, to the screen, 0x33 for ‘3’, 0x32
for ‘2’, and so on. It is easy to take this for granted, but there is quite a bit involved here.

First of all, keep in mind the vast difference between the number -32697 and the character string “-32697”.
In our context, it is the former which is stored in W, as 0x8047, i.e.

1000000001000111

(Verify this!) We must convert the part after the negative sign, i.e. convert 32,697, to the characters ‘3’, ‘2’,
‘6’, ‘9’ and ‘7’. How is this done?

The answer is that the code in printf() must do repeated division: It first divides by 10,000, yielding 3 with
a remainder of 2,697. The 3, i.e. 11, is changed to ‘3’, i.e. the ASCII 00110011. The 2,697 is then divided
by 1,000, yielding 2 with a remainder of 697. The 2 is converted to ‘2’, i.e. 00110010, and so on. (We will
then divide by 100 and 10.)

The second question is, how will these characters then be displayed on the screen?

You may already know that a computer monitor consists of many dots called pixels. There may be, for
instance, 1028 rows of 768 pixels per row. Any image, including characters, are formed from these pixels.

On the old nongraphics screens (often called a plain—or “dumb”—ASCII terminals), the hardware di-
rectly formed the dots for whichever ASCII characters it received from the computer. Software had no
control over individual pixels; it only controlled which ASCII character was printed. In our example above,
for instance, the software would send 0x33 along the cable from the computer to the screen, and the screen
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then wolud form the proper dots to draw the character ‘3’, called the font for ‘3’. The screen was capable
only of drawing ASCII characters, no pictures etc.

By contrast, on modern graphics screens, software has control over individual pixels. For concreteness,
consider an xterm window on Linux systems. (You need not have used xterm to follow this discussion. If
you have used Microsoft Windows, you can relate the discussion to that context if you wish.) The write()
call we saw above will send the value 0x33 not directly to the screen, but rather to the xterm program. The
latter will look up the font for ‘3’ and then send it to the screen, and the screen hardware then displays it.

1.6.2 Non-English Text

A Chinese version of xterm, named cxterm, will do the same, except it will first sense whether the character
is ASCII or Chinese, and send the appropriate font to the screen.

1.6.3 It’s the Software, Not the Hardware

Once again, almost all of this process is controlled by software. For instance, in our example above in which
we were storing the integer 32,697 and wished to print it to the screen, it was the software—printf() and the
OS—which did almost all the work. The only thing the hardware did was print to the correct pixels after the
OS sent it the various fonts (which are pixel patterns).

As another example, what do we mean when we say that “A PC uses the ASCII system” ? We do not mean
that, for example, the CPU is designed for ASCII; it isn’t. We do mean that the C compiler on a PC will use
ASCII for char variables, that the windowing software, say xterm will use ASCII for specifying fonts, etc.

1.6.4 Text Cursor Movement

A related question is, how does cursor movement work? For example, when you are using the vi text editor,
you can hit the k key (or the up-arrow key) to make the cursor go up one line. How does this work?

Historically, a problem with all this was that different terminals had different ways in which to specify a
given type of cursor motion. For example, if a program needed to make the cursor move up one line on a
VT100 terminal, the program would need to send the characters Escape, [, and A:

printf("%c%c%c",27,’[’,’A’);

(the character code for the Escape key is 27). But for a Televideo 920C terminal, the program would have
to send the ctrl-K character, which has code 11:

printf("%c",11);
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Clearly, the authors of programs like vi would go crazy trying to write different versions for every terminal,
and worse yet, anyone else writing a program which needed cursor movement would have to “re-invent
the wheel,” i.e. do the same work that the That is why the Curses library was developed. The goal was
to alleviate authors of cursor-oriented programs like vi of the need to write different code for different
terminals. The programs would make calls to the API library, and the library would sort out what to do
for the given terminal type. One would simply do an #include of the Curses header file and link in the
Curses library (-lcurses), and then have one’s program make the API calls. (To learn more about curses, see
my tutorial on it, at http://heather.cs.ucdavis.edu/˜matloff/UnixAndC/CLanguage/
Curses.pdf.)

The library would know which type of terminal you were using, via the environment variable TERM. The
library would look up your terminal type in its terminal database (the file /etc/termcap). When you, the
programmer, would call the Curses API to, say, move the cursor up one line, the API would determine
which character sequence was needed to make this happen.

For example, if your program wanted to clear the screen, it would not directly use any character sequences
like those above. Instead, it would simply make the call

clear();

and Curses would do the work on the program’s behalf.

Many dazzling GUI programs are popular today. But although the GUI programs may provide more “eye
candy,” they can take a long time to load into memory, and they occupy large amounts of territory on your
screen. So, Curses programs such as vi and emacs are still in wide usage.15

For information on Curses programming, see http://heather.cs.ucdavis.edu/˜matloff/UnixAndC/
CLanguage/Curses.pdf.

1.6.5 Mouse Actions

Each time you move the mouse, or click it, the mouse hardware sends a pulse of current to the CPU, called
an interrupt. This causes the OS to run, and it then sends a signal to whatever application program was
associated with the mouse action. That program would then act accordingly. And in the case of a mouse
movement, the OS would update the position of the mouse pointer on the screen.

15Interestingly, even some of those classical Curses programs have also become somewhat GUI-ish. For instance vim, the most
popular version of vi (it’s the version which comes with most Linux distributions, for example), can be run in gvim mode. There,
in addition to having the standard keyboard-based operations, one can also use the mouse. One can move the cursor to another
location by clicking the mouse at that point; one can use the mouse to select blocks of text for deletion or movement; etc. There are
icons at the top of the editing window, for operations like Find, Make, etc.

http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.pdf
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.pdf
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.pdf
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Curses.pdf
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1.6.6 Display of Images

Programs which display images work on individual pixels at an even finer level than the fonts used for text,
but the principles are the same.

1.7 There’s Really No Such Thing As “Type” for Disk Files Either

You will encounter the terms text file and binary file quite often in the computer world, so it is important
to understand them well—especially they are rather misleading.

1.7.1 Disk Geometry

Files are stored on disks. A disk is a rotating round platter with magnetized spots on its surface.16 Each
magnetized spot records one bit of the file.

The magnetized spots are located on concentric rings called tracks. Each track is further divided in sectors,
consisting of, say 512 bytes (4096 bits) each.

When one needs to access part of the disk, the read/write head must first be moved from its current track
to the track of interest; this movement is called a seek. Then the head must wait until the sector of interest
rotates around to the head, so that the read or write of the sector can be performed.

When a file is created, the operating system finds unused sectors on the disk in which to place the bytes of
the file. The OS then records the locations (track number, sector number within track) of the sectors of the
file, so that the file can be accessed by users later on. Each time a user wants to access the file, the OS will
look in its records to determine where the file is on disk.

Again, the basic issue will be that the hardware does not know data types. The bits in a file are just that,
bits, and the hardware doesn’t know if the creator of the file intended those bits to represent numbers or
characters or machine instructions or whatever.

1.7.2 Definitions of “Text File” and “Binary File”

Keep in mind that the term binary file is a misnomer. After all, ANY file is “binary,” whether it consists of
“text” or not, in the sense that it consists of bits no matter what. So what do people mean when they refer to
a “binary” file?

First, let’s define the term text file to mean a file satisifying all of the following conditions:

16Colloquially people refer to the disk as a disk drive. However, that term should refer only to the motor which turns the disk.
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(a) Each byte in the file is in the ASCII range 00000000-01111111, i.e. 0-127.

(b) Each byte in the file is intended to be thought of as an ASCII character.

(c) The file is intended to be broken into what we think of (and typically display) as lines. Here the term
line is defined technically in terms of end-of-line (EOL) markers.

In Linux, the EOL is a single byte, 0xa, while for Windows it is a pair of bytes, 0xd and 0xa. If you write
the character ’\n’ in a C program, it will write the EOL, whichever it is for that OS.

Any file which does not satisfy these conditions has traditionally been termed a binary file.17

Say for example I use a text editor, say the vim extension of vi, to create a file named FoxStory, whose
contents are

The quick brown fox
jumped over the fence.

Then vim will write the ASCII codes for the characters ‘T’, ‘h’, ‘e’ and so on (including the ASCII code for
newline in the OS we are using) onto the disk. This is a text file. The first byte of the file, for instance, will
be 01010100, the ASCII code for ‘T’, and we do intend that that 01010100 be thought of as ‘T’ by humans.

On the other hand, consider a JPEG image file, FoxJumpedFence.jpg, showing the fox jumping over the
fence. The bytes in this file will represent pixels in the image, under the special format used by JPEG. It’s
highly likely that some of those bytes will also be 01010100, just by accident; they are certainly not intended
as the letter ‘T’. And lots of bytes will be in the range 10000000-11111111, i.e. 128-255, outside the ASCII
range. So, this is a binary file.

Other examples of (so-called) binary files:

• audio files

• machine language files

• compressed files

1.7.3 Programs That Access of Text Files

Suppose we display the file FoxStory on our screen by typing18

17Even this definition is arguably too restrictive. If we produce a non-English file which we intend as “text,” it will have some
non-ASCII bytes.

18The cat command is Linux, but the same would be true, for instance, if we typed type FoxStory into a command window
on a Windows machine.
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cat FoxStory

Your screen will then indeed show the following:

The quick brown fox
jumped over the fence.

The reason this occurred is that the cat program did interpret the contents of the file FoxStory to be ASCII
codes. What “interpret” means here is the following:

Consider what happens when cat reads the first byte of the file, ‘T’. The ASCII code for ‘T’ is 0x54 =
01010100. The program cat contains printf() calls which use the %c format. This format sends the byte, in
this case to the screen.19 The latter looks up the font corresponding to the number 0x54, which is the font
for ‘T’, and that is why you see the ‘T’ on the screen.

Note also that in the example above, cat printed out a new line when it encountered the newline character,
ASCII 12, 00001100. Again, cat was written to do that, but keep in mind that otherwise 00001100 is just
another bit pattern, nothing special.

By contrast, consider what would happen if you were to type

cat FoxJumpedFence.jpg

The cat program will NOT know that FoxJumpedFence.jpg is not a text file; on the contrary, cat assumes
that any file given to it will be a text file. Thus cat will use %c format and the screen hardware will look up
and display fonts, etc., even though it is all meaningless garbage.

1.7.4 Programs That Access “Binary” Files

These programs are quite different for each application, of course, since the interpretation of the bit patterns
will be different, for instance, for an image file than for a machine language file.

One point, though, is that when you deal with such files in, say, C/C++, you may need to warn the system
that you will be accessing binary files. In the C library function fopen(), for example, to read a binary
file you may need to specify “rb” mode. In the C++ class ifstream you may need to specify the mode
ios:binary.

The main reason for this is apparently due to the Windows situation. Windows text files use ctrl-z as an
end-of-file marker. (Linux has no end-of-file marker at all, and it simply relies on its knowledge of the

19As noted earlier, in modern computer systems the byte is not directly sent to the screen, but rather to the windowing software,
which looks up the font and then sends the font to the screen.
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length of the file to determine whether a given byte is the last one or not.) Apparently if the programmer
did not warn the system that a non-text file is being read, the system may interpret a coincidental ASCII 26
(ctrl-z) in the file as being the end of the file.20

1.8 Storage of Variables in HLL Programs

1.8.1 What Are HLL Variables, Anyway?

When you execute a program, both its instructions and its data are stored in memory. Keep in mind, the word
instructions here means machine language instructions. Again, these machine language instructions were
either written by the programmer directly, or they were produced by a compiler from a source file written
by the programmer in C/C++ or some other HLL. Let us now look at the storage of the data in the C case.21

In an HLL program, we specify our data via names. The compiler will assign each variable a location in
memory. Generally (but not always, depending on the compiler), these locations will be consecutive.

1.8.2 Order of Storage

C compilers tend to store local variables in the reverse of the order in which they are declared. For example,
consider the following program:

1 PrintAddr(char *VarName,int Addr)
2

3 { printf("the address of %s is %x\n",VarName,Addr); }
4

5 main()
6

7 { int X,Y,W[4];
8 char U,V;
9

10 PrintAddr("X",&X);
11 PrintAddr("Y",&Y);
12 PrintAddr("W[3]",&W[3]);
13 PrintAddr("W[0]",&W[0]);
14 PrintAddr("U",&U);
15 PrintAddr("V",&V);
16 }

I ran this on a 32-bit Pentium machine running the Linux operating system. The output of the program was
20I say “apparently,” because after much searching I have not been able to confirm this.
21The C language became popular in the early 1980s. It was invented by the ATT&T engineers who developed Unix. The ensuing

popularity of Unix then led to popularity of C (and much later, to the development of Linux), even for non-Unix users. Later it was
extended to C++, by adding class structures (it was originally called “C with classes”). If you are wondering whether a certain C++
construct is also part of C, the answer is basically that if it is not something involving classes (or the new operator), it is C.
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the address of X is bffffb84
the address of Y is bffffb80
the address of W[3] is bffffb7c
the address of W[0] is bffffb70
the address of U is bffffb6f
the address of V is bffffb6e

Note that the ints are 4 bytes apart while the chars are 1 byte apart, reflecting the sizes of these types. More
on this below.

On the other hand, there is wide variation among C compilers as to how they store global variables.

1.8.2.1 Scalar Types

Virtually all C compilers store variables of type int in one word. This is natural, as the word size is the size
of integer operands that the hardware works on.

Variables of type float are usually stored in 32-bit units, since that is the size of the IEEE floating-point
standard. So, in modern 32-bit machines, a float is stored in one word. For 16-bit machines, this means that
float variables must be stored in a pair of words.

Typically char variables are stored as one byte each, since they are 7 or 8 bits long and thus fit in one byte.

By the way, C/C++ treats char as an integer type, storing a 1-byte signed integer, as opposed to the typically
4-byte int. This can save a lot of space in memory if one knows that 8 bits is enough for each of the integers
we will store. Thus in C and even C++, the code

char G;
...
if (G < 0) ...

is legal and usable in the integer sense.

What about int variants such as short and long? Well, first one must note that a compiler need not treat
them any differently from ints. GCC on Intel machines, for instance, stores a long in 4 bytes, just like an
int. On the other hand, it stores a short in 2 bytes. It does offer a type long long, which it stores in 8 bytes,
i.e. as a 64-bit quantity.

In the C language, the sizeof operator tells us how many bytes of storage the compiler will allocate for any
variable type.
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1.8.2.2 Arrays

As seen in an example above, array variables are generally implemented by compilers as contiguous blocks
of memory. For example, the array declared as

int X[100];

would be allocated to some set of 100 consecutive words in memory.

What about two-dimensional arrays? For example, consider the four-row, six-column array

int G[4][6];

Again, this array will be implemented in a block of consecutive words of memory, more specifically 24
consecutive words, since these arrays here consist of 4× 6 = 24 elements. But in what order will those 24
elements be arranged? Most compilers use either row-major or column-major ordering. To illustrate this,
let us assume for the moment that this is a global array and that the compiler stores in non-reverse order, i.e.
G[0][0] first and G[3][5] last.

In row-major order, all elements of the first row are stored at the beginning of the block, then all the elements
of the second row are stored, then the third row, and so on. In column-major order, it is just the opposite:
All of the first column is stored first, then all of the second column, and so on.

In the example above, consider G[1][4]. With row-major order, this element would be stored as the 11th
word in the block of words allocated to G. If column-major order were used, the it would be stored in the
18th word. (The reader should verify both of these statements, to make sure to understand the concept.)
C/C++ compilers use the row-major system.

1.8.2.3 Structs and C++ Class Objects

Advanced data types are handled similarly, again in contiguous memory locations. For instance, consider
the struct type in C, say

struct S {
int X;
char A,B;

};

would on a 16-bit machine be stored in four consecutive bytes, first two for X and then one each for A and
B. On a 32-bit machine, it would be stored in six consecutive bytes, since X would take up a word and thus
four bytes instead of two.

Consider this program, run on a 32-bit machine:



32 CHAPTER 1. INFORMATION REPRESENTATION AND STORAGE

main ( )
{ s t r u c t S {

i n t X;
c h a r A, B ;

} Z ;
p r i n t f (”%x %x %x\n” ,&Z . X,&Z . A,&Z . B ) ;

}

$ a . o u t
b f f a e d 7 8 b f f a e d 7 c b f f a e d 7 d

Sure enough, A starts 4 bytes past X, and B starts 4 bytes past A.

Note, though, that for reasons given in Section 1.3.1.1, most compilers will store complex objects like this
to be aligned on word boundaries. Consider the above struct S on a 32-bit machine, and suppose we have
the local declaration

struct S A,B;

A and B collectively occupy 12 bytes, thus seemingly three words. But most compilers will now start an
instance of S in the middle of a word. Thus although A and B will be stored contiguously in the sense that
no other variables will be stored between them, they will be stored in four consecutive words, not three, with
their addresses differing by 8, not 6. There will be two bytes of unused space between them.

In C++, an object of a class is stored in a manner similar to that of a struct.

1.8.2.4 Pointer Variables

We have not yet discussed how pointer variables are stored. A pointer is an address. In C, for example,
suppose we have the declaration

int *P,X;

We are telling the compiler to allocate memory for two variables, one named P and the other named X. We
are also telling the compiler what types these variables will have: X will be of integer type, while the ‘’ says
that P will be of pointer-to-integer type—meaning that P will store the address of some integer. For instance,
in our program, we might have the statement

P = &X;
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which would place the address of X in P. (More precisely, we should define this as the lowest-address byte
of X.) If one then executed the statement

printf("%x\n",P);

the address of X would be printed.

As mentioned earlier, most machines today have equal word and address sizes. So, not only will the variable
X here be stored in one word, but also the variable P would occupy a word too.

Note carefully that this would be true no matter what type P were to point to. For instance, consider the
struct S we had above. The code

struct S *Q;

would also result in Q being stored in one word. An address is an address, no matter what kind of data item
is stored beginning at that address..

Another aspect of C/C++ pointers which explicitly exposes the nature of storage of program objects in
memory is pointer arithmetic. For example, suppose P is of pointer type. Then P+1, for example, points
to the next consecutive object of the type to which P points.

The following example will bring together a number of different concepts we’ve looked at in the last few
pages (be SURE to followup if you don’t understand this well):

Consider the code

1 main()
2

3 { float A,B,C,*Q;
4

5 Q = &B;
6 Q = Q-2;

Suppose Q is the memory location, say, 0x278. Then C will be the next word after Q, i.e. word 0x27c, then
B will be word 0x280 and A will be word 0x284.

After the first statement,

Q = &B;

is executed, we will have c(0x278) = 0x280.

Now, what happens when the second statement,
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Q = Q-2;

is executed? The expression Q-2 means “2 objects before Q in memory,” where the word object means the
type of variable pointed to by Q. So, Q-2 is the place 2 floats before where Q is pointing in memory. From
Section 1.8.2.1 we know that this then means 2 words before where Q is pointing in memory. In other words,
Q-2 is pointing to Q itself!

Keep in mind that in C/C++, arrays are equivalent to pointer references. For example, Y[200] means the
same thing as Y+200.

1.8.3 Local Variables

Compilers assign global variables to fixed locations determined at compile-time.

On the other hand, variables which are local to a given function storage on the stack, which is a section of
memory. Thus local variables are in memory too, just like globals. However, a variable’s position on the
stack won’t be known until run-time. The compiler will merely specify the location of a variable relative to
the top of the stack.

This is hard to understand given the background you have so far. You will understand it much better when
we cover Chapter 7, but to give you a brief idea now, think of a recursive function f() which has a local
variable X. As the function is called recursively multiple times, the stack will expand more and more, and
there will be a separate space for X in each call. Thes multiple versions of X will occupy multiple memory
locations, so you can see that &X cannot be predicted at compile-time.

1.8.4 Variable Names and Types Are Imaginary

When you compile a program from an HLL source file, the compiler first assigns memory locations for each
declared variable.22 For its own reference purposes, the compiler will set up a symbol table which shows
which addresses the variables are assigned to. However, it is very important to note is that the variable
names in a C/C++ or other HLL program are just for the convenience of us humans. In the machine
language program produced from our HLL file by the compiler, all references to the variables are through
their addresses in memory, with no references whatsoever to the original variables names.

For example, suppose we have the statement

X = Y + 4;

When the compiler produces some machine-language instructions to implement this action, the key point is
that these instructions will not refer to X and Y. Say X and Y are stored in Words 504 and 1712, respectively.

22These locations will not actually be used at that time. They will only be used later, when the program is actually run.
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Then the machine instructions the compiler generates from the above statement will only refer to Words 504
and 1712, the locations which the compiler chose for the C/C++ variables X and Y.

For instance, the compiler might produce the following sequence of three machine language instructions:

copy Word 1712 to a cell in the CPU
add 4 to the contents of that cell
copy that cell to Word 504

There is no mention of X and Y at all! The names X and Y were just temporary entities, for communication
between you and the compiler. The compiler chose locations for each variable, and then translated all of
your C/C++ references to those variables to references to those memory locations, as you see here.

Again, when the compiler is done compiling your program, it will simply discard the symbol table.23 If say
on a Linux system you type

gcc x.c

which creates the executable file a.out, that file will not contain the symbol table.

There is one exception to this, though, which occurs when you are debugging a program, using a debugging
tool such as GDB.24 Within the debugging tool you will want to be able to refer to variables by name, rather
than by memory location, so in this case you do need to tell the compiler to retain the symbol table in
a.out.25 You do so with the -g option, i.e.

gcc -g x.c

But even in this case, the actually machine-language portion (as opposed to the add-on section containing
the symbol table) of the executable file a.out will not make any references to variable names.

The same comments apply to function names; they’re gone too once we create a.out. Similarly, there is no
such thing as a type of a variable at the machine level, as earlier.

23It may retain a list of function names and names of global variables. For simplicity, though, we’ll simply say that the entire
table is discarded.

24You should always use a debugging tool when you are debugging a program. Don’t debug by just inserting a lot of printf()
calls! Use of a debugging tool will save you large amounts of time and effort. Professional software engineers use debugging
tools as a matter of course. There is a lot of information on debugging, and debugging tools, on my debug Web page, at http:
//heather.cs.ucdavis.edu/˜matloff/debug.html

25In fact, you’ll need more than the symbol table. You certainly want the debugger to tell you what line of source code you are
currently on, so we need to save the memory locations of machine code produced by each line of source code.

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/debug.html
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1.8.5 Segmentation Faults and Bus Errors

Most machines today which are at the desktop/laptop level or higher (i.e. excluding handheld PDAs, chips
inside cars and other machines, etc.) have virtual memory (VM) hardware. We will discuss this in Chapter
?? in detail, but the relevance here is that it can be used to detect situations in which a program tries to
access a section of memory which was not allocated to it.

In a VM system, memory is (conceptually) broken into chunks called pages. When the operating system
loads a program, say a.out, into memory, the OS also sets up a page table, which shows exactly which
parts of memory the program is allowed to access. Then when the program is actually run, the hardware
monitors each memory access, checking the page table. If the program accesses a part of memory which
was not allocated to it, the hardware notices this, and switches control to the OS, which announces an error
and kills in the program. This is called a segmentation fault in Linux and a general protection error in
VM Windows systems.

For example, consider the following program, which we saw in Section 1.4.5:

1 main()
2

3 { int X[5],Y[20];
4

5 X[0] = 12;
6 Y[20] = 15;
7 printf("X[0] = %d\n",X[0]); // prints out 15!
8 }

Say we compile this, say to a.out, and run it. What will happen?

As noted earlier, Y[20] is a perfectly legal expression here, which will turn out to be identical to X[0]. That’s
how X[0] becomes equal to 15.26

Even though that is clearly not what the programmer intended, the VM hardware will not detect this problem,
and the program will execute without any announcement of error. The reason is that the program does not
access memory that is not allocated to it.

On the other hand, if Y[20] above were Y[20000], then the location of “Y[20000]” would be far outside the
memory needed by the program, and thus definitely outside the memory allocated to the program.27 The
hardware would detect this, then jump to the OS, which would (in Linux) shout out to us, “Segmentation
fault.”

26C and C++ do not implement array bounds checking, i.e. the compiler will not produce code to check for this, which would
slow down execution speed.

27Since the memory is allocated in units of pages, the actual amount of memory allocated will be somewhat larger than the
program needs; we cannot allocate only a partial page.
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So, remember:
A “seg fault” error message means that your program has tried to access a portion of memory which
is outside the memory allocated to it. This is due to a buggy array index or pointer variable.

Note that the case of bad pointer variables includes problems like the one in the classical error made by
beginning C programmers:

1 scanf("\%d",X);

where X is, say, of type int; the programmer here has forgotten the ampersand.

The first thing you should do when a seg fault occurs is to find out where in the program it occurred. Use a
debugging tool, say DDD or GDB, to do this!

Note again that seg faults require that our machine have VM hardware, and that the OS is set up to make use
of that hardware. Without both of these, an error like “Y[20000]” will NOT be detected.

Many CPU types require that word accesses be aligned. Intel allows unaligned words (at a performance
penalty, as discussed in Section 1.3.1.1, but suppose your CPU is not Intel or a clone.

Suppose your program has code like

1 int X,*P;
2 ...
3 P = (int *) 201;
4 X = *P;

The compiler will translate the line

X = *P;

into some word-accessing machine instruction. When that instruction is executed, the CPU hardware will
see that P’s value is not a multiple of 4.28 The CPU will then cause a jump to the operating system, which
will (for example in Linux) announce “Bus error.”

As is the case with seg faults, you should use a debugging tool to determine where a bus error has occurred.

1.9 ASCII Table

This is the output of typing

% man ascii

28Note that this does not require VM capability.
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on a Linux machine.

Oct Dec Hex Char Oct Dec Hex Char
------------------------------------------------------------
000 0 00 NUL ’\0’ 100 64 40 @
001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B
003 3 03 ETX 103 67 43 C
004 4 04 EOT 104 68 44 D
005 5 05 ENQ 105 69 45 E
006 6 06 ACK 106 70 46 F
007 7 07 BEL ’\a’ 107 71 47 G
010 8 08 BS ’\b’ 110 72 48 H
011 9 09 HT ’\t’ 111 73 49 I
012 10 0A LF ’\n’ 112 74 4A J
013 11 0B VT ’\v’ 113 75 4B K
014 12 0C FF ’\f’ 114 76 4C L
015 13 0D CR ’\r’ 115 77 4D M
016 14 0E SO 116 78 4E N
017 15 0F SI 117 79 4F O
020 16 10 DLE 120 80 50 P
021 17 11 DC1 121 81 51 Q
022 18 12 DC2 122 82 52 R
023 19 13 DC3 123 83 53 S
024 20 14 DC4 124 84 54 T
025 21 15 NAK 125 85 55 U
026 22 16 SYN 126 86 56 V
027 23 17 ETB 127 87 57 W
030 24 18 CAN 130 88 58 X
031 25 19 EM 131 89 59 Y
032 26 1A SUB 132 90 5A Z
033 27 1B ESC 133 91 5B [
034 28 1C FS 134 92 5C \ ’\\’
035 29 1D GS 135 93 5D ]
036 30 1E RS 136 94 5E ˆ
037 31 1F US 137 95 5F
040 32 20 SPACE 140 96 60 ‘
041 33 21 ! 141 97 61 a
042 34 22 " 142 98 62 b
043 35 23 # 143 99 63 c
044 36 24 $ 144 100 64 d
045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ’ 147 103 67 g
050 40 28 ( 150 104 68 h
051 41 29 ) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C , 154 108 6C l
055 45 2D - 155 109 6D m
056 46 2E . 156 110 6E n
057 47 2F / 157 111 6F o
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 r
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
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065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 x
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ˜
077 63 3F ? 177 127 7F DEL

1.10 An Example of How One Can Exploit Big-Endian Machines for Fast
Character String Sorting

The endian-ness of a machine can certainly make a difference. As an example, suppose we are writing a
program to sort character strings in alphabetical order. The word “card” should come after “car” but before
“den”, for instance. Suppose our machine has 32-bit word size, variables X and Y are of type int, and we
have the code

strncat(&X,"card",4);
strncat(&Y,"den ",4);

Say X and Y are in Words 240 and 804, respectively. This means that Byte 240 contains 0x63, the ASCII
code for ‘c’, Byte 241 contains 0x61, the code for ‘a’, byte 242 contains 0x72, the code for ‘r’ and byte 243
contains 0x64. Similarly, bytes 804-807 will contain 0x64, 0x65, 0x6e and 0x20. All of this will be true
regardless of whether the machine is big- or little-endian.

But on a big-endian machine, Byte 240 will be the most significant within Word 240, while byte 243 will
be the least significant. Then numerically the two words will be 0x63617264 (1667330660 decimal) and
0x64656e20 (1684368928 decimal).

Thus on a big-endian machine, we can actually use word subtraction to determine which of the strings
“card” and “den” should precede the other alphabetically, by performing the subtraction X-Y. The result of
the subtraction will be negative, and thus we will decide that “card” is less than (i.e. alphabetically precedes)
“den”—exactly what we want to happen.

On the other hand, if we have a little-endian machine the most-significant byte in X will contain the ’d’, not
the ’c’, so subtraction would not do what we want.

The reader should pause to consider the speed advantage of such a comparison. If we did not use word
subtraction, we would have to do a character-by-character comparison, that is four subtractions. (Note that
these are word-based subtractions, even though we are only working with single bytes.) The arithmetic
hardware works on a word basis.) Suppose for example that we are dealing with 12-character strings. We
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can base our sort program on comparing (up to) three pairs of words if we use word subtraction, and thus
gain roughly a fourfold speed increase over a more straightforward sort which compares up to 12 pairs of
characters.

We could do the same thing on a little-endian machine if we were to store character strings backwards.
However, this may make programming inconvenient.

1.11 How to Inspect the Bits of a Floating-Point Variable

Suppose we wish to see the individual bits in a float variabley. The code

printf("%x\n",y);

will not work, as it would tell printf() to consider the bits in y to represent an integer, and would then print
that integer in base-16. Why would this be a problem? Recall that printf() treats any quantity printed using
%x format as an integer, and thus the endian-ness will play a role. That would mean the printout would be
“backwards” on a little-endian machine.

Instead, we must write something like this:

1 float y;
2 char *p; // char type focuses on individual bytes
3 ...
4 ...
5 p = (char *) &y;
6 for (i = 0; i < 4; i++) {
7 printf("%y\n",*p);
8 p++;
9 }

10 printf("%f %x\n",y, y);

Actually, even this would have a bit of a problem. Suppose for example that the first byte to be printed is
0x92, which is 10010010 in bit form. Viewed as an 8-bit integer, that is a negative number. As a full 32-bit
integer, that number is 11111111111111111111111110010010, i.e 0xffffff92. The latter, not 0x92, would
be printed out. We would then just ignore those leading f digits, but it would be annoying. To really make it
look nice, we’d have to add some more code.



Chapter 2

Major Components of Computer “Engines”

2.1 Introduction

Recall from Chapter 0 that we discussed the metaphor of the “engine” of a computer. This engine has two
main components:

• the hardware, including the central processing unit (CPU) which executes the computer’s machine
language, and

• the low-level software, consisting of various services that the operating system makes available to
programs.

This chapter will present a broad overview of both components of this engine. The details will then unfold
in the succeeding chapters.

One of the major goals of this chapter, and a frequent theme in the following chapters, is to develop an
understanding of the functions of these two components. In particular, questions which will be addressed
both in this chapter and in the chapters which follow concern the various functions of computer systems:

• What functions are typically implemented in hardware?

• What functions are typically implemented in software?

• For which functions are both hardware and software implementations common? Why is hardware
implementation generally faster, but software implementation more flexible?

41
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Figure 2.1: system structure

Related to these questions are the following points, concerning the portability of a program, i.e. the ability
to move a program developed under one computing environment to another. What dependencies, if any,
does the program have to that original environment? Potential dependencies are:

• Hardware dependencies:

A program written in machine language for an older PC’s Intel 80386 CPU1 certainly won’t run on
Motorola’s PowerPC CPU.2 But that same program will run on PC using the Intel Pentium, since the
Intel family is designed to be upward compatible, meaning that programs written for earlier members
of the Intel CPU family are guaranteed to run on later members of the family (though not vice versa).

• Operating system (OS) dependencies:

A program written to work on a PC under the Windows OS will probably not run on the same machine
under the Linux OS (and vice versa), since the program will probably call OS functions.

And finally, we will discuss one of the most important questions of all: What aspects of the hardware
and software components of the engine determine the overall speed at which the system will run a given
program?

2.2 Major Hardware Components of the Engine

2.2.1 System Components

A block diagram of the basic setup of a typical computer system appears in Figure 2.1.

The major components are as follows:

CPU
1Or clones of Intel chips, such as those by AMD. Throughout this section, our term Intel will include the clones.
2This is what the Apple Macintosh used until 2005.
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As mentioned earlier, this is the central processing unit, often called simply the processor, where the actual
execution of a program takes place. (Since only machine language programs can execute on a computer, the
word program will usually mean a machine language program. Recall that we might write such a program
directly, or it might be produced indirectly, as the result of compiling a source program written in a high-level
language (HLL) such as C.)

Memory

A program’s data and machine instructions are stored here during the time the program is executing. Mem-
ory consists of cells called words, each of which is identifiable by its address.

If the CPU fetches the contents of some word of memory, we say that the CPU reads that word. On the
other hand, if the CPU stores a value into some word of memory, we say that it writes to that word. Reading
is analogous to watching a video cassette tape, while writing is analogous to recording onto the tape.

Ordinary memory is called RAM, for Random Access Memory, a term which means that the access time
is the same for each word.3 There is also ROM (Read-Only Memory), which as its name implies, can be
read but not written. ROM is used for programs which need to be stored permanently in main memory,
staying there even after the power is turned off. For example, an autofocus camera typically has a com-
puter in it, which runs only one program, a program to control the operation of the camera. Think of how
inconvenient—to say the least—it would be if this program had to be loaded from a disk drive everytime
you took a picture! It is much better to keep the program in ROM.4

I/O Devices

A typical computer system will have several input/output devices, possibly even hundreds of them (Figure
2.1 shows two of them). Typical examples are keyboards/monitor screens, floppy and fixed disks, CD-
ROMs, modems, printers, mice and so on.

Specialized applications may have their own special I/O devices. For example, consider a vending machine,
say for tickets for a regional railway system such as the San Franciso Bay Area’s BART, which is capable of
accepting dollar bills. The machine is likely to be controlled by a small computer. One of its input devices
might be an optical sensor which senses the presence of a bill, and collects data which will be used to analyze
whether the bill is genuine. One of the system’s output devices will control a motor which is used to pull in
the bill; a similar device will control a motor to dispense the railway ticket. Yet another output device will
be a screen to give messages to the person buying the ticket, such as “please deposit 25 cents more.”

The common feature of all of these examples is that they serve as interfaces between the computer and
the “outside world.” Note that in all cases, they are communicating with a program which is running on

3 In the market for personal computers, somehow the word “memory” has evolved to mean disk space, quite different from the
usage here. In that realm, what we refer to here as “memory” is called “RAM.” The terms used in this book are the original ones,
and are standard in the computer industry, for instance among programmers and computer hardware designers. However, the reader
should keep in mind that the terms are used differently in some other contexts.

4Do not confuse ROM with CD-ROMs, in spite of the similar names. A ROM is a series of words with addresses within the
computer’s memory space, just like RAM, whereas a CD-ROM is an input/output device, like a keyboard or disk.
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the computer. Just as you have in the past written programs which input from a keyboard and output to a
monitor screen, programs also need to be written in specialized applications to do input/output from special
I/O devices, such as the railway ticket machine application above. For example, the optical sensor would
collect data about the bill, which would be input by the program. The program would then analyze this data
to verify that the bill is genuine.

Note carefully the difference between memory and disk.5 Memory is purely electronic, while disk is elec-
tromechanical, the latter referring to the fact that a disk is a rotating platter. Both memory and disk store
bits, but because of the mechanical nature of disk, it is very much slower than memory—memory access is
measured in nanoseconds (billionths of seconds) while disk access is measured in milliseconds (thousandths
of seconds). The good thing about disk is that it is nonvolatile, so we can store files permanently.6 Also,
disk storage is a lot cheaper, per bit stored, than memory.

System Bus

A bus is a set of parallel wires (usually referred to as “lines”), used as communication between components.
Our system bus plays this role in Figure 2.1— he CPU communicates with memory and I/O devices via
the bus. It is also possible for I/O devices to communicate directly with memory, an action which is called
direct memory access (DMA), and again this is done through the bus.7

The bus is broken down into three sub-buses:

• Data Bus:

As its name implies, this is used for sending data. When the CPU reads a memory word, the memory
sends the contents of that word along the data bus to the CPU; when the CPU writes a value to a
memory word, the value flows along the data bus in the opposite direction.

Since the word is the basic unit of memory, a data bus usually has as many lines as there are bits in a
memory word. For instance, a machine with 32-bit word size would have a data bus consisting of 32
lines.

• Address Bus:

When the CPU wants to read or write a certain word of memory, it needs to have some mechanism
with which to tell memory which word it wants to read or write. This is the role of the address bus.
For example, if the CPU wants to read Word 504 of memory, it will put the value 504 on the address
bus, along which it will flow to the memory, thus informing memory that Word 504 is the word the
CPU wants.

5Often confused by the fact that salespeople at computer stores erroneously call disk “memory.”
6We couldn’t do that with ROM, since we want to be able to modify the files.
7This is the basic view, but technically it applies more to older or smaller computers. In a PC, for instance, there will be extra

chips which serve as “agents” for the CPU’s requests to memory. For a description of how some common chips like this work, and
their implications for software execution speed, see Chapter 5 of Code Optimization: Effective Memory Usage, by Kris Kaspersky,
A-LIST, 2003.
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The address bus usually has the same number of lines as there are bits in the computer’s addresses.

• Control Bus:

How will the memory know whether the CPU wants to read or write? This is one of the functions
of the control bus. For example, the control bus in typical PCs includes lines named MEMR and
MEMW, for “memory read” and “memory write.” If the CPU wants to read memory, it will assert
the MEMR line, by putting a low voltage on it, while for a write, it will assert MEMW. Again, this
signal will be noticed by the memory, since it too is connected to the control bus, and so it can act
accordingly.

As an example, consider a machine with both address and word size equal to 32 bits. Let us denote the
32 lines in the address bus as A31 through A0, corresponding to Bits 31 through 0 of the 32-bit address,
and denote the 32 lines in the data bus by D31 through D0, corresponding to Bits 31 through 0 of the word
being accessed. Suppose the CPU executes an instruction to fetch the contents of Word 0x000d0126 of
memory. This will involve the CPU putting the value 0x000d0126 onto the address bus. Remember, this is
hex notation, which is just a shorthand abbreviation for the actual value,

000000000000000011010000000100100110

So, the CPU will put 0s on lines A31 through A20, a 1 on Line A19, a 1 on Line A18, a 0 on Line A17, and
so on. At the same time, it will assert the MEMR line in the control bus. The memory, which is attached
to these bus lines, will sense these values, and “understand” that we wish to read Word 0x000d0126. Thus
the memory will send back the contents of that word on the data bus. If for instance c(0x000d0126) = 0003,
then the memory will put 0s on Lines D31 through D2, and 1s on Lines D1 and D0, all of which will be
sensed by the CPU.

Some computers have several buses, thus enabling more than one bus transaction at a time, improving
performance.

2.2.2 CPU Components

2.2.2.1 Intel/Generic Components

We will now look in more detail at the components in a CPU. Figure 2.2 shows the components that make
up a typical CPU. Included are an arithmetic and logic unit (ALU), and various registers.

The ALU, as its name implies, does arithmetic operations, such as addition, subtraction, multiplication and
division, and also several logical operations. The latter category of operations are similar to the &&, || and
! operators in the C language) used in logical expressions such as
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Figure 2.2: CPU internals

if (a < b && c == 3) x = y;

The ALU does not store anything. Values are input to the ALU, and results are then output from it, but it
does not store anything, in contrast to memory words, which do store values. An analogy might be made
to telephone equipment. A telephone inputs sound, in the form of mechanical vibrations in the air, and
converts the sounds to electrical pulses to be sent to the listener’s phone, but it does not store these sounds.
A telephone tape-recording answering machine, on the other hand, does store the sounds which are input to
it.

Registers are storage cells similar in function to memory words. The number of bits in a register is typically
the same as that for memory words. We will even use the same c( ) notation for the contents of a register as
we have used for the contents of a memory word. For example, c(PC) will denote the contents of the register
PC described below, just as, for instance, c(0x22c4) means the contents of memory word 0x22c4. Keep in
mind, though, that registers are not in memory; they are inside the CPU. Here are some details concerning
the registers shown in Figure 2.2.

• PC: This is the program counter. Recall that a program’s machine instructions must be stored in
memory while the program is executing. The PC contains the address of the currently executing
instruction. The term PC is a generic term; on Intel, the register is called EIP (Extended Instruction
Pointer).8

8The registers discussed here and below are for 32-bit machines. The 64-bit versions use R instead of E, e.g. RAX instead of
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• ESP: The stack pointer contains the address of the “top” of a certain memory region which is called
the stack. A stack is a type of data structure which the machine uses to keep track of function calls
and other information, as we will see in Chapter 5.

• EAX, EBX, etc.: These are data registers, used for temporary storage of data.

• EFLAGS: The processor status register (PS), called EFLAGS on Intel machines, contains miscel-
laneous pieces of information, including the condition codes. The latter are indicators of information
such as whether the most recent computation produced a negative, positive or zero result. Note that
there are wires leading out of the ALU to the EFLAGS (shown as just one line in Figure 2.2). These
lines keep the condition codes up to date. Each time the ALU is used, the condition codes are imme-
diately updated according to the results of the ALU operation.

Generally the PS will contain other information in addition to condition codes. For example, it was
mentioned in MIPS and PowerPC processors give the operating system a choice as to whether the
machine will run in big-endian or little-endian mode. A bit in the PS will record which mode is used.

• MAR: The memory address register is used as the CPU’s connection to the address bus. For exam-
ple, if the currently executing instruction needs to read Word 0x0054 from memory, the CPU will put
0x0054 into MAR, from which it will flow onto the address bus.

• MDR: The memory data register is used as the CPU’s connection to the data bus. For example, if
the currently executing instruction needs to read Word 0x0054 from memory, the memory will put
c(0x0054) onto the data bus, from which it will flow into the MDR in the CPU. On the other hand, if
we are writing to Word 0x0054, say writing the value 0x0019, the CPU will put 0x0019 in the MDR,
from which it will flow out onto the data bus and then to memory. At the same time, we will put
0x0054 into the MAR, so that the memory will know to which word the 0x0019 is to be written.

• IR: This is the instruction register. When the CPU is ready to start execution of a new instruction,
it fetches the instruction from memory. The instruction is returned along the data bus, and thus is
deposited in the MDR. The CPU needs to use the MDR for further accesses to memory, so it enables
this by copying the fetched instruction into the IR, so that the original copy in the MDR may be
overwritten.

A note on the sizes of the various registers: The PC, ESP, and MAR all contain addresses, and thus typically
have sizes equal to the address size of the machine. Similarly, the MDR typically has sizes equal to the word
size of the machine. The PS stores miscellaneous information, and thus its size has no particular relation to
the machine’s address or word size. The IR must be large enough to store the longest possible instruction
for that machine.

A CPU also has internal buses, similar in function to the system bus, which serve as pathways with which
transfers of data from one register to another can be made. Figure 2.2 shows a CPU having only one such

EAX.
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bus, but some CPUs have two or more. Internal buses are beyond the scope of this book, and thus any
reference to a “bus” from this point onward will mean the system bus.

The reader should pay particular attention to the MAR and MDR. They will be referred to at a number of
points in the following chapters, both in text and in the exercises—not because they are so vital in their own
right, but rather because they serve as excellent vehicles for clarifying various concepts that we will cover
in this book. In particular, phrasing some discussions in terms of the MAR and MDR will clarify the fact
that some CPU instructions access memory while others do not.

Again, the CPU structure shown above should only be considered “typical,” and there are many variations.
RISC CPUs, not surprisingly, tend to be somewhat simpler than the above model, though still similar.

2.2.2.2 History of Intel CPU Structure

The earliest widely-used Intel processor chip was the 8080. Its word size was 8 bits, and it included registers
named A, B, C and D (and a couple of others). Address size was 16 bits.

The next series of Intel chips, the 8086/8088,9 and then the 80286, featured 16-bit words and 20-bit ad-
dresses. The A, B, C and D registers were accordingly extended to 16-bit size and renamed AX, BX, CX
and DX (‘X’ stood for “extended”). Other miscellaneous registers were added. The lower byte of AX was
called AL, the higher byte AH, and similarly for BL, BH, etc.

Beginning with the 80386 and extending to the Pentium series, both word and address size were 32 bits. The
registers were again extended in size, to 32 bits, and renamed EAX, EBX and so on (‘E’ for “extended”).
The 64-bit generation is now commonplace.

The pre-32-bit Intel CPUs, starting with 8086/8088, replaced the single register PC with a pair of registers,
CS (for code segment) and IP (for instruction pointer). A rough description is that the CS register pointed to
the code segment, which is the place in memory where the program’s instructions start, and the IP register
then specified the distance in bytes from that starting point to the current instruction. Thus by combining
the information given in c(CS) and c(IP), we obtained the absolute address of the current instruction.

This is still true today when an Intel CPU runs in 16-bit mode, in which case it generates 20-bit addresses.
The CS register is only 16 bits, but it represents a 20-bit address whose least significant four bits are implic-
itly 0s. (This implies that code segments are allowed to begin only at addresses which are multiples of 16.)
The CPU generates the address of the current instruction by concatenating c(CS) with four 0 bits10 and then
adding the result to c(IP).

Suppose for example the current instruction is located at 0x21082, and the code segment begins at 0x21040.
Then c(CS) and c(IP) will be 0x2104 and 0x0042, respectively, and when the instruction is to be executed,
its address will be generated by combining these two values as shown above.

9The first IBM PC used the 8088.
10This is one 0 hex digit. Note too that this concatenation is equivalent to multiplying by 16.
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The situation is similar for stacks and data. For example, instead of having a single SP register as in our
model of a typical CPU above, the earlier Intel CPUs (and current CPUs when they are running in 16-bit
mode) use a pair of registers, SS and SP. SS specifies the start of the stack segment, and SP contains the
distance from there to the current top-of-stack. For data, the DS register points to the start of the data
segment, and a 16-bit value contained in the instruction specifies the distance from there to the desired data
item.

Since IP, SP and the data-item distance specified within an instruction are all 16-bit quantities, it follows
that the code, stack and data segments are limited to 216 = 65, 536 bytes in size. This can make things quite
inconvenient for the programmer. If, for instance, we have an array of length, say, 100,000 bytes, we could
not fit the array into one data segment. We would need two such segments, and the programmer would have
to include in the program lines of code which change the value of c(DS) whenever it needs to access a part
of the array in the other data segment.

These problems are avoided by the newer operating systems which run on Intel machines today, such as
Windows and Linux, since they run in 32-bit mode. Addresses are also of size 32 bits in that mode, and IP,
SP and data-item distance are 32 bits as well. Thus a code segment, for instance, can fill all of memory, and
segment switching as illustrated above is unnecessary.

This continues to be the case for 64-bit machines, e.g. with 64-bit addresses.

2.2.3 The CPU Fetch/Execute Cycle

After its power is turned on, the typical CPU pictured in Figure 2.2 will enter its fetch/execute cycle,
repeatedly cycling through these three steps, i.e. Step A, Step B, Step C, Step A, Step B, and so on:

• Step A: The CPU will perform a memory read operation, to fetch the current instruction. This involves
copying the contents of the PC to the MAR, asserting a memory-read line in the control bus, and then
waiting for the memory to send back the requested instruction along the data bus to the MDR. While
waiting, the CPU will update the PC, to point to the following instruction in memory, in preparation
for Step A in the next cycle.

• Step B: The CPU will copy the contents of MDR to IR, so as to free the MDR for further memory
accesses. The CPU will inspect the instruction in the IR, and decode it, i.e. decide what kind of
operation this instruction performs—addition, subtraction, jump, and so on.

• Step C: Here the actual execution of the operation specified by the instruction will be carried out.
If any of the operands required by the instruction are in memory, they will be fetched at this time,
by putting their addresses into MAR and waiting for them to arrive at MDR. Also, if this instruction
stores its result back to memory, this will be accomplished by putting the result in MDR, and putting
into MAR the memory address of the word we wish to write to.
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After Step C is done, the next cycle is started, i.e. another Step A, then another Step B, and so on. Again,
keep in mind that the CPU will continually cycle through these three steps as long as the power remains
on. Note that all of the actions in these steps are functions of the hardware; the circuitry is designed to
take these actions, while the programmer merely takes advantage of that circuitry, by choosing the proper
machine instructions for his/her program.

A more detailed description of CPU operations would involve specifying its microsteps. These are beyond
the scope of this book, and the three-step cycle described above will give sufficient detail for our purposes,
though we will use them later to illustrate the term clock speed.

2.3 Software Components of the Computer “Engine”

There are many aspects of a computer system which people who are at the learning stage typically take for
granted as being controlled by hardware, but which are actually controlled by software. An example of this
is the backspace action when you type the backspace key on the keyboard. You are accustomed to seeing
the last character you typed now disapppear from the screen, and the cursor moving one position to the left.
You might have had the impression that this is an inherent property of the keyboard and the screen, i.e. that
their circuitry was designed to do this. However, for most computer systems today this is not the case. The
bare hardware will not take any special action when you hit the backspace key. Instead, the special action is
taken by whichever operating system (OS) is being used on the computer.

The OS is software—a program, which a person or group of people wrote to provide various services to user
programs. One of those services is to monitor keystrokes for the backspace key, and to take special actions
(move the cursor leftward one position, and put a blank where it used to be) when encountering that key.
When you write a program, say in C, you do not have to do this monitoring yourself, which is a tremendous
convenience. Imagine what a nuisance it would be if you were forced to handle the backspace key yourself:
You would have to include some statements in each program you write to check for the backspace key, and
to update the screen if this character is encountered. The OS relieves you of this burden.

But if you want this “burden”—say you are writing a game or a text editor and need to have characters read
as they are typed, instead of waiting for the user to hit the Enter key—then the OS also will turn off the
backspace, echo etc. if you request it. In UNIX, this is done via the ioctl() system call.

This backspace-processing is an example of one of the many services that an OS provides. Another example
is maintenance of a file system. Again the theme is convenience. When you create a file, you do not have
to burden yourself with knowing the physical location of your file on the disk. You merely give the file a
name. The OS finds unused space on the disk to store your file, and enters the name and physical location in
a table that the OS maintains. Subsequently, you may access the file merely by specifying the name, and the
OS service will translate that into the physical location and access the file on your behalf. In fact, a typical
OS will offer a large variety of services for accessing files.
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So, a user program will make use of many OS services, usually by calling them as functions. For example,
consider the C-language function scanf(). Though of course you did not write this function yourself, some-
one did, and and in doing so that person (or group of people) relied heavily on calls to an OS subroutine,
read(). In terms of our “look under the hood” theme, we might phrase this by saying that a look under the
hood of the C scanf() source code would reveal system calls to the OS function read(). For this reason, the
OS is often referred to as “low-level” software. Also, this reliance of user programs on OS services shows
why the OS is included in our “computer engine” metaphor—the OS is indeed one of the sources of “power”
for user programs, just as the hardware is the other source of power.

To underscore that the OS services do form a vital part of the computer’s “engine,” consider the following
example. Suppose we have a machine-language program—which we either wrote ourselves or produced by
compiling from C—for a DEC computer with a MIPS CPU. Could that program be run without modification
on a Silicon Graphics machine, which also uses the MIPS chip? The answer is no. Even though both
machines do run a Unix OS, there are many different “flavors” of Unix. The DEC version of Unix, called
Ultrix, differs somewhat from the SGI version, called IRIX. The program in question would probably include
a number of calls to OS services—recall from above that even reads from the keyboard and writes to the
screen are implemented as OS services—and those services would be different under the two OSs.

Thus even though individual instructions of the program written for the DEC would make sense on the SGI
machine, since both machines would use the same type of CPU, some of those instructions would be devoted
to OS calls, which would differ.

Since an OS consists of a program, written to provide a group of services, it follows that several different
OSs—i.e. several different programs which offer different groups of services—could be run on the same
hardware. For instance, this is the case for PCs. The most widely used OS for these CPUs is Microsoft
Windows, but there are also several versions of Unix for PCs, notably the free, public-domain Linux and the
commercial SCO.

2.4 Speed of a Computer “Engine”

What factors determine the speed capability of a computer engine? This is an extremely complex question
which is still a subject of hot debate in both academia and the computer industry. However, a number of
factors are clear, and will be introduced here. The presentation below will just consist of overviews, and the
interested reader should pursue further details in books on computer architecture and design. However, it is
important that the reader get some understanding of the main issues now; at the very least enough to be able
to understand newspaper PC ads! The discussion below is aimed at that goal.
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2.4.1 CPU Architecture

Different CPU types have different instruction and register sets. The Intel family, for example, has a very
nice set of character-string manipulation instructions, so it does such operations especially quickly. This is
counterbalanced somewhat by the fact that CPUs in this family have fewer registers than do CPUs in some
other families, such as those in most of the newer machines.11 Since registers serve as local—and thus
fast—memory, the more of them we have, the better, and thus the Intel family might be at a disadvantage in
this respect.

2.4.2 Parallel Operations

One way to get more computing done per unit time is do several things at one time, i.e. in parallel. Most
modern machines, even inexpensive ones such as personal computers, include some forms of parallelism.

For example, most CPUs perform instruction prefetch: During execution of the current instruction, the
CPU will attempt to fetch one or more of the instructions which follow it sequentially—i.e. at increasing
addresses—in memory.12 For example, consider an Intel chip running in 16-bit mode. In this mode the
chip has 20-bit addresses. Consider a two-byte instruction at location 0x21082. During the time we are
executing that instruction the CPU might attempt to start fetching the next instruction, at 0x21084. The
success or failure of this attempt will depend on the duration of the instruction at 0x21082. If this attempt
is successful, then Step A can be skipped in the next cycle, i.e. the instruction at 0x21084 can be executed
earlier.

Of course, the last statement holds only if we actually do end up executing the instruction at 0x21084. If the
instruction at 0x21082 turns out to be a jump instruction, which moves us to some other place in memory, we
will not execute the instruction at 0x21084 at all. In this case, the prefetching of this instruction during the
execution of the one at 0x21082 would turn out to be wasted. Modern CPUs have elaborate jump-prediction
mechanisms to try to deal with this problem.

Intel CPUs will often fetch several downstream instructions, while for RISC CPUs we might be able to fetch
only one. The reason for this is that RISC instructions, being so simple, have such short duration that there
just is not enough time to fetch more than one instruction.

Instruction prefetching is a special case of a more general form of parallelism, called pipelining. This
concept treats the actions of an instruction as being like those of an assembly line in a factory. Consider an
automobile factory, for instance. Its operation is highly parallel, which the construction of many cars being
done simultaneously. At any given time, one car, at any early stage in the assembly line, might be having its
engine installed, while another car, at a later stage in the line, is having its transmission installed. Pipelined

11 This does not include the newer Intel chips, such as the Pentium, because these chips had to be designed for compatibility with
the older ones.

12 The prefetch may insted be from the cache, which we will discuss later.
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CPUs (which includes virtually every modern CPU) break instruction execution down into several stages,
and have several instructions executing at the same time, in different stages. In the simple case of instruction
prefetch, there would be only two stages, one for the fetch (Step A) and the other for execution (Steps B and
C).

Most recently-designed CPUs are superscalar, meaning that a CPU will have several ALUs. This is another
way in which we can get more than one instruction executing at a time.

Yet another way to do this is to have multiple CPUs! In multiprocessor systems with n CPUs, we can
execute n instructions at once, instead of one, thus potentially improving system speed by a factor of n.
Typical speedup factors in real applications are usually much less than n, due to such overhead as the need
for the several CPUs to coordinate actions with each other, and not get in each other’s way as they access
memory.

The classical way of constructing multiprocessor systems was to connect several CPUs to the system bus.
However, as of 2006, it is common for even many low-end CPU chips to be dual core, meaning that the
chip actually contains two CPUs. This has brought multiprocessor computing into the home.

It used to be very expensive to own a multiprocessor machine. The CPUs would all be connected to the
bus, which increases manufacturing costs, etc. But by having more than once CPU on a chip, the expense is
small.

Note that chip manufacturers have found that it makes better economic sense now for them to use chip space
for extra processors, rather than continuing to increase processor speed.

2.4.3 Clock Rate

Recall that each machine instruction is implemented as a series of microsteps. Each microstep has the same
duration, namely one clock cycle, which is typically set as the time needed to transfer a value from one CPU
register to another. The CPU is paced by a CPU clock, a crystal oscillator; each pulse of the clock triggers
one microstep.

In 2002, clock rates of over 1 gigahertz, i.e. 1 billion cycles per second, became common in PCs. This is
quite a contrast to the 4.77 megahertz clock speed of the first IBM PC, introduced in 1981.

Each instruction takes a certain number of clock cycles. For example, an addition instruction with both
operands in CPU registers might take 2 clock cycles on a given CISC CPU, while a multiply instruction
with these operands takes 21 clock cyles on the same CPU. If one of the operands is in memory, the time
needed will increase beyond these values.

RISC machines, due to the fact that they perform only simple operations (and usually involving only regis-
ters), tend to have instructions which operate in a single clock cylce.

The time to execute a given instruction will be highly affected by clock rate, even among CPUs of the same
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type. For example, as mentioned above, a register-to-register addition instruction might typically take 2
microsteps on a CISC CPU. Suppose the clock rate is 1 gigahertz, so that a clock cycle takes 10−9 seconds,
i.e. 1 nanosecond.13 Then the instruction would take 2 nanoseconds to execute.

Within a CPU family, say the Intel family, the later members of the family typically run a given program
much faster than the earlier members, for two reasons related to clock cycles:

• Due to advances in fabrication of electronic circuitry, later members of a CPU family tend to have
much faster clock rates than do the earlier ones.

• Due to more clever algorithms, pipelining, and so on, the later members of the family often can
accomplish the same operation in fewer microsteps than can the earlier ones.

2.4.4 Memory Caches

2.4.4.1 Need for Caching

In recent years CPU speeds have been increasing at very impressive rates, but memory access speeds have
not kept pace with these increases. Remember, memory is outside the CPU, not in it. This causes slow
access, for various reasons.

• The physical distance from the CPU is on the order of inches, whereas it is typically less than an inch
within the CPU. Even though signals travel at roughly 2/3 the speed of light, there are so many signals
sent per second that even this distance is a factor causing slowdown.

• An electrical signal propagates more slowly when it leaves a CPU chip and goes onto the bus toward
memory. This is due to the bus wires being far thicker than the very fine wires within the CPU.

• Control buses typically must include handshaking lines, in which the various components attached
to the bus assert to coordinate their actions. One component says to the other, “Are you ready,” and
that component cannot proceed until it gets a response from the other. This causes delay.

2.4.4.2 Basic Idea of a Cache

To solve these problems, a storage area, either within the CPU or near it or both, is designed to act as
a memory cache. The cache functions as a temporary storage area for a copy of some small subset of
memory, which can be accessed locally, thus avoiding a long trip to memory for the desired byte or word.14

13A nanosecond is a billionth of a second.
14Modern computers typically have two caches, an L1 cache inside the CPU, and an L2 cache just outside it. When the CPU

wants to access a byte or word, it looks in L1 first; if that fails, it looks in L2; and if that fails, it goes to memory. Here, though, we
will assume only an L1 cache.
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Say for example the program currently running on the CPU had in its source file the line

char x;

and suppose that x is stored in byte 1205 of memory, i.e. &x is 1205. Consider what occurs in each
instruction in the program that reads x. Without a cache, the CPU would put 1205 on the address bus, and
assert the MEMR line in the control bus. The memory would see these things on the bus, and copy whatever
is in location 1205 to the data bus, from which the CPU would receive it.

If we did have a cache, the CPU would look first to see if the cache contains a copy of location 1205. If so,
the CPU does not have to access memory, a huge time savings. This is called a cache hit. If the CPU does
not find that the cache contains a copy of location 1205—a cache miss—then the CPU must go to memory
in the normal manner.

2.4.4.3 Blocks and Lines

Memory is partitioned into blocks, of fixed size. For concreteness, we will assume here that the block
size is 512 bytes. Then Bytes 00000-000511 form Block 0, Bytes 00512-001023 form Block 1, and so
on. A memory byte’s block number is therefore its address divided by the block size. Equivalently, since
log2512 = 9, if our address size is 32 bits, then the location’s block number is given in the most-significant
23 bits of the address, i.e. all the bits of the address except for the lower 9. The lower 9 bits then give
location of the byte within the block.15 Note that the partitioning is just conceptual; there is no “fence” or
any other physical boundary separating one block from another.

This organization by blocks comes into play in the following manner. Consider our example above in which
the CPU wanted to read location 1205. The block number is b1205/512c = 2. The CPU would not really
search the cache for a copy of byte 1205 or even word 1205. Instead, the CPU would search for a copy of
the entire block containing location 1205, i.e. a copy of block 2.

The cache is partitioned into a fixed number of slots, called lines. Each slot has room for a copy of one
block of memory, plus an extra word in which additional information is stored. This information includes a
tag, which states which block has a copy in memory right now. This is vital, of course, as otherwise when
the CPU looked in the cache, it wouldn’t know whether this line contains a copy of the desired block, as
opposed to a copy of some other block.

At any given time, the cache contains copies of some blocks from memory, with different blocks being
involved at different times. For example, suppose again the CPU needs to read location 1205. It then

15 Suppose we have 10 classrooms, each with 10 kids, sitting in 10 numbered seats, according to the kids’ ID numbers. Kids 0-9
are in classroom 0, 10-19 are in classroom 1, and so on. So for instance kid number 28 will be in classroom 2, sitting in seat 8 of
that room. Note how the 2 comes from the upper 1 digit of the ID number, and the 8 comes from the lower 1 digit—just like the
block number of a byte is given by the upper 23 bits in the address, while the byte number within block is given by the lower 9 bits.
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searches the cache for a copy of block 2. In each line in which it searches, the CPU would check the tag
for that line. If the tag says “This line contains a copy of block 2,” then the CPU would see that this is a
hit. The CPU would then get byte 1205 from this line as follows. As we saw above, byte 1205 is in block
b1205/512c = 2, and using the same reasoning,16 within that block, this byte is byte number 1205 mod 512
= 181. So, the CPU would simply look at the 181st byte in this line.17

If on the other hand, the CPU finds that block 2 does not have a copy in the cache, the CPU will read the
entire block 2 from memory, and put it into some cache line. It may have to remove a copy of some other
block in doing so; the term used for this is that that latter block copy is evicted.

The total number of lines varies with the computer; the number could be as large as the thousands, or on the
other extreme less than ten. The larger the cache, the higher the hit rate. On the other hand, bigger caches
are slower, take up too much space on a CPU chip in the case of on-chip caches, and are more expensive in
the case of off-chip caches.

2.4.4.4 Direct-Mapped Policy

One question is which lines the CPU should search in checking whether the desired block has a copy in the
cache. In a fully-associative cache, the CPU must inspect all lines. This gives maximum flexibility, but if
it is large then it is expensive to implement and the search action is slower, due to the overhead of complex
circuitry.

The other extreme is called direct-mapped.18 Here the CPU needs to look in only one cache line. By
design, the desired block copy will either be in that particular line or not in any line at all. The number of the
particular line to be checked is the block number mod the number of lines. Let us suppose for illustration
that there are 32 lines in the cache. In our example above, byte 1205 was in block 2, and since 2 mod 32 =
2, then to check whether block 2 has a copy in the cache, the CPU needs to look only at line 2. If the tag in
line 2 says “This is a copy of block 2,” then the CPU sees we have a hit. If not, the CPU knows it is a miss.
The basic design of this direct-mapped cache is that a copy of block 2 will either be in the cache at line 2 or
else the block will not have a copy in the cache at all.

Now suppose after successfully reading byte 1205, at some time later in the execution of this program we
need to read byte 17589. This is block b17589/512c = 34. Since 34 mod 32 = 2, the CPU will again look at
line 2 in the cache. But the tag there will say that this line currently contains a copy of block 2. Thus there
will be a miss. The CPU will bring in a copy of block 34, which will replace the copy of block 2, and the
tag will be updated accordingly.

16Recall note 15. Make SURE you understand this point.
17This means the block begins with its “0th” byte.
18A compromise scheme, called set-associative, is very common.
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2.4.4.5 What About Writes?

One issue to be resolved is what to do when we have a cache hit which is a write. The issue is that now the
copy of the block in the cache will be different from the “real” block in memory. Eventually the two must
be made consistent, but when? There are two main types of policies:

• Under a write-through policy, any write to the cache would also be accompanied by an immediate
corresponding write to memory.

• Under a write-back policy, we do not make the memory block consistent with its cache copy until
the latter is evicted. At that time, the entire block is written to memory.

Which policy is better will depend on the program being run. Suppose for example we only write to a cache
line once before it is evicted. Then write-back would be rather disastrous, since the entire block would be
written to memory even though the inconsistency consists of only one byte or word. On the other hand, in
code such as

for (i = 0; i < 10000; i++)
sum += x[i];

if sum is the only part of its cache line being used, we only care about the final value of sum, so updating it
to memory 10,000 times under a write-through policy would be highly inefficient.

2.4.4.6 Programmability

As noted in Section 2.4.4.5, the behavior of a particular write policy depends on which program is being
run. For this reason, many CPUs, e.g. the Pentium, give the programmer the ability to have some blocks
subject to a write-through policy and others subject to write-back.

Similarly, the programmer may declare certain blocks not cacheable at all. The programmer may do this, for
example, if the programmer can see that this block would have very poor cache behavior. Another reason
for designating a block as noncacheable is if the block is also being accessed by a DMA device.

2.4.4.7 Details on the Tag and Misc. Line Information

Consider line 2 in the cache. We will search that line if the number of the block we want is equal to 2, mod
32. That means that the tag, which states the number of the block copy stored in this line, must have 00010
as its last 5 bits. In view of that, it would be wasteful to store those bits. So, we design the tag to consist
only of the remainder of the block number, i.e. the upper 18 bits of the block number.
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Let’s look at our example 17589 above again. Recall that this is in block 34 = 00000000000000000100010.
Since the last 5 bits are 00010, the CPU will examine the tag in cache line 2. The CPU will then see whether
the tag is equal to 000000000000000001, the upper 18 bits of 34. If so, it is a hit.

At the beginning, a line might not contain any valid data at all. Thus we need another bit in the line, called
the Valid Bit, which tells us whether there is valid data in that line (1 means valid).

If a write-back policy is used, we need to know whether a given cache line has been written to. If it has, then
the line must be copied back to memory when it is evicted, but if not, we would want to skip that step. For
this purpose, in addition to the tag, the line maintains a Dirty Bit, “dirty” meaning “has been written to.”

Since we saved some bits in the storage of the tag, we use that space for the Valid and Dirty Bits.

2.4.4.8 Why Caches Usually Work So Well

Experience shows that most programs tend to reuse memory items repeatedly within short periods of time;
for example, instructions within a program loop will be accessed repeatedly. Similarly, they tend to use
items which neighbor each other (as is true for the data accesses in Version I above), and thus they stay in
the same block for some time. This is called the principle of locality of reference, with the word “locality”
meaning “nearness”—nearness in time or in space.

For these reasons, it turns out that cache misses tend to be rare. A typical hit rate is in the high 90s, say
97%. This is truly remarkable in light of the fact that the size of the cache is tiny compared to the size of
memory. Again, keep in mind that this high hit rate is due to the locality, i.e. the fact that programs tend to
NOT access memory at randomly-dispersed locations.

2.4.5 Disk Caches

We note also that one of the services an OS might provide is that of a disk cache, which is a software analog
of the memory caches mentioned earlier. A disk is divided into sectors, which on PCs are 512 bytes each
in size. The disk cache keeps copies of some sectors in main memory. If the program requests access to a
certain disk sector, the disk cache is checked first. If that particular sector is currently present in the cache,
then a time-consuming trip to the disk, which is much slower than accessing main memory, can be avoided.19

Again this is transparent to the programmer. The program makes its request to the disk-access service of
the OS, and the OS checks the cache and if necessary performs an actual disk access. (Note therefore that
the disk cache is implemented in software, as opposed to the memory cache, which is hardware, though
hardware disk caches exist too.)

19Note, though, that the access to the cache will still be somewhat slower than the access to a register. Here is why:
Suppose we have 16 registers. Then the register number would be expressed as a 4-bit string, since 16 = 24. By contrast, say our

cache contains 1024 lines, which would mean that we need 10 bits to specify the line number. Digital circuity to decode a 10-bit
ID is slower than that for a 4-bit ID. Moreover, there would be considerable internal circuitry delays within the cache itself.
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2.4.6 Web Caches

The same principle is used in the software for Web servers. In order to reduce network traffic, an ISP might
cache some of the more popular Web pages. Then when a request for a given page reaches the ISP, instead
of relaying it to the real server for that Web page, the ISP merely sends the user a copy. Of course, that again
gives rise to an update problem; the ISP must have some way of knowing when the real Web page has been
changed.
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Chapter 3

Introduction to Linux Intel Assembly
Language

3.1 Overview of Intel CPUs

3.1.1 Computer Organization

Computer programs execute in the computer’s central processing unit (CPU). Examples of CPUs are the
Pentiums in PCs and the PowerPCs in Macs.1 The program itself, consisting of both instructions and data are
stored in memory (RAM) during execution. If you created the program by compiling a C/C++ source file
(as opposed to writing in assembly language directly), the instructions are the machine language operations
(add, subtract, copy, etc.) generated from your C/C++ code, while the data are your C/C++ variables. The
CPU must fetch instructions and data from memory (as well as store data to memory) when needed; this is
done via a bus, a set of parallel wires connecting the CPU to memory.

The components within the CPU include registers. A register consists of bits, with as many bits as the word
size of the machine. Thus a register is similar to one word of memory, but with the key difference that a
register is inside the CPU, making it much faster to access than memory. Accordingly, when programming
in assembly language, we try to store as many of our variables as possible in registers instead of in memory.
Similarly, if one invokes a compiler with an “optimize” command, the compiler will also attempt to store
variables in registers instead of in memory (and will try other speedup tricks as well).

1Slated to be replaced by Intel chips.
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3.1.2 CPU Architecture

There are many different different types of CPU chips. The most commonly-known to the public is the Intel
Pentium, but other very common ones are the PowerPC chip used in Macintosh computers and IBM UNIX
workstations, the MIPS chip used in SGI workstations and so on.

We speak of the architecture of a CPU. This means its instruction set and registers, the latter being units of
bit storage similar memory words but inside the CPU.

It is highly important that you keep at the forefront of your mind that the term machine language does
not connote “yet another programming language” like C or C++; instead, it refers to code consisting of
instructions for a specific CPU type. A program in Intel machine language will be rejected as nonsense if
one attempts to run it on, say, a MIPS machine. For instance, on Intel machines, 0111010111111000 means
to jump back 8 bytes, while on MIPS it would either mean something completely different or would mean
nothing at all.

3.1.3 The Intel Architecture

Intel CPUs can run in several different modes. On Linux the CPU runs in protected, flat 32-bit mode, or
the same for 64 bits on machines with such CPUs. For our purposes here, we will not need to define the
terms protected and flat, but do keep in mind that in this mode word size is 32 bits.

For convenience, we will assume from this point onward that we are discussing 32-bit CPUs.

Intel instructions are of variable length. Some are only one byte long, some two bytes and so on.

The main registers of interest to us here are named EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP.2

These are all 32-bit registers, but the registers EAX through EDX are also accessible in smaller portions.
The less-significant 16 bit portion of EAX is called AX, and the high and low 8 bits of AX are called AH
and AL, respectively. Similar statements hold for EBX, ECX and EDX.

In the 64-bit chips, the names become RAX, RBX and so on.

Note that EBP and ESP may not be appropriate for general use in a given program. In particular, we should
avoid use of ESP in programs with subroutines, for reasons to be explained in Chapter 7. If we are writing
some assembly language which is to be combined with some C/C++ code, we won’t be able to use EBP
either.

Also, there is another register, the PC, which for Intel is named EIP (Extended Instruction Pointer). We can

2We will use the all-caps notation, EAX, EBX, etc. to discuss registers in the text, but in program code write them as %eax,
%ebx, ...

Similarly, we will use all-caps notation when referring to instruction families, such as the MOV family, even though in program
code they appear as %movl, %movb, etc.
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never use it to store data, since it is used to specify which instruction is currently executing. Similarly, the
flags register EFLAGS, to be discussed below, is reserved as well.

3.2 What Is Assembly Language?

Machine-language is consists of long strings of 0s and 1s. Programming at that level would be extremely
tedious, so the idea of assembly language was invented. Just as hex notation is a set of abbreviations for
various bit strings in general, assembly language is another set of abbreviations for various bit strings which
show up in machine language.

For example, in Intel machine language, the bit string 01100110100111000011 codes the operation in which
the contents of the AX register are copied to the BX register. Assembly language notation is much clearer:

mov %ax, %bx

The abbreviation “mov” stands for “move,” which actually means “copy.”

An assembler is a program which translates assembly language to machine language. Unix custom is that
assembly-language file names end with a .s suffix. So, the assembler will input a file, say x.s, written by
the programmer, and produce from it an object file named x.o. The latter consists of the compiled machine
language, e.g. the bit string 0111010111111000 we mentioned earlier for a jump-back-8-bytes instruction.
In the Windows world, assembly language soruce code file names end with .asm, from which the assembler
produces machine code files with names ending with .obj.

You probably noticed that an assembler is similar to a compiler. This is true in some respects, but somewhat
misleading. If we program in assembly language, we are specifying exactly what machine-language instruc-
tions we want, whereas if we program in, say, C/C++, we let the compiler choose what machine-language
instructions to produce.

For instance, in the case of the assembly-language line above, we know for sure which machine instruction
will be generated by the assembler—we know it will be a 16-bit MOV instruction, that the registers AX and
BX will be used, etc. And we know a single machine instruction will be produced. By contrast, with the C
statement

z = x + y;

we don’t know which—or even how many—machine instructions will be generated by the compiler. In fact,
different compilers might generate different sets of instructions.
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3.3 Different Assemblers

Our emphasis will be on the GNU assembler AS, whose executable file is named as. This is part of the GCC
package. Its syntax is commonly referred to as the “AT&T syntax,” alluding to Unix’s AT&T Bell Labs
origins.

However, we will also be occasionally referring to another commonly-used assembler, NASM. It uses Intel’s
syntax, which is similar to that of as but does differ in some ways. For example, for two-operand instructions,
as and NASM have us specify the operands in orders which are the reverse of each other, as you will see
below.

It is very important to note, though, that the two assemblers will produce the same machine code. Unlike
a compiler, whose output is unpredictable, we know ahead of time what machine code an assembler will
produce, because the assembly-language mnemonics are merely handy abbreviations for specific machine-
language bit fields.

Suppose for instance we wish to copy the contents of the AX register to the BX register. In as we would
write

mov %ax,%bx

while in NASM it would be

mov bx,ax

but the same machine-language will be produced in both cases, 01100110100111000011, as mentioned
earlier.

3.4 Sample Program

In this very simple example, we find the sum of the elements in a 4-word array, x.

1 # introductory example; finds the sum of the elements of an array
2

3 .data # start of data section
4

5 x:
6 .long 1
7 .long 5
8 .long 2
9 .long 18

10
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11 sum:
12 .long 0
13

14 .text # start of code section
15

16 .globl _start
17 _start:
18 movl $4, %eax # EAX will serve as a counter for
19 # the number of words left to be summed
20 movl $0, %ebx # EBX will store the sum
21 movl $x, %ecx # ECX will point to the current
22 # element to be summed
23 top: addl (%ecx), %ebx
24 addl $4, %ecx # move pointer to next element
25 decl %eax # decrement counter
26 jnz top # if counter not 0, then loop again
27 done: movl %ebx, sum # done, store result in "sum"

3.4.1 Analysis

A source file is divided into data and text sections, which contain data and machine instructions, respec-
tively. Data consists of variables, as you are accustomed to using in C/C++.

First, we have the line

.data # start of data section

The fact that this begins with ‘.’ signals the assembler that this will be a directive (also known as a pseu-
doinstruction), meaning a command to the assembler rather than something the assembler will translate
into a machine instruction. It is rather analogous to a note one might put in the margin, say “Please double-
space here,” of a handwritten draft to be given to a secretary for typing; one does NOT want the secretary to
type “Please double-space here,” but one does want the secretary to take some action there.

This directive here is indicating that what follows will be data rather than code.

The # character means that it and the remainder of the line are to be treated as a comment.

Next,

x:

.long 1

.long 5

.long 2

.long 18

tells the assembler to make a note in x.o saying that later, when the operating system (OS) loads this program
into memory for execution, the OS should set up four consecutive“long” areas in memory, set with initial
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contents 1, 5, 2 and 18 (decimal). “Long” means 32-bit size, so we are asking the assembler to arrange for
four words to be set up in memory, with contents 1, 5, 2 and 18.3 Moreover, we are telling the assembler
that in our assembly code below, the first of these four long words will be referred to as x. We say that x
is a label for this word.4 Similarly, immediately following those four long words in memory will be a long
word which we will refer to in our assembly code below as sum.

By the way, what if x had been an array of 1,000 long words instead of four, with all words to be initialized
to, say, 8? Would we need 1,000 lines? No, we could do it this way:

x:
.rept 1000
.long 8
.endr

The .rept directive tells the assembler to act as if the lines following .rept, up to the one just before .endr,
are repeated the specified number of times.

What about an array of characters? We can ask the assembler to leave space for this using the .space
directive, e.g. for a 6-character array:

y: .space 6 # reserve 6 bytes of space

Or if we wish to have that space initialized to some string:

y: .string "hello"

This will take up six bytes, including a null byte at the end; the developers of the .string directive decided
on such a policy in order to be consistent with C. Note carefully, though, that they did NOT have to do this;
there is nothing sacrosanct about having null bytes at the ends of character strings.

Getting back to our example here, we next have a directive signalling the start of the text section, meaning
actual program code. Look at the first two lines:

_start:
movl $4, %eax

3The term long here is a historical vestige from the old days of 16-bit Intel CPUs. A 32-bit word size, for instance, is “long” in
comparison to the old 16-bit size. Note that in the Intel syntax the corresponding term is double.

4Note that x is simply a name for the first word in the array, not the set of 4 words. Knowing this, you should now have some
insight into why in C or C++, an array name is synonymous with a pointer to the first element of the array.

Keep in mind that whenever we are referring to x, both here in the program and also when we run the program via a debugger (see
below), x will never refer to the entire array; it simply is a name for that first word in the array. Remember, we are working at the
machine level, and there is no such thing as a data type here, thus no such thing as an array! Arrays exist only in our imaginations.
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Here start is another label, in this case for the location in memory at which execution of the program is to
begin, called the entry point, in this case that movl instruction. We did not choose the name for this label
arbitrarily, in contrast to all the others; the Unix linker takes this as the default.5

The movl instruction copies the constant 4 to the EAX register.6 You can infer from this example that AS
denotes constants by dollar signs.

The ‘l’ in “movl” means “long.” The corresponding Intel syntax,

mov eax,4

has no such distinction, relying on the fact that EAX is a 32-bit register to implicitly give the same message
to the assembler, i.e. to tell the assembler that we mean a 32-bit 4, not say, a 16-bit 4.

Keep in mind that movl is just one member of the move family of instructions. Later, for example, you will
see another member of that family, movb, which does the same thing except that it copies a byte instead of
a word.

As noted earlier, we will generally use all-caps notation to refer to instruction families, for example referring
to MOV to any of the instructions movl, movb, etc.

By the way, integer constants are taken to be base-10 by default. If you wish to state a constant in hex
instead, use the C “0x” notation.7

The second instruction is similar, but there is something noteworthy in the third:

movl $x, %ecx

In the token $4 in the first instruction, the dollar sign meant a constant, and the same is true for $x. The
constant here is the address of x. Thus the instruction places the address of x in the ECX register, so that
EAX serves as a pointer. A later instruction,

addl $4, %ecx

increments that pointer by 4 bytes, i.e. 1 word, each time we go around the loop, so that we eventually have
the sum of all the words.

Note that $x has a completely different meaning that x by itself. The instruction
5The previous directive, .globl, was needed for the linker too. More on this in Chapter 7.
6We will usually use the present tense in remarks like this, but it should be kept in mind that the action will not actually occur

until the program is executed. So, a more precise though rather unwieldy phrasing would be, “When it is later executed, the movl
instruction will copy...”

7Note, though, that the same issues of endian-ness will apply in using the assembler as those related to the C compiler.
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movl x, %ecx

would copy the contents of the memory location x, rather than its address, to ECX.8

The next line begins the loop:

top: addl (%ecx), %ebx

Here we have another label, top, a name which we’ve chosen to remind us that this is the top of the loop.
This instruction takes the word pointed to by ECX and adds it to EBX. The latter is where I am keeping the
total.

Recall that eventually we will copy the final sum to the memory location labeled sum. We don’t want to
do so within the loop, though, because memory access is much slower than register access (since we
must leave the CPU to go to memory), and we thus want to avoid it. So, we keep our sum in a register,
and copy to memory only when we are done.9

If we were not worried about memory access speed, we might store directly to the variable sum, as follows:

movl $sum,%edx # use %edx as a pointer to "sum"
movl $0,%ebx

top: addl (%ecx), %ebx # old sum is still in %ebx
movl %ebx,(%edx)

Note carefully that we could NOT write

movl $sum,%edx # use %edx as a pointer to "sum"
top: addl (%ecx),(%edx)

because there is no such instruction in the Intel architecture. Intel chips (like most CPUs) do not allow an
instruction to have both its operands in memory.10 Note that this is a constraint placed on us by the
hardware, not by the assembler.

The bottom part of the loop is:

decl %eax
jnz top

8The Intel syntax is quite different. Under that syntax, x would mean the address of x, and the contents of the word x would be
denoted as [x].

9This presumes that we need it in memory for some other reason. If not, we would not do so.
10There are actually a couple of exceptions to this on Intel chips, as will be seen in Section 3.17.
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The DEC instruction, decl (“decrement long”), in AT&T syntax, subtracts 1 from EAX. This instruction,
together with the JNZ following it, provides our first illustration of the operation of the EFLAGS register in
the CPU:

When the hardware does almost any arithmetic operation, it also records whether the result of this instruction
is 0: It sets Zero flag, ZF, in the EFLAGS register to 1 if the result of the operation was 0, and sets that flag
to 0 if not.11 Similarly, the hardware sets the Sign flag to 1 or 0, according to whether the result of the
subtraction was negative or not.

Most arithmetic operations do affect the flags, but for instance MOV does not. For a given instruction, you
can check by writing a short test program, or look it up in the official Intel CPU manual.12

Now, here is how we make use of the Zero flag. The JNZ (“jump if not zero”) instruction says, “If the result
of the last arithmetic operation was not 0, then jump to the instruction labeled top.” The circuitry for JNZ
implements this by jumping if the Zero flag is 0. (The complementary instruction, JZ, jumps if the Zero flag
is 1, i.e. if the result of the last instruction was zero.)

So, the net effect is that we will go around the loop four times, until EAX reaches 0, then exit the loop
(where “exiting” the loop merely means going to the next instruction, rather than jumping to the line labeled
top).

Even though our example jump here is backwards—i.e. to a lower-addressed memory location—forward
jumps are just as common. The reader should think about why forward jumps occur often in “if-then-else”
situations, for example.

By the way, in computer architecture terminology, the word “branch” is a synonym for “jump.” In many
architectures, the names of the jump instructions begin with ‘B’ for this reason.

The EFLAGS register is 32 bits wide (numbered 31, the most significant, to 0, the least significant), like the
other registers. Here are some of the flag and enable bits it includes:13

Data Position
Overflow Flag Bit 11

Interrupt Enable Bit 9
Sign Flag Bit 7
Zero Flag Bit 6
Carry Flag Bit 0

So, for example there are instructions like JC (“jump if carry”), JNC and so on which jump if the Carry Flag

11The reason why the hardware designers chose 1 and 0 as codes this way is that they want us to think of 1 as meaning yes and
0 as meaning no. So, if the Zero flag is 1, the interpretation is “Yes, the result was zero.

12This is on the Intel Web site, but also available on our class Web page at http://heather.cs.ucdavis.edu/
˜matloff/50/IntelManual.PDF. Go to Index, then look up the page number for your instruction. Once you reach the
instruction, look under the subheading Flags Affected.

13The meanings of these should be intuitive, except for the Interrupt Enable bit, which will be described in Chapter 8.

http://heather.cs.ucdavis.edu/~matloff/50/IntelManual.PDF
http://heather.cs.ucdavis.edu/~matloff/50/IntelManual.PDF
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is set.

Note that the label done was my choice, not a requirement of as, and I didn’t need a label for that line at all,
since it is not referenced elsewhere in the program. I included it only for the purpose of debugging, as seen
later.

Just as there is a DEC instruction for decrementing, there is INC for incrementing.

3.4.2 Source and Destination Operands

In a two-operand instruction, the operand which changes is called the destination operand, and the other is
called the source operand. For example, in the instruction

movl %eax, %ebx

EAX is the source and EBX is the destination.

3.4.3 Remember: No Names, No Types at the Machine Level

Keep in mind that, just as our variable names in a C/C++ source file do not appear in the compiled machine
language, in an assembly language source file labels—in this case, x, sum, start, top and done—are just
temporary conveniences for us humans. We use them only in order to conveniently refer AS to certain
locations in memory, in both the .data and .text sections. These labels do NOT appear in the machine
language produced by AS; only numeric memory addresses will appear there.

For instance, the instruction

jnz top

mentions the label top here in assembly language, but the actual machine language which comes from this
is 0111010111111000. You will find in Chapter 5 that the first 8 bits, 01110101, code a jump-if-not-zero
operation, and the second 8 bits, 11111000, code that the jump target is 8 bytes backward. Don’t worry
about those codes for now, but the point at hand now is that neither of those bit strings makes any mention
of top.

Again, there are no types at the machine level. So for example there would be no difference between writing

z:
.long 0

w:
.byte 0
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and

z:
.rept 5
.byte 0
.endr

Both of these would simply tell AS to arrange for 5 bytes of (zeroed-out) space at that point in the data
section. Make sure to avoid the temptation of viewing the first version as “declaring” an integer variable z
and a character variable w. True, the programmer may be interpreting things that way, but the two versions
would produce exactly the same .o file.

3.4.4 Dynamic Memory Is Just an Illusion

One thing to note about our sample program above is that all memory was allocated statically, i.e. at
assembly time.14 So, we have statically allocated five words in the .data section, and a certain number of
bytes in the .text section (the number of which you’ll see in Chapter 5 language).

Since C/C++ programs are compiled into machine language, and since assembly language is really just
machine language, you might wonder how it can be that memory can be dynamically allocated in C/C++
yet not in assembly language. The answer to this question is that one cannot truly do dynamic allocation in
C/C++ either. Here is what occurs:

Suppose you call malloc() in C or invoke new in C++. The latter, at least for G++, in turn calls malloc(), so
let’s focus on that function. When you run a program whose source code is in C/C++, some memory is set
up called the heap. Any call to malloc() returns a pointer to some memory in the heap; malloc()’s internal
data structures then record that that portion of memory is in use. Later, if the program calls free(), those
data structures now mark the area as available for use.

In other words, the heap memory itself was in fact allocated when the program was loaded, i.e. statically.
However, malloc() and its sister functions such as free() manage that memory, recording what is available
for use now and what isn’t. So the notion of dynamic memory allocation is actually an illusion. (You can,
however run the Linux commands limit (C shell) and ulimit (Bash shell) to change the initial amount of
heap space.)

An assembly language programmer could link the C library into his/her program, and thus be able to call
malloc() if that were useful. But again, it would not actually be dynamic allocation, just like it is not in the
C/C++ case.

14Again, be careful here. The memory is not actually assigned to the program until the program is actually run. Our word
allocated here refers to the fact that the asssembler had already planned the memory usage.



72 CHAPTER 3. INTRODUCTION TO LINUX INTEL ASSEMBLY LANGUAGE

3.5 Use of Registers Versus Memory

Recall that registers are located inside the CPU, whereas memory is outside it. Thus, register access is much
faster than memory access.

Accordingly, when you do assembly language programming, you should try to minimize your usage of
memory, i.e. of items in the .data section (and later, of items on the stack), especially if your goal is
program speed, which is a common reason for resorting to assembly language.

However, most CPU architectures have only a few registers. Thus in some cases you may run out of registers,
and need to store at least some items in memory.15

3.6 Another Example

The following example does a type of sort. See the comments for an outline of the algorithm. (This program
is merely intended as an example for learning assembly language, not for algorithmic efficiency.)

One of the main new ideas here is that of a subroutine, which is similar to the concept of a function in
C/C++.16 In this program, we have subroutines init(), findmin() and swap().

1 # sample program; does a (not very efficient) sort of the array x, using
2 # the algorithm (expressed in pseudo-C code notation):
3

4 # for each element x[i]
5 # find the smallest element x[j] among x[i+1], x[i+2], ...
6 # if new min found, swap x[i] and x[j]
7

8 .equ xlength, 7 # number of elements to be sorted
9

10 .data
11 x:
12 .long 1
13 .long 5
14 .long 2
15 .long 18
16 .long 25
17 .long 22
18 .long 4
19

20 .text
21 # register usage in "main()":
22 # EAX points to next place in sorted array to be determined,
23 # i.e. "x[i]"
24 # ECX is "x[i]"
25 # EBX is our loop counter (number of remaining iterations)

15Recall that a list of usable registers for Intel was given in Section 3.1.3.
16In fact, the compiler translates C/C++ functions to subroutine at the machine-language level.
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26 # ESI points to the smallest element found via findmin
27 # EDI contains the value of that element
28 .globl _start
29 _start:
30 call init # initialize needed registers
31 top:
32 movl (%eax), %ecx
33 call findmin
34 # need to swap?
35 cmpl %ecx, %edi
36 jge nexti
37 call swap
38 nexti:
39 decl %ebx
40 jz done
41 addl $4, %eax
42 jmp top
43

44 done: movl %eax, %eax # dummy, just for running in debugger
45

46 init:
47 # initialize EAX to point to "x[0]"
48 movl $x, %eax
49 # we will have xlength-1 iterations
50 movl $xlength, %ebx
51 decl %ebx
52 ret
53

54 findmin:
55 # does the operation described in our pseudocode above:
56 # find the smallest element x[j], j = i+1, i+2, ...
57 # register usage:
58 # EDX points to the current element to be compared, i.e. "x[j]"
59 # EBP serves as our loop counter (number of remaining iterations)
60 # EDI contains the smallest value found so far
61 # ESI contains the address of the smallest value found so far
62 # haven’t started yet, so set min found so far to "infinity" (taken
63 # here to be 999999; for simplicity, assume all elements will be
64 # <= 999999)
65 movl $999999, %edi
66 # start EDX at "x[i+1]"
67 movl %eax, %edx
68 addl $4, %edx
69 # initialize our loop counter (nice coincidence: number of
70 # iterations here = number of iterations remaining in "main()")
71 movl %ebx, %ebp
72 # start of loop
73 findminloop:
74 # is this "x[j]" smaller than the smallest we’ve seen so far?
75 cmpl (%edx), %edi # compute destination - source, set EFLAGS
76 js nextj
77 # we’ve found a new minimum, so update EDI and ESI
78 movl (%edx), %edi
79 movl %edx, %esi
80 nextj: # do next value of "j" in the loop in the pseudocode
81 # if done with loop, leave it
82 decl %ebp
83 jz donefindmin
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84 # point EDX to the new "x[j]"
85 addl $4, %edx
86 jmp findminloop
87 donefindmin:
88 ret
89

90 swap:
91 # copy "x[j]" to "x[i]"
92 movl %edi, (%eax)
93 # copy "x[i]" to "x[j]"
94 movl %ecx, (%esi)
95 ret

Note that there are several new instructions used here, as well as a new pseudoinstruction, .equ.

Let’s deal with the latter first:

.equ xlength, 7

This tells the assembler that, in every line in which it sees xlength, the assembler should assemble that line
as if we had typed 7 there instead of xlength. In other words .equ works like #define in C/C++. Note
carefully that xlength is definitely not the same as a label in the .data section, which is the name we’ve
given to some memory location; in other words, xlength is not the name of a memory location.

At the beginning of the .text section, we see the instruction

call init

The CALL instruction is a type of jump, with the extra feature that it records the place the jump was made
from. That record is made on the stack, which we will discuss in detail in Chapter 7. Here we will jump to
the instruction labeled init further down in the source file:

init:
movl $x, %eax
movl $xlength, %ebx
decl %ebx
ret

After the CALL instruction brings us to init, the instructions there, i.e.

movl $x, %eax
...

will be executed, just as we’ve seen before. But the RET (“return”) instruction ret is another kind of jump;
it jumps back to the instruction immediately following the place at which the call to init was made. Recall
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that that place had been recorded at the time of the call, so the machine does know it, by looking at the stack.
Keep in mind that execution of a RET will result in a return to the instruction following the CALL. That
instruction is the one labeled top:

top:
mov (%eax), %ecx

Again, you will find out how all this works later, in Chapter 7. But it is being introduced here, to encourage
you to start using subroutines from the beginning of your learning of assembly language programming. It
facilitates a top-down approach. (See Section 3.19.)

As always, remember that the CPU is just a “dumb machine.” Suppose for example that we accidentally
put a RET instruction somewhere in our code where we don’t intend to have one. If execution reaches that
line, the RET will indeed be executed, no questions asked. The CPU has no way of knowing that the RET
shouldn’t be there. It does not know that we are actually not in the midst of a subroutine.

Also, though you might think that the CPU will balk when it tries to execute the RET but finds no record
of call location on the stack, the fact is that there is always something on the stack even if it is garbage. So,
the CPU will return to a garbage point. This is likely to cause various problems, for instance possibly a seg
fault, but the point is that the CPU will definitely not say, “Whoa, I refuse to do this RET.”

For that matter, even the assembler would not balk at our accidentally putting a RET instruction at some
random place in our code. Remember, the assembler is just a clerk, so for example it does not care that that
RET was not paired with a CALL instruction.

Note by the way that the code beginning at start is analogous to main() in C/C++, and the comments in
the code use this metaphor.

The init() subroutine does what it says, i.e. initialize the various registers to the desired values.

The next instruction is another subroutine call, to findmin(). As described in the pseudocode, it finds the
smallest element in the remaining portion of the array. Let’s not go into the details of how it does this yet—
not only should one write code in a top-down manner, but one should also read code that way. We then
check to see whether a swap should be done, and if so, we do it.

Another new instruction is CMP (“compare”), cmpl, which is used within findmin(). As noted in the
comment in the code, this instruction subtracts the source from the destination; the result, i.e. the difference,
is not stored anywhere, but the key point is that the EFLAGS register is affected.

Since there is an instruction for addition, it shouldn’t be a surprise to know there is one for subtraction too.
For example,

subl %ebx, %eax

subtracts c(EBX) from c(EAX), and places the difference back into EAX. This instruction does the same
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thing as CMP, except that the latter does not store the difference back anyway; the computation for the cmpl
is done only for the purpose of setting the flags.

Following the CMP instruction is JS (“jump if the Sign flag is 1), meaning that we jump if the result of the
last arithmetic computation was “signed,” i.e. negative. (The complementary instruction, JNS, jumps if the
result of the last computation was not negative.)

In other words, the combined effect of the CMP and JS instructions here is that we jump to nextj if the
contents of EDI is less than that of the memory word pointed to by EDX. In this case, we have not found a
new minimum, so we just go to the next iteration of the loop.

The instruction

jmp top

is conceptually new. All the jump instructions we’ve seen so far have been conditional, i.e. the jump is
made only if a certain condition holds. But JMP means to jump unconditionally.

Note my comments on the usage I intend for the various registers, e.g. in “main()”:

# register usage in "main()":
# EAX points to next place in sorted array to be determined,
# i.e. "x[i]"
# ECX is "x[i]"
# EBX is our loop counter (number of remaining iterations)
# ESI points to the smallest element found via findmin
# EDI contains the value of that element

I put these in BEFORE I started writing the program, to help keep myself organized, and I found myself
repeatedly referring to them during the writing process. YOU SHOULD DO THE SAME.

Also note again that we absolutely needed to avoid using ESP as storage here, due to the fact that we are
using call and ret. The reason for this will be explained in Chapter 7.

3.7 Addressing Modes

Consider the examples

movl $9, %ebx
movl $9, (%ebx)
movl $9, x

As you can see, the circuitry which implements movl allows for several different versions of the instruction.
In the first example above, we copy 9 to a register. In the second and third examples, we copy to places in
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memory, but even then, we do it via different ways of specificying the memory location—using a register as
a pointer to memory in the second example, versus directly stating the given memory location in the third
example.

The manner in which an instruction specifies an operand is called the addressing mode for that operand.
So, above we see three distinct addressing modes for the second operand of the instruction.

For example, let’s look at the instruction

movl $9, %ebx

Let’s look at the destination operand first. Since the operand is in a register, we say that this operand is
expressed in register mode. We say that the source operand is accessed in immediate mode, which means
that the operand, in this case the number 9, is right there (i.e. “immediately within”) in the instruction
itself.17

Now consider the instruction

movl $9, (%ebx)

Here the destination operand is the memory word pointed to by EBX. This is called indirect mode; we
“indirectly” state the location, by saying, “It’s whatever EBX points to.”

By contrast, the destination operand in

movl $9, x

is accessed in direct mode; we have directly stated where in memory the operand is.

Other addressing modes will be discussed in Section 3.12.

3.8 Assembling and Linking into an Executable File

3.8.1 Assembler Command-Line Syntax

To assemble an AT&T-syntax source file, say x.s, we will type

as -a --gstabs -o x.o x.s

17You’ll see this more explicitly when we discuss machine language.
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The -o option specifies what to call the object file, the machine-language file produced by the assembler.
Here we are telling the assembler, “Please call our object file x.o.”18

The -a option tells the assembler to display to the screen the source (i.e. assembly) code, machine code and
section offsets19 side-by-side, for easier viewing by us humans.

The –gstabs option (note that there are two hyphens, not one) tells the assembler to retain in x.o the symbol
table, a list of the locations of whatever labels are in x.s, in a form usable by symbolic debuggers, in our
case GDB or DDD.20

Things are similar under other operating systems. The Microsoft assembler, MASM, has similar command-
line options, though of course with different names and some difference in functionality. 21

3.8.2 Linking

Say we have an assembly language source file x.s, and then assemble it to produce an object file x.o. We
would then type, say,

ld -o x x.o

Here ld is the linker, LD, which would take our object file x.o and produce an executable file x.

We will discuss more on linking in Section 6.2.

3.8.3 Makefiles

By the way, you can automate the assembly and linkage process using Makefiles, just as you would for
C/C++. Keep in mind that makefiles have nothing to do with C or C++. They simply state which files
depend on which other files, and how to generate the former files from the latter files.

So for example the form

x: y
<TAB> z

18Important note on disaster avoidance: Suppose we are assembling more than one file, say
as -a –gstabs -o z.o x.s y.s
Suppose we inadvertently forgot to include the z.o on the command line here. Then we would be telling the assembler, “Please

call our object file x.s.” This would result in the assembler overwriting x.s with the object file, trashing x.s! Be careful to avoid this.
19These are essentially addresses, as will be explained later.
20The –gstabs option is similar to -g when running GCC.
21By the way, NASM is available for both Unix and MS Windows. For that matter, even AS can be used under Windows, since

it is part of the GCC package that is available for Windows under the name Cygwin.
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simply says, “The file x depends on y. If we need to make x (or re-make it if we have changed y), then we
do z.”

So, for our source file x.s above, our Makefile might look like this:

x: x.o
<TAB> ld -o x x.o

x.o: x.s
<TAB> as --gstabs -o x.o x.s

3.9 How to Execute Those Sample Programs

3.9.1 “Normal” Execution Won’t Work

Suppose in our sum-up-4-words example above we name the source file Total.s, and then assemble and link
it, with the final executable file named, say, tot. We could not simply type

% tot

at the Unix command line. The program would crash with a segmentation fault. Why is this?

The basic problem is that after the last instruction of the program is executed, the processor will attempt to
execute the “instruction” at the next location of memory. There is no such instruction, but the CPU won’t
know that. All the CPU knows is to keep executing instructions, one after the other. So, when your program
marches right past its last real instruction, the CPU will try to execute the garbage there. I call this “going
off the end of the earth.”

Actually, in Linux the linker will arrange for our .data section to follow our .text section in memory, almost
immediately after the end of the latter. It’s “almost” because we would like the .data section to begin on a
word boundary, i.e. at an address which is a multiple of 4. The area in between is padding, consisting of 0s,
in this case three bytes of 0s.22 Thus the “garbage” which we execute when we “go off the end of the earth”
is our own data!23

This doesn’t happen with your compiled C/C++ program, because the compiler inserts a system call, i.e. a
call to a function in the operating system, which in this case is the exit() call. (Actually, good programming
practice would be to insert this call in your C/C++ programs yourself.) This results in a graceful transition
from your program to the OS, after which the OS prints out your familiar command-line prompt.

We could have inserted system calls in our sample assembly language programs above too, but did not
done so because that is a topic to be covered later in the course. Note that that also means we cannot do

22This can be determined using information presented in Chapter 5.
23Possibly preceded by 1-3 0 bytes.
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input and output, which is done via system calls too—so, not only does our program crash if we run it in the
straightforward manner above, but also we have no way of knowing whether it ran correctly before crashing!

So, in our initial learning environment here, we will execute our programs via a debugger, either DDD or
GDB, which will allow us to have the program stop when it is done and to see the results.

3.9.2 Running Our Assembly Programs Using GDB/DDD

Since a debugger allows us to set breakpoints or single-step through programs, we won’t “go off the end of
the earth” and cause a seg fault as we would by running our programs directly.24

Moreover, since the debuggers allow us to inspect registers and memory contents, we can check the “output”
of our program. In our first array-summing program in Section 3.4, for example, the sum was in EBX, so
the debugger would enable us to check the program’s operation by checking whether EBX contained the
correct sum.

3.9.2.1 Using DDD for Executing Our Assembly Programs

Starting the Debugger:

For our array-summing example, we would start by assembling and linking the source code, and then typing

% ddd tot

Your source file Total.s should appear in the DDD Source Window.

Making Sure You Don’t “Go Off the End of the World”:

You would set a breakpoint at the line labeled done by clicking on that line and then on the red stop sign
icon at the top of the window. This arranges for your program to stop when it is done.

Running the Program:

You would then run the program by clicking on Run. The program would stop at done.

Checking the “Output” of the Program:

You may have written your program so that its “output” is in one or more registers. If so, you can inspect the
register contents when you reach done. For example, recall that in the tot program, the final sum (26) will
be stored in the EBX register, so you would inspect the contents of this register in order to check whether
the program ran correctly.

24Keep in mind, that if we don’t set a breakpoint when we run a program within the debugger, we will still “go off the end of the
earth.”
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To do this, click on Status then Registers.

On the other hand, our program’s output may be in memory, as is the case for instance for the program in
Section 3.6. Here we check output by inspecting memory, as follows:

Hit Data, then Memory. An Examine Memory window will pop up, asking you to state which data items
you wish to inspect:

• Fill in the blank on the left with the number of items you want to inspect.

• In the second field, labled “octal” by default, state how you want the contents of the items described—
in decimal, hex or whatever.

• In the third field, state the size of each item—byte, word or whatever.

• In the last field, give the address of the first item.

For the purpose of merely checking a program’s output we would choose Print here rather than Display.
The former shows the items just once, while the latter does so continuously; the latter is useful for actual
debugging of the program, while the former is all we need for merely checking the program’s output.

For instance, again consider the example in Section 3.6. We wish to inspect all seven array elements, so we
fill in the Examine Memory window to indicate that we wish to Print 7 Decimal Words starting at &x.

Note on endian-ness, etc.: If you ask the debugger to show a word-sized item (i.e. a memory word or a full
register), it will be shown most-significant byte first. Within a byte, the most-significant bit will be shown
first.

3.9.2.2 Using GDB for Executing Our Assembly Programs

In some cases, you might find it more convenient to use GDB directly, rather than via the DDD interface.
For example, you might be using telnet.

(Note: It is assumed here that you have already read the material on using DDD above.)

Starting the Debugger:

For the tot program example here, you would start by assembling and linking, and then typing

gdb tot

Making Sure You Don’t “Go Off the End of the World”:

Set the breakpoint at done:
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(gdb) b done
Breakpoint 1 at 0x804808b: file sum.s, line 28.

Running the Program:

Issue the r (“run”) command to GDB.

Checking the “Output” of the Program:

To check the value of a register, e.g. EBX, use the info registers command:

(gdb) info registers ebx
ebx 0x1a 26

To check the value of a memory location, use the x (“examine”) command. In the example in Section 3.6,
for instance:

x/7w &x

This says to inspect 7 words, beginning at x, printing out the contents in hex. In some cases, e.g. if you are
working with code translated from C to assembly language, GDB will switch to printing individual bytes,
in which case use, e.g., x/7x instead of x/7w.

There are other ways to print out the contents, e.g.

x/12c &x

would treat the 12 bytes starting at x as characters and print them out.

3.10 How to Debug Assembly Language Programs

3.10.1 Use a Debugging Tool for ALL of Your Programming, in EVERY Class

I’ve found that many students are shooting themselves in the foot by not making use of debugging tools.
They learn such a tool in their beginning programming class, but treat it as something that was only to be
learned for the final exam, rather than for their own benefit. Subsequently they debug their programs with
calls to printf() or cout, which is really a slow, painful way to debug. You should make use of a debugging
tool in all of your programming work – for your benefit, not your professors’. (See my debugging-
tutorial slide show, at http://heather.cs.ucdavis.edu/˜matloff/debug.html.)

For C/C++ programming on Unix machines, many debugging tools exist, some of them commercial prod-
ucts, but the most commonly-used one is GDB. Actually, many people use GDB only indirectly, using DDD
as their interface to GDB; DDD provides a very nice GUI to GDB.

http://heather.cs.ucdavis.edu/~matloff/debug.html
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3.10.2 General Principles

3.10.2.1 The Principle of Confirmation

Remember (as emphasized in the debugging slide show cited above) the central principle of debugging
is confirmation. We need to step through our program, at each step confirming that the various registers
and memory locations contain what we think they ought to contain, and confirming that jumps occur when
we think they ought to occur, and so on. Eventually we will reach a place where something fails to be
confirmed, and then that will give us a big hint as to where our bug is.

3.10.2.2 Don’t Just Write Top-Down, But Debug That Way Too

Consider code like, say,

movl $12, %eax
call xyz
addl %ebx, %ecx

When you are single-stepping through your program with the debugging tool and reach the line with the call
instruction, the tool will give you a choice of going in to the subroutine (e.g. the Step command in DDD) or
skipping over it (the Next command in DDD). Choose the latter at first. When you get to the next line (with
addl), you can check whether the “output” of the subroutine xyz() is correct; if so, you will have saved a
lot of time and distraction by skipping the detailed line-by-line execution of xyz(). If on the other hand you
find that the output of the subroutine is wrong, then you have narrowed down the location of your bug; you
can then re-run the program, but in this case opt for Step instead of Next when you get to the call.

3.10.3 Assembly Language-Specific Tips

3.10.3.1 Know Where Your Data Is

The first thing you should do during a debugging session is write down the addresses of the labeled items in
your .data section. And then use those addresses to help you debug.

Consider the program in Section 3.6, which included a data label x. We should first determine where x is.
We can do this in GDB as follows:

(gdb) p/x &x

In DDD, we might as well do the same thing, issuing a command directly to GDB via DDD’s Console
window.
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Knowing these addresses is extremely important to the debugging process. Again using the program in
Section 3.6 for illustration, on the line labeled top the EAX register is serving as a pointer to our current
position in x. In order to verify that it is doing so, we need to know the address of x.

3.10.3.2 Seg Faults

Many bugs in assembly language programs lead to seg faults. These typically occur because the programmer
has inadvertently used the wrong addressing mode or the wrong register.

For example, consider the instruction

movl $39, %edx

which copies the number 39 to the EDX register.

Suppose we accidentally write

movl $39, (%edx)

This copies 39 to the memory location pointed to by EDX. If EDX contains, say, 12, then the CPU will
attempt to copy 39 to memory location 12, which probably will not be in the memory space allocated to this
program when the OS loaded it into memory. In other words, we used the wrong addressing mode, which
will cause a seg fault.

When we run the program in the debugger, the latter will tell us exactly where—i.e. at what instruction—
the seg fault occurred. This is of enormous value, as it pinpoints exactly where our bug is. Of course, the
debugger won’t tell us, “You dummy, you used the wrong addressing mode”—the programmer then must
determine why that particular instruction caused the seg fault—but at least the debugger tells us where the
fault occurred.

Suppose on the other hand, we really did need to use indirect addressing mode, but accidentally specified
ECX insteade of EDX. In other words, we intended to write

movl $39, (%edx)

but accidentally wrote

movl $39, (%ecx)
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Say c(EDX) = 0x10402226 but c(ECX) = 12,25 and that 0x10402226 is in a part of memory which was
allocated to our program but 12 is not. Again we will get a seg fault, as above. Again, the debugger
won’t tell us, “You dummy, you should have written “%edx”, not “%ecx”, but at least it will pinpoint
which instruction caused the seg fault, and we then can think about what we might have done wrong in that
particular instruction.

3.10.4 Use of DDD for Debugging Assembly Programs

To examine register contents, hit Status and then Registers. All register contents will be displayed.

The display includes EFLAGS, the flags register. The Carry Flag is bit 0, i.e. the least-significant bit. The
other bits we’ve studied are the Zero Flag, bit 6, the Sign Flag, bit 7, and the Overflow Flag, bit 11.

To display, say, an array z, hit Data, then Memory. State how many cells you want displayed, what kind
of cells (whole words, individual bytes, etc.), and where to start, such as &z. It will also ask whether you
want the information “printed,” which means displayed just once, or “displayed,” which means a continuing
display which reflects the changes as the program progresses.

Breakpoints may be set and cleared using the stop sign icons.26

You can step through your code line by line in the usual debugging-tool manner. However, in assembly
language, make sure that you use Stepi instead of Next or Step, since we are working at the machine
instruction level (the ‘i’ stands for “instruction.”)

Note that when you modify your assembly-language source file and reassemble and link, DDD will not
automatically reload your source and executable files. To reload, click on File in DDD, then Open Program
and click on the executable file.

3.10.5 Use of GDB for Debugging Assembly Programs

3.10.5.1 Assembly-Language Commands

Assuming you already know GDB (see the link to my Web tutorial), here are the two new commands you
should learn.

• To view all register contents, type

info registers

25Recall that c() means “contents of.”
26For some reason, it will not work if we set a breakpoint at the very first instruction of a program, though any other instruction

works.
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You can view specific registers with the p (“print”) command, e.g.

p/x $pc
p/x $esp
p/x $eax

• To view memory, use the x (“examine”) command. If for example you have a memory location labeled
z and wish to examine the first four words starting at a data-section label z, type

x/4w &z

Do not include the ampersand in the case of a text-section label. Note that the x command differs
greatly from the p command, in that the latter prints out the contents of only one word.

Note too that you can do indirection. For example

x/4w $ebx

would display the four words of memory beginning at the word pointed to by EBX.

• As in the DDD case, use the Stepi mode of single-stepping through code;27 the command is

(gdb) stepi

or just

(gdb) si

Unlike DDD, GDB automatically reloads the program’s executable file when you change the source.

An obvious drawback of GDB is the amount of typing required. But this can be greatly mitigated by using
the “define” command, which allows one to make abbreviations. For example, we can shorten the typing
needed to print the contents of EAX as follows:

(gdb) define pa
Type commands for definition of "pa".
End with a line saying just "end".
>p/x $eax
>end

From then on, whenever we type pa in this gdb session, the contents of EAX will be printed out.

Moreover, if we want these abbreviations to carry over from one session to another for this program, we can
put them in the file .gdbinit in the directory containing the program, e.g. by placing these lines

27The Nexti mode is apparently unreliable. Of course, you can still hop through the code using breakpoints.
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define pa
p/x $eax
end

in .gdbinit, pa will automatically be defined in each debugging session for this program.

Use gdb’s online help facility to get further details; just type “help” at the prompt.

3.10.5.2 TUI Mode

As mentioned earlier, it is much preferable to use a GUI for debugging, and thus the DDD interface to GDB
is highly recommended. As a middle ground, though, you may try GDB’s new TUI mode. You will need a
relatively newer version of GDB for this, and it will need to have been built to include TUI.28

TUI may be invoked with the -tui option on the GDB command line. While running GDB, you toggle TUI
mode on or off using ctrl-x a.

If your source file is purely in assembly language, i.e. you have no main(), first issue GDB’s l (“list”)
command, and hit Enter an extra time or two. That will make the source-code subwindow appear.

Then, say, set a breakpoint and issue the r (“run”) command to GDB as usual.

In the subwindow, breakpoints will be marked with asterisks, and your current instruction will be indicated
by a > sign.

In addition to displaying a source code subwindow, TUI will also display a register subwindow if you type

(gdb) layout reg

This way you can watch the register values and the source code at the same time. TUI even highlights a
register when it changes values.

Of course, since TUI just adds an interface to GDB, you can use all the GDB commands with TUI.

3.10.5.3 CGDB

Recall that the goal of TUI in our last subsection is to get some of the functionality of a GUI like DDD while
staying within the text-only realm. If you are simply Telnetting into to the machine where you are debugging
a program, TUI is a big improvement over ordinary GDB. CGDB is another effort in this direction.

28If your present version of GDB does not include TUI (i.e. GDB fails when you invoke it with the -tui option), you can build
your own version of GDB. Download it from www.gnu.org, run configure with the option –enable-tui, etc.

www.gnu.org
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Whereas TUI is an integral part of GDB, CGDB is a separate front end to GDB, not developed by the GDB
team. (Recall that DDD is also like this, but as a GUI rather than being text-based.) You can download it
from http://cgdb.sourceforge.net/.

Like TUI, CGDB will break the original GDB window into several subwindows, one of which is for GDB
prompts and the other for viewing the debuggee’s source code. CGDB goes a bit further, by allowing easy
navigation through the source-code subwindow, and by using a nice colorful interface.

To get into the source-code subwindow, hit Esc. You can then move through that subwindow using the
vi-like commands, e.g. j and k to move down or up a line, / to search for text, etc.

To set a breakpoint at the line currently highlighted by the cursor, just hit the space bar. Breakpoints are
highlighted in red,29 and the current instruction in green.

Use the i command to get to the GDB command subwindow.

CGDB’s startup file is cgdbrc in a directory named .cgdb in your home directory. One setting you should
make sure to have there is

set autosourcereload

which will have CGDB automatically update your source window when you recompile.

3.11 Some More Operand Sizes

Recall the following instruction from our example above:

addl (%ecx), %ebx

How would this change if we had been storing our numbers in 16-bit memory chunks?

In order to do that, we would probably find it convenient30 to use .word instead of .long for initialization in
the .data section. Also, the above instruction would become

addw (%ecx), %bx

with the w meaning “word,” an allusion to the fact that earlier Intel chips had word size as 16 bits.

29When you build CGDB, make sure you do make install, not just make. As of this early verion of CGDB, in March 2003, this
feature does not seem to work for assembly-language source code.

30Though not mandatory; recall Section 3.4.3.

http://cgdb.sourceforge.net/
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The changes here are self-explanatory, but the non-change may seem odd at first: Why are we still using
ECX, not CX? The answer is that even though we are accessing a 16-bit item, its address is still 32 bits.

The corresponding items for 8-bit operations are .byte in place of .long, movb instead of movl, %ah or
%al (high and low bytes of AX) in place of EAX, etc.

If you wish to have conditional jumps based on 16-bit or 8-bit quantities, be sure to use cmpw or cmpb,
respectively.

If the destination operand for a byte instruction is of word size, the CPU will allow us to “expand” the source
byte to a word. For example,

movb $-1, %eax

will take the byte -1, i.e. 11111111, and convert it to the word -1, i.e. 11111111111111111111111111111111
which it will place in EAX. Note that the sign bit has been extended here, an operation known as sign ex-
tension.

By the way, though, in this situation the assembler will also give you a warning message, to make sure you
really do want to have a word-size destination operand for your byte instruction. And the assembler will
give an error message if you write something like, say,

movb %eax, %ebx

with its source operand being word-sized. The assembler has no choice but to give you the error message,
since the Intel architecture has no machine instruction of this type; there is nothing the assembler can
assemble the above line to.

3.12 Some More Addressing Modes

Following are examples of various addressing modes, using decrement and move for our example operations.
The first four are ones we’ve seen earlier, and the rest are new. Here x is a label in the .data section.

decl %ebx # register mode
decl (%ebx) # indirect mode
decl x # direct mode
movl $8888, %ebx # source operand is in immediate mode

decl x(%ebx) # indexed mode
decl 8(%ebx) # based mode (really same as indexed)
decl (%eax,%ebx,4) # scale-factor (my own name for it)
decl x(%eax,%ebx,4) # based scale-factor (my own name for it)
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Let’s look at the indexed mode first.

The expression x(%ebx) means that the operand is c(EBX) bytes past x. The name “indexed” comes from
the fact that EBX here is playing the role of an array index.

For example, consider the C code

char x[100];
...
x[12] = ’g’;

Since this is an array of type char, i.e. with each array element being stored in one byte, x[12] will be at the
memory location 12 bytes past x. So, the C compiler might translate this to

movl $12, %ebx
movb $’g’, x(%ebx)

Again, EBX is playing the role of the array index here, hence the name “indexed addressing mode.” We say
that EBX is the index register here. On Intel machines, almost any register can serve as an index register.

This won’t work for int variables. Such variables occupy 4 bytes each. Thus our machine code would need
an extra instruction in the int case. The C code

int x[100],i; // suppose these are global
...
x[i] = 8888;

would be translated to something like

movl i, %ebx
imull $4, %ebx
movl $8888, x(%ebx)

(Here imull is a multiplication instruction, to be discussed in detail in Chapter 4.)

So, Intel has another more general mode, which I have called “scale-factor mode” above. Here is how it
works:

In the scale-factor mode, the syntax is

(register1,register2,scale_factor)

and the operand address is register1+scale factor*register2. The syntax
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w(register1,register2,scale_factor)

means w + register1+scale factor*register2, where w is a constant.

We can now avoid that extra imull instruction by using scale-factor mode:

movl $x, %eax
movl i, %ebx
movl $8888, (%eax, %ebx, 4)

Of course, that still entailed an extra step, to set EAX. But if we were doing a lot of accesses to the array x,
we would need to set EAX only once, and thus come out ahead.31

By the way, if the instruction to be compiled had been

x[12] = 8888;

then plain old direct mode would have sufficed:

movl $8888, x+48

The point is that here the destination would be a fixed address, 48 bytes past x (remember that the address
of x is fixed).

What about based mode? Indexed and based modes are actually identical, even though we think of them
somewhat differently because we tend to use them in different contexts. In both cases, the syntax is

constant(register)

The action is then that the operand’s location is constant+register contents. If the constant is, say, 5000 and
the contents of the register is 240, then the operand will be at location 5240.

Note that in the case of x(%ebx), the x is a constant, because x here means the address of x, which is a
constant. Indeed, the expression (x+200)(%ebx) is also valid, meaning “EBX bytes past x+200,” or if you
prefer thinking of it this way, “EBX+200 bytes past x.”

We tend to think of based mode a bit differently from indexed mode, though. We think of x(%ebx) as
meaning “EBX bytes past x,” while we think of 8(%ebx) as meaning “8 bytes past [the place in memory

31Actually, the product 4 × i must still be computed, but it is now done as part of that third movl instruction, rather than as an
extra instruction. This can speed things up in various ways, and it makes our code cleaner—EBX really does contain the index, not
4 times the index.
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pointed to by] EBX.” The former is common in array contexts, as we have seen, while the latter occurs with
stacks.

You will see full detail about stacks in Chapter 7 later on. But for now, let’s recall that local variables are
stored on the stack. A given local variable may be stored, say, 8 bytes from the beginning of the stack. You
will also learn that the ESP register points to the beginning of the stack. So, the local variable is indeed “8
bytes past ESP,” explaining why based mode is so useful.

3.13 Inline Assembly Code for C++

The C++ language includes an asm construct, which allows you to embed assembly language source code
right there in the midst of your C++ code.32

This feature is useful, for instance, to get access to some of the fast features of the hardware. For example,
say you wanted to make use of Intel’s fast MOVS string copy instruction. You could write an assembly
language subroutine using MOVS and then link it to your C++ program, but that would add the overhead of
subroutine call/return. (More on this in Chapter 7.) Instead, you could write the MOVS code there in your
C++ source file.

Here’s a very short, overly simple example:

// file a.c

int x;

main()

{ scanf("%d",&x);
__asm__("pushl x");

}

After doing

gcc -S a.c

the file a.s will be

.file "a.c"

.section .rodata
.LC0:

.string "%d"

.text

32This is, as far as I know, available in most C++ compilers. Both GCC and Microsoft’s C++ compiler allow it.
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.globl main
.type main, @function

main:
leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $20, %esp
movl $x, 4(%esp)
movl $.LC0, (%esp)
call scanf

#APP
pushl x

#NO_APP
addl $20, %esp
popl %ecx

Our assembly language is bracketed by APP and NO APP, and sure enough, it is

pushl x

For an introduction to how to use this feature, see the tutorials on the Web; just plug “inline assembly
tutorial” into Google. For instance, there is one at http://www.opennet.ru/base/dev/gccasm.
txt.html.

3.14 Example: Counting Lower-Case letters

1 .data
2 x: .string "c92jemc82ne<824j8vcm92jq3.,.u"
3 counts:
4 .rept 26
5 .byte 0
6 .endr
7 .text
8 .globl _start
9 _start:

10 # EAX will always point to the current character to be tallied
11 movl $x, %eax
12 top:
13 # need to zero out all of EBX for later use (see subl)
14 movl $0, %ebx
15 # get the character to be tallied
16 movb (%eax), %bl
17 # check for end of string
18 cmpb $0, %bl
19 jz done
20 # check to see if in range ’a’-’z’

http://www.opennet.ru/base/dev/gccasm.txt.html
http://www.opennet.ru/base/dev/gccasm.txt.html
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21 cmpb $’a’, %bl
22 js nextchar
23 cmpb $’z’+1, %bl
24 jge nextchar
25 # find distance past counts where we will increment
26 subl $’a’,%ebx
27 # add that distance to counts to get address of place to increment
28 addl $counts, %ebx
29 # now increment
30 incb (%ebx)
31 # OK, ready to go to the next character in the string
32 nextchar:
33 addl $1, %eax
34 jmp top
35 done: movl %edx, %edx

3.15 “Linux Intel Assembly Language”: Why “Intel”? Why “Linux”?

The title of this document is “Linux Intel Assembly Language”? Where do those qualifiers “Intel” and
“Linux” come in?

First of all, the qualifier “Intel” refers to the fact, discussed earlier, that every CPU type has a different
instruction set and register set. Machine code which runs on an Intel CPU will be rejected on a PowerPC
CPU, and vice versa.

The “Linux” qualifier is a little more subtle. Suppose we have a C source file, y.c, and compile it twice on
the same PC, once under Linux and then under Windows, producing executable files y and y.exe. Both files
will contain Intel instructions. But for I/O and other OS services, the calls in y will be different from the
calls in y.exe.

3.16 Viewing the Assembly Language Version of the Compiled Code

We will have often occasion to look at the assembly language which the compiler produces as its first step
in translating C code. In the case of GCC we use the -S option to do this. For example, if you type

gcc -S y.c

an assembly language file y.s will be created, as it would ordinarily, but the compiler will stop at that point,
not creating object or executable files. You could even then apply as to this file, producing y.o, and then run
ld on y.o to create the same executable file a.out, though you would also have to link in the proper C library
code file.33

33In order to do the latter automatically, without having to know which file it is and where it is, use GCC to do the linking:
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3.17 String Operations

The STOS (STore String) family of instructions does an extremely fast copy of a given string to a range
of consecutive memory locations, much faster than one could do with MOV instructions in a programmer-
written loop.

For example, the stosl instruction copies the word in EAX to the memory word pointed to by the EDI
register, and increments EDI by 4. If we add the prefix, rep (“repeat”), i.e. our line of assembly language is
now

rep stosl

and then this is where the real power comes in. That single instruction effectively becomes the equivalent of
a loop: The stosl instruction will be executed repeatedly, with ECX being decremented by 1 each time, until
ECX reaches 0. This would mean that c(EAX) would be copied to a series of consecutive words in memory.

Note that the rep prefix is in effect an extra op code, prepended before the instruction itself. The instruction

stosl

translates to the machine code 0xab, but with rep prepended, the instruction is 0xabf3.34

EDI, EAX and ECX are wired-in operands for this instruction. The programmer has no option here, and
thus they do not appear in the assembly code.

The way to remember EDI is that the D stands for “destination.”

There is also the MOVS family, which copies one possibly very long string in memory to another place in
memory. EDI again plays the destination role, i.e. points to the place to be copied to, and the ESI register
points to the source string.35

Here is an example of STOS:

1 .data
2 x:
3 .space 20 # set up 5 words of space
4

5 .text

gcc y.o
GCC will call LD for you, also supplying the proper C library code file.
34The lower-address byte will be f3, and the higher-address byte will be ab. Recall that the C notation “0x” describes a bit string

by saying what the (base-16) number would be if the string were representing an integer. Since we are on a little-endian machine,
the 0x notation for this instruction would be 0xabf3.

35Again, the S here refers to “source.”
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6

7 .globl _start
8

9 _start:
10 movl $x,%edi
11 movl $5,%ecx # we will copy our string to 5 words
12 movl $0x12345678,%eax # the string to be copied is 0x12345678
13 rep stosl
14 done:

Here is an example of MOVS, copying one string to another:

1 .data
2 x: .string "abcde" # 5 characters plus a null
3 y: .space 6
4

5 .text
6 .globl _start
7 _start:
8 movl $x, %esi
9 movl $y, %edi

10 movl $6, %ecx
11 rep movsb
12 done:

Again, you must use ESI, EDI and ECX for the source address, destination address and repeat count, re-
spectively. No other registers may be used.

Warning: REP MOVS really is the equivalent (though much faster) of writing a loop to copy the characters
from the source to the destination. An implication of this is that if the destination overlaps the source, you
won’t necessarily get a copy of the original source in the destination. If for instance the above code were

1 .data
2 x: .string "abcde" # 5 characters plus a null
3 y: .space 9
4

5 .text
6 .globl _start
7 _start:
8 movl $x, %esi
9 movl %esi, %edi

10 addl $3, %edi
11 movl $6, %ecx
12 rep movsb
13 done:

then the resulting contents of the nine bytes starting at y would be (’a’,’b’,’c’,’a’,’b’,’c’,’a’,’b’,’c’).
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3.18 Useful Web Links

• Linux assembly language Web page: http://linuxassembly.org/

• full as manual: http://www.gnu.org/manual/gas-2.9.1/html_mono/as.html (con-
tains full list of directives, register names, etc.; op code names are same as Intel syntax, except for
suffixes, e.g. ‘’l’ in “movl”)

• Intel2gas, converter from Intel syntax to AT&T and vice versa: http://www.niksula.cs.
hut.fi/˜mtiihone/intel2gas/

• There are many Web references for the Intel architecture. Just plug “Intel instruction set” into any
Web search engine.

One such site is http://www.penguin.cz/˜literakl/intel/intel.html.

For more detailed information, see the Intel manual, at ftp://download.intel.com/design/
Pentium4/manuals/24547108.pdf. There is an index at the end.

Also, if you need to learn about a specific instruction, often you can get some examples by plugging
the instruction name and the word example into Google or any other Web search engine. Use the
family name for the instruction, e.g. MOV instead of movl, movb etc. This will ensure that your
search will pick up both Intel-syntax-oriented and AT&T-syntax-oriented sites.

By the way, if you do get information on the Web which is Intel-syntax-oriented, use the intel2gas
program, mentioned above, to convert it to AT&T.

• NASM assembler home page: http://nasm.2y.net/ I don’t use it myself, but it is useful in
that it is usable on both Linux and Windows

• the ALD debugger: http://ellipse.mcs.drexel.edu/ald.html

• my tutorials on debugging, featuring my slide show, using ddd: http://heather.cs.ucdavis.
edu/˜matloff/debug.html

• Unix tutorial: http://heather.cs.ucdavis.edu/˜matloff/unix.html

• Linux installation guide: http://heather.cs.ucdavis.edu/˜matloff/linux.html

3.19 Top-Down Programming

Programming is really mind-boggling work. When one starts a large, complex program, it is really a daunt-
ing feeling. One may feel, “Gee, there is so much to do...” It is imperative that you deal with this by using
the top-down approach to programming, also known as stepwise refinement. Here is what it is.

http://linuxassembly.org/
http://www.gnu.org/manual/gas-2.9.1/html_mono/as.html
http://www.niksula.cs.hut.fi/~mtiihone/intel2gas/
http://www.niksula.cs.hut.fi/~mtiihone/intel2gas/
http://www.penguin.cz/~literakl/intel/intel.html
ftp://download.intel.com/design/Pentium4/manuals/24547108.pdf
ftp://download.intel.com/design/Pentium4/manuals/24547108.pdf
http://nasm.2y.net/
http://ellipse.mcs.drexel.edu/ald.html
http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/unix.html
http://heather.cs.ucdavis.edu/~matloff/linux.html
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You start by writing main() (or in assembly language, start()), and—this is key—making sure that it
consists of no more than about a dozen lines of code.36 Since most programs are much bigger than just
12 lines, this of course means that some, many most, of these 12 lines will be calls to functions (or in the
assembly language case, calls to subroutines). It is important that you give the functions good names, in
order to remind yourself what tasks the various functions will perform.

In a large, complex program, some of those functions will also have a lot to do, so you should impose upon
yourself a 12-line on them too! In other words, some functions will themselves consist of calls to even more
functions.

The point is that this is something easy and somewhat quick to do, something that you can do without
feeling overwhelmed. Each 12-line module which you write is simple enough so that you can really focus
your thoughts.

36I’m just using 12 lines as an example. You may prefer a smaller limit, especially when working at the assembly language level.



Chapter 4

More on Intel Arithmetic and Logic
Operations

Note: We will assume our machine has a 32-bit word size throughout this chapter.

4.1 Instructions for Multiplication and Division

4.1.1 Multiplication

4.1.1.1 The IMUL Instruction

One of the Intel instructions for multiplication is imull (“IMUL long,” i.e. for 32-bit operations). One form
of IMUL is

imull src

where src is a 32-bit multiplier specified in register mode. The multiplicand is implicitly EAX,1 and the
product is stored in what is described in Intel literature as EDX:EAX. To see what this means, note that
when we multiply two 32-bit quantities, we potentially get a 64-bit product. So, the Intel hardware places
the upper 32 bits in EDX and the lower 32 bits in EAX.

1So, there is only one operand in this form of the instruction, as opposed to the two in the previous form.

99
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4.1.1.2 Issues of Sign

Note that even if the product fits into 32 bits, thus into EAX, we still need to pay attention to EDX. Suppose
for instance that the product happens to be -4. In 32-bit form, that is

11111111111111111111111111111100

while in 64-bit form it is

1111111111111111111111111111111111111111111111111111111111111100

In other words, the negative status of -4 is indicated by a 1 in the first of those 64 bits. The 64-bit number

0000000000000000000000000000000011111111111111111111111111111100

is positive. In fact, it has the value 232 − 4, which you can see because we wind backwards four times from

0000000000000000000000000000000100000000000000000000000000000000.

4.1.2 Division

4.1.2.1 The IDIV Instruction

For IDIV, one form is

idivl src

We place the dividend in EDX:EAX and the divisor in src, again with the latter being specified in register
addressing mode. The quotient then comes out in EAX, and the remainder in EDX. If the quotient is too big
for 32-bit storage, then an exception, i.e. an execution error will occur.

4.1.2.2 Issues of Sign

As noted for multiplication above, you must be careful with 64-bit quantities. Even if your dividend fits into
32 bits, it will be treated as a 64-bit number, with the high bits being in EDX—whether you put them there
or not.

So, if your dividend is nonnegative, make sure to put 0 in EDX; otherwise put -1 there.

A compact and fast way to do this is to use the CWD instruction.
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4.1.3 Example

Here is an example of IMUL/IDIV:

1 .text
2 .globl _start
3 _start:
4 movl $2, %ecx
5 movl $-1, %eax
6 imull %ecx
7 idivl %ecx
8 done: movl %ebx, %ebx

Let’s use GDB to explore the behavior of these instructions:

1 gdb) r
2 Starting program: /www/matloff/public_html/50/PLN/a.out
3

4 Breakpoint 1, _start () at g.s:4
5 4 imull %ecx
6 Current language: auto; currently asm
7 (gdb) p/x $eax
8 $1 = 0xffffffff
9 (gdb) p/x $edx

10 $2 = 0x0
11 (gdb) si
12 8 idivl %ecx
13 (gdb) p/x $eax
14 $3 = 0xfffffffe
15 (gdb) p/x $edx
16 $4 = 0xffffffff
17 (gdb) si
18 9 done: movl %ebx, %ebx
19 (gdb) p/x $eax
20 $5 = 0xffffffff
21 (gdb) p/x $edx
22 $6 = 0x0

We started with the 32-bit version of -1 in EAX, and 0 in EDX. Multiplying by 2 gives us -2, but IMUL puts
its product in 64-bit form in the register pair EDX:EAX. GDB verified this for us. Then we divided by 2,
getting -1, but since IDIV puts its result in 32-bit form in the single register EAX, EDX becomes 0.

Or, if we want to view the numbers as unsigned—remember, the nice thing about 2s complement is that we
have our choice of interpretation—then our multiplying by 2 changed 232 − 1 (a number fitting in 32 bits)
to 233 − 2 (a 64-bit number).
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4.2 More on Carry and Overflow, and More Jump Instructions

In Chapter 3, we saw how to use instructions like JS, JNZ, etc. to do “if-then-else” tests. This works
for simple cases with small or moderate-sized numbers. Unfortunately, it is more complicated than this,
though, due to problems with the difference between signed and unsigned numbers. To see why, suppose
for convenience that we are working with 1-byte quantities (other than convenience, there is nothing special
about using only one byte here), and consider what happens with

cmpb %al, %bl

when c(AL) = 0x50 and c(BL) = 0xfb. Viewed as signed numbers, c(BL) is smaller, since 80 > −5, but
viewed as unsigned numbers, c(AL) is smaller, since 80 < 251.

Recall that the hardware doesn’t know whether we are considering our numbers to be signed or unsigned.
So, for example, there is nothing in the hardware for the CMP instruction to distinguish between the signed
and unsigned cases, nor is there such a capability in the ADD and SUB instructions.2 However, the hardware
does store relevant information in the Carry and Overflow flags, and this will allow us as programmers to
handle the signed and unsigned cases differently on our own, as we will see below.

Before continuing, let’s review at what the hardware does when adding two numbers. It will in any addition
simply add the two numbers bit by bit sequentially from right to left, with carries, in grade-school fash-
ion. The hardware is basically treating the numbers as unsigned, but remember, that’s OK even if we are
considering the numbers to be signed, because the nature of 2s complement storage makies it all work out.

When performing an ADD instruction, the hardware will set or clear the Carry flag (CF), according to
whether a carry does occur out of the most significant bit. As noted in Chapter 3, we can programmatically
check this by using the JC or JNC instructions. Similarly, the hardware will set or clear the Overflow flag
(OF), under certain conditions which we will discuss shortly; our program can check this flag via the JO and
JNO instructions.

The term overflow—as opposed to the Overflow flag—informally means that the result of an operation is
too large to fit into the number of bits allocated to it. The definition of “too large” in turn depends on whether
we are treating the numbers as signed or unsigned.

Again taking the 8-bit case as our example, suppose c(AL) = 0x50 and c(BL) = 0x50, i.e. both registers
contain decimal 80. Their sum, 160, does fit into 8 bits if we are considering our numbers to be unsigned,
but if we are thinking of them as signed, then “160” is really -96. So, in this example an overflow will not
occur if the numbers are considered unsigned, but will occur if they are considered signed.

Clearly, if we are considering our numbers to be unsigned, overflow is indicated by the Carry Flag. But what
about the signed case? The Carry Flag will not tell us (at least not directly) whether overflow has occurred.

2The MIPS chip, by contrast, does have, for instance, both ADD and ADDU instructions for addition. ADD causes an exception,
i.e. execution error, upon overflow, while ADDU does nothing to report the problem. C/C++ compilers will use ADDU.
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In other words, we’ll need another flag to check overflow in the signed case, and that’s the purpose of the
Overflow Flag.

So, how did the Intel engineers design the circuitry which manages the Overflow Flag? Well, let’s first note
that there won’t be an overflow problem if we are adding a nonnegative number to a negative one. The
nonnegative number will be in the range 0 to +127, while the negative one will be between -128 and -1.
Then the sum must necessarily be between -128 and +127, thus no overflow.

But a problem can occur if we are adding two positive numbers. They are basically 7 bits each (not counting
the sign bit), so overflow will occur if they have an 8-bit sum. In such a case, there will be a carry out of the
7th bit, thus placing a 1 in the 8th bit—thus producing a negative number if we are considering everything
signed. If you step through this reasoning in the case of adding two negative numbers, you’ll see the problem
arises if their sum is positive. In other words:

In signed addition, overflow occurs if and only if the sum of two positive numbers is negative
or the sum of two negative numbers is positive.

Knowing this, the developers of the Intel hardware designed the circuitry so that the Overflow flag would be
set if it sees that there is a sign change of the nature described above, and clears the flag otherwise.

Note once again that the hardware doesn’t know whether we are considering our numbers to be signed or
unsigned. The developers of the hardware assumed that most people’s typical usage would be signed, and
thus they designed the Overflow flag accordingly. If we really are treating our numbers as unsigned, then
we would have our program check the Overflow flag. But if we are treating them as unsigned, we would
check the Carry flag.

What about subtraction? Recall that it is implemented via addition, i.e. x-y is effected by adding the 2s
complement representation of -y to x, so we are really back to the addition case. But if we are using
subtraction to set up a conditional jump—typically by using a CMP instruction—we need to worry about
the sign flag too, as follows.

• If the Overflow flag is 0, we have nothing to worry about, and can simply look at the Sign flag to
determine whether the subtraction resulted in a negative number.

• If the Overflow is 1, things are a little less simple. Recall that when overflow occurs in an addition
(which, recall, is performed for the subtraction process), the sign of the sum is opposite to that of the
two addends. In other words, an overflow addition changes signs. So, if the subtraction had resulted
in a negative difference, which ordinarily would set the Sign flag, the overflow will make the Sign
flag 0 instead. Conversely, if the difference were not negative, the overflow will make the Sign flag 1,
falsely making the difference look negative.

From these considerations, we see that:
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In a subtraction of signed numbers x-y, y will be the larger of the two if and only if the OF 6=
SF.

For this reason, the developers of the Intel chip including the JL (“jump if less than”) which jumps if OF 6=
SF. This is then the safe way to do less-than comparisons on signed numbers; JS is not safe unless you know
your numbers are small enough that overflow won’t occur. There are also others. Here is an incomplete
list (here “dst” and “src” refer to the destination and source done, for example, in an immediately-previous
CMP):

mnemonic action flags checked
JL jump if dst < src SF 6= OF
JLE jump if dst ≤ src SF = 1 or SF 6= OF
JG jump if dst > src ZF = 0 and SF = OF
JGE jump if dst ≥ src SF = OF

There are corresponding instructions for the unsigned case: JB (“jump if below”), JBE (“jump if below or
equal”), JA (“jump if above”), and JAE (“jump if above or equal”),

For imull, if the product cannot fit into 32 bits and the high bits go into EDX, both CF and OF are set. (SF
and ZF are undefined.) With idivl, all of these flages are undefined.

4.3 Logical Instructions

This section will illustrate one of the most important tools available to the assembly language programmer—
data operations at the bit level. Keep these in mind in all your assembly language programming.

In Chapter 3, we saw how to access 16-bit and 8-bit operands. But what can we do in smaller cases, for
example 1-bit operands? The answer is that we cannot do this in a manner directly analogous to the 16-bit
and 8-bit cases. The reason for this is that although individual bytes have addresses, individual bits do not.
Thus for example there is no 1-bit MOV instruction comparable to movl and movb.

However, we can access individual bits, or groups of bits, in an indirect manner by using the instructions
introduced in this section.

A logical AND operation does the following: At each bit position in the two operands, the result is 1 if both
operand bits are 1, and 0 otherwise.

For example,

1011
AND 1101

1001
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In the leftmost bit position of the two operands here, we see two 1s, so there is a 1 in the result. In the
second-to-the left position, there is a 0 in the first operand and 1 in the second, so there is a 0 in the result,
etc.

If we AND together x and y, placing the result back in y, we zero out every bit of y except those correspond-
ing to 1s in x; those latter bits of y are left intact.

Suppose for instance that we wish to put a 0 in bit position 1 (second from the right) in EAX, but keep all
the other bits in EAX unchanged. We would use the instruction

andl $0xfffffffd, %eax

because 0xfffffffd has a 0 at bit position 2 and all 1s elsewhere.

Often an AND operation is used as a mask, which is a mechanism by which we can test for certain bits to
have certain values. For example, suppose we wish to jump to a location w if bit positions 15 and 4 have the
values 1 and 0, respectively, in ECX. We could use the following code to do this:

andl $0x00008010, %ecx
cmpl $0x00008000, %ecx
jz w

The point is that after the andl is executed, c(ECX) will equal 0x00008000 if and only if the original value
in ECX had 1 and 0 in bit positions 15 and 4.

The & operator in C (the binary operator, not the “address of” operator) performs an AND operation, and in
fact the compiler will probably translate a statement containing & into and andl instruction.

In an OR operation, if at least one of the two corresponding bits in the two operands is a 1, then the bit in
the result is a 1, while that bit is a 0 otherwise.

The orl (“OR long”) instruction performs an OR operation on the source and destination, placing the result
back in the destination. Again, it is important to note that that means that for every bit in the source operand
which is a 0, the corresponding bit in the destination remains unchanged, while every 1 in the source will
cause the corresponding bit in the destination to become 1. In other words, orl is used to place 1s in desired
spots within the destination while keeping the other destination bits unchanged.

So for example to set bit 2 to 1 in EAX, we would use the instruction

orl $0x00000004, %eax

The | operator in C performs a logical-or operation, and the compiler will usually translate it to orl or other
instruction from the OR family.
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Logical operations are quite prominent in the programming of device drivers. For example, the built-in
speaker on a PC has a 1-byte port at address 0x61. The least-significant 2 bits must be set to 11 for the
speaker to be on, 00 for off; the other bits contain other important information and must not be changed.
I/O ports, as we will see later, are accessed on Intel machines via Intel’s IN and OUT instructions.3 The
following code turns the PC speaker off and on:

1 # to turn speaker on:
2 # copy speaker port to AL register
3 inb $0x61,%al
4 # place 11 in last 2 bits of AL
5 orb $3,%al
6 # copy back to speaker port
7 outb %al,$0x61
8

9 # to turn speaker off:
10 # copy speaker port to AL register
11 inb $0x61,%al
12 # place 0s in last 2 bits of AL
13 andb $0xfc,%al
14 # copy back to speaker port
15 outb %al,$0x61

The NOT instruction (e.g. notl) changes all 1 bits to 0s and all 0 bits to 1s.

Each bit position in the result of the XOR (“exclusive or”) instruction is equal to 1 if and only if exactly one
of the operands has a 1 at the same bit position.4 It is a classic way of zeroing-out a register using a very
short instruction. For example,

xorl %ecx, %ecx

will make all bits of ECX equal to 0.

There are also shift operations, which move all bits in the operand to the left or right. The number of bit
positions to shift can be specified either in an immediate constant, or in the CL register.5

For example,

shll $4, %eax

would move all bits in EAX leftward by 4 positions. Note that those which move past the left end are lost,
and the bit positions vacated near the right end become 0s. So, for instance, if c(EAX) had been 0xd5fffff3,
after the shift it would be 0x5fffff30.

3Accessing them requires status as privileged user.
4You can also think of it as adding two bits and taking the sum modulo 2.
5Recall that this is the lower 8 bits of ECX.
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The shrl instruction does the same thing, but rightward.

Note that if we are considering the contents of the operand to be an unsigned integer, a left shift by 4 bits is
equivalent to multiplication by 24 = 16, and a right shift by 4 bits is equivalent to division by 16.

If on the other hand we are considering the operand to be a signed integer, we would use sall and sarl, since
these preserve signs. It is not an issue for multiplication (except for overflow), but it makes a difference for
division.

This difference is summarized in the comments in the following code:

1 .text
2 .globl _start
3 _start:
4 movl $0x80000000,%eax
5 movl $0x80000000,%ebx
6 shrl $1,%eax
7 sarl $1,%ebx

The point is that though EAX starts out as a negative number, due to having a 1 in its leftmost bit, shifting
EAX one bit rightward will leave a 0 in the leftmost bit, thus rendering EAX positive. In other words,
dividing this negative number by 2 (which is what a right-shift of one bit does), which should produce
another negative number, instead produces a positive number. (Of course, if we are interpreting the contents
of EAX to be unsigned, there is no problem.)

On the other hand, the SAR family retains the original sign. After the right-shift is performed, leaving the
leftmost bit a 0, SAR replaces that bit with a 1 if the original bit there had been a 1.

Let’s execute this code under GDB:

(gdb) b 9
Breakpoint 1 at 0x804805e: file y.s, line 9.
(gdb) r
Starting program:
/fandrhome/matloff/public_html/matloff/public_html/50/PLN/y

Breakpoint 1, _start () at y.s:9
9 shrl $1,%eax
Current language: auto; currently asm
(gdb) i r
eax 0x80000000 -2147483648
ebx 0x80000000 -2147483648
...
(gdb) n
_start () at y.s:10
10 sarl $1,%ebx
(gdb) n
done () at y.s:11
11 done: movl %ecx,%ecx
(gdb) i r
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eax 0x40000000 1073741824
ebx 0xc0000000 -1073741824
...

Note both the hex and decimal contents.

In C/C++, left and right shift operations are performed via << and >>. In the latter case, the compiler will
translate to shrl if the operand is unsigned, and sall in the signed case.

4.4 Floating-Point

Modern Intel CPUs have a built-in Floating-Point unit, which is hardware to perform floating-point add,
subtract and so on. Without this hardware, the operations must be performed in software. For example,
consider the code

float u,v,w;
...
w = u + v;

With an Intel CPU, the compiler would implement the addition by generating an FADD (“floating-point
add”) instruction. If there were no such instruction, the compiler would have to generate a rather length
amount of code in which one would first decompose u and v into their mantissa and exponent portions,
would then change one of the addends in order to match exponent values, would then add the mantissas, etc.
The resulting code would run much more slowly would a single FADD instruction.

Intel CPUs have special floating-point registers, each 80 bits wide, thus giving more accuracy than the 32-
bit or even 64-bi size. In ATT&T syntax, the registers are named %st(0) (also called simply %st), %st(1),
%st(2) and so on. The “st” here stands for “stack,” as the registers are indeed arranged as a stack.

We will learn about stacks in detail in Chapter 7, but the main point is that a stack is a “last-in, first-out” data
structure, meaning that items are removed from the stack in reverse order from which they are inserted. For
instance, say the stack is initially empty, and then we push, i.e. insert, the numbers 1.8, 302.5 and -29.5222
onto the stack. We say that -29.5222 is now at the top of the stack, followed by 302.5 and then 1.8. If we
now pop the stack, that means removing the top element, -29.5222, so that the new top is 302.5, with 1.8
next. If we pop again, the stack consists only of 1.8. If we now push 168.8888, then that latter value is on
top, with 1.8 next.

Here is some sample code:

1 .data
2 x: .float 1.625
3 y: .float 0.0
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4 point25:
5 .float 0.25
6 .text
7 .globl _start
8 _start:
9 flds x # push x onto f.p. stack; x now on top

10 flds point25 # push 0.25; 0.25 now on top, followed by x
11 faddp # add the top 2 elts. of the stack, replace 2nd by sum,
12 # then pop once; x+0.25 now on top
13 fstps y # pop the stack and store the popped value in y

Here we see a new assembler directive, .float. This tells the assembler to arrange things so that when this
program is run, the initial value at x in memory will be the (32-bit) representation of the number 1.625.
From Chapter 1, we know that this is the bit pattern 0x3fd00000. In fact, we would get the same result from

x: .long 0x3fd00000

and would even save the assembler some work in the process, since it would be spared the effort of converting
1.625.6

There are two flds instructions. They are from the FLD (“floating-point load”) Intel family; the ‘s’ here
means “stack,” just as ‘l’ means “long” in addl from the ADD family.

Read the comments in the code before continuing.

OK, let’s use GDB to learn more about this code:

(gdb) l
1 .data
2 x: .float 1.625
3 y: .float 0.0
4 point25:
5 .float 0.25
6 .text
7 .globl _start
8 _start:
9 flds x # push x onto f.p. stack
10 flds point25 # push 0.25
(gdb)
11 faddp
12 fstps y
(gdb) b 12
Breakpoint 1 at 0x8048082: file fp.s, line 12.
(gdb) r
Starting program:
/fandrhome/matloff/public_html/matloff/public_html/50/PLN/fp

6That effort would be the same as what scanf() would go through with %f format: It would count the digits after the decimal
point, finding the number to be 3. It would then convert the characters ‘1’, ‘6’ etc. to 1, 6 and so on, and thus form the numbers 1
and 625. Finally it would do something like a = 1 + 625.0/1000.0.
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Breakpoint 1, _start () at fp.s:12
12 fstps y
Current language: auto; currently asm
(gdb) nexti
0x08048088 in ?? ()
(gdb) p/f y
$1 = 1.875
(gdb) p/x y
$2 = 0x3ff00000

Nothing new here, except that we’ve used GDB’s p (“print”) command with f format. Obviously, the latter
is similar to %f for printf(). We see that y comes out to 1.875, as expected. We also print out the value of
y as a bit string, which turns out to be 0x3ff00000. You should check that that is indeed the IEEE format
representation of 1.875.

Of course, there are also the obvious instruction families such as FSUB for subtraction, FMUL for multipli-
cation and so on. But there are also instruction families that implement transcendental function operations,
such as FSIN for sine, FSQRT for square root, etc. Again, by implementing these operations in hardware,
we can get large speedups in C/C++ programs that make heavy use of float variables, such as programs that
do graphics, games, scientific computation and so on.

The Intel hardware also gives the programmer the ability to have fine control over issues such as rounding,
via special instructions that control floating-point status registers.



Chapter 5

Introduction to Intel Machine Language

5.1 Overview

This document serves as a brief introduction to Intel machine language. It assumes some familiarity with
Intel assembly language (using the AT&T syntax).

5.2 Relation of Assembly Language to Machine Language

Assembly language (AL) is essentially identical to machine language (ML). The only difference is that ML
expresses any machine instruction using the 1s and 0s on which the machine operates, while AL expresses
the same instruction using English-like abbreviations for specific bit patterns.

Consider for instance a register-to-register “move” operation, which copies the contents of one register to
another.1 The bit pattern which signals this, called an op code, is 1000100111. The circuitry is set up so that
when the CPU sees 1000100111 in the first ten bits of an instruction, it knows it must do a register-to-register
move.2

As humans we get tired of writing long strings of 1s and 0s, and it would also be burdensome to have to
remember which ones signify which op codes. As an alternative, we could hire a clerk. We would say to
the clerk, “Clerk, every time you see me write movl, you enter 1000100111.” The name movl is a lot easier
for us to remember than 1000100111, so would be a great convenience for us (though the poor clerk would
have to deal with these things).

1 The term “move” is thus a misnomer, though by now entrenched in computer jargon.
2 What do we mean by the “first” 10 bits? An Intel instruction can be several bytes in length. When we speak of the “first” byte

of an instruction, we mean the one contained in the lowest-numbered memory address. When we speak of the “first” bit within a
byte, we mean the most-significant bit within that byte.

111
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The circuity in the CPU is also set up to know that register-to-register “move” instructions, i.e. instructions
whose first bits are 1000100111, are two bytes long.3 Also, the circuity is set up to know that the source and
destination operands of the move—which register is to be copied to which other register—are stored in the
remaining six bits in this instruction: The eleventh, twelth and thirteenth bits specify the source register, and
the fourteenth, fifteenth and sixteenth indicate the destination register, according to the following codes:

EAX 000
EBX 011
ECX 001
EDX 010

(The Intel CPU also has a number of other registers, but we will not list their codes here.)

Again, instead of having to remember the code for say, EBX, we would tell the clerk “Whenever I say %ebx,
I mean 011,” and so on. Well, our “clerk” is the assembler, e.g. as in standard Unix systems. We use a text
editor to type those same abbreviations into a file, and the assembler converts them to 1s and 0s just as a
clerk would.

Remember, though, that we the programmer are still in full control of which instructions (i.e. which opera-
tions and operands) to specify, in contrast to a compiler. If for example we type the line

movl %eax,%ebx

into a file, say x.s, we know the assembler will convert it to the machine instruction which does this opera-
tion, which we will see below happens to be 1000100111000011, i.e. 0x89c3. By contrast, if we run

y = x + 3;

through a compiler, we have no idea what machine instructions the compiler will generate from it. Indeed,
different compilers would likely generate different machine instructions.

The assembler places the machine code it generates, e.g. 1000100111000011 above, into the object file, x.o.

5.3 Example Program

5.3.1 The Code

We ran an assembly language source file, Total.s, through the as assembler with the -a option, the latter
requesting the assembler to print out for us the machine code it produces, side-by-side with our original

3Note that that means that the circuity will advance the Program Counter register by 2, so as to prepare for the fetch of the
instruction which follows the move instruction.
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assembly language. Here is the output:

GAS LISTING Total.s page 1

1
2 # finds the sum of the elements of an array
3
4 # assembly/linking Instructions:
5
6 # as -a --gstabs -o total.o Total.s
7 # ld -o total total.o
8
9 .data # start of data section
10
11 x:
12 0000 01000000 .long 1
13 0004 05000000 .long 5
14 0008 02000000 .long 2
15 000c 12000000 .long 18
16
17 sum:
18 0010 00000000 .long 0
19
20 .text # start of code section
21
22 .globl _start
23 _start:
24 0000 B8040000 movl $4, %eax # EAX will serve as a counter for
24 00
25 # number of words left
26 0005 BB000000 movl $0, %ebx # EBX will store the sum
26 00
27 000a B9000000 movl $x, %ecx # ECX will point to the current
27 00
28 # element to be summed
29 000f 0319 top: addl (%ecx), %ebx
30 0011 83C104 addl $4, %ecx # move pointer to next element
31 0014 48 decl %eax # decrement counter
32 0015 75F8 jnz top # if counter not 0, loop again
33 0017 891D1000 done: movl %ebx, sum # done, store result in "sum"
33 0000
34 001d 8D7600

DEFINED SYMBOLS
Total.s:11 .data:00000000 x
Total.s:17 .data:00000010 sum
Total.s:23 .text:00000000 _start
Total.s:29 .text:0000000f top
Total.s:33 .text:00000017 done

NO UNDEFINED SYMBOLS
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5.3.2 Feedback from the Assembler

Each line in this output is organized as follows:

Display Line Number Memory Offset Contents Assembly Source Line

The offset is a relative memory address, i.e. the distance from the given item to the beginning of its section
(.data, .text, etc.).

Here the clerk is saying to us, “Boss, here is what I did with that assembly-language source line of yours,
which I’ve shown here in the fourth field. I translated it to the coding you see in the third field, and I arranged
for this coding to go into the offset I’ve listed in the second field. For your convenience, I’ve also shown the
line number from your source file in the first field.”

What does the word offset mean? For instance, look at Line 18. It says that the word which we labeled sum
in our source code will be located 0x10 = 16 bytes from the beginning of the .data section.

5.3.3 A Few Instruction Formats

The Contents field shows us the bytes produced by the assembler from our source code, displayed byte-by-
byte, in order of increasing address. Note the effect of little-endian-ness, for instance in Line 13. That line
says that our assembly code

.long 5

produced the sequence of bytes 05 00 00 00. That makes sense, right? In the number 00000005, the least
significant byte is 05 (recall that a byte is two hex digits), so it will have the lowest address, and thus it will
be displayed first.

The actual address of this word will be determined when the program is linked by ld. The latter will choose
a place in memory at which to begin the .data section, and that will determine everything else goes. If
that section begins at, say, 0x2020, then for instance the data corresponding to Line 15 will be at case
0x2020+0x0c = 0x202c.

Note that the addresses assigned to these items in the .data section of our source file are contiguous and
follow the same order in which we “declared” them in the source file.

Now, let’s learn a few more Intel machine-language formats, to add to the register-to-register move we saw
above. First, let’s consider the one on Line 24.

This instruction is an immediate-to-register move, where the word “immediate” means “the source operand
is a constant which appears in the instruction.” Here the constant is 4; it is a 32-bit integer occupying the
last four bytes of this five-byte instruction.
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This type of instruction is coded by its first five bits being 10111. The next three bits code the destination
register, in this case being 000. So the first byte of the instruction is 10111000, i.e. 0xb8, followed by the
constant 04000000 (again, note the effect of Intel CPUs being little-endian). We will describe the format for
immediate-to-register move as 10111DDDIMM4, where 10111 is the op code, DDD denotes the destination
register and IMM4 denotes a 4-byte immediate constant.4

Note also on Line 24 that the offset-field count has been reset back to 0000 again, since we are now in a new
section (.text).

Lines 26 and 27 are similar, but one aspect must be noted in the latter. The immediate constant here, $x, is
the address of x. But all the assembler knows at this point is that later, when the program is linked, x will be
0 bytes from the start of the .data section. If ld allocates the .data section at, say, 0x2000, then x will be at
that address. So, ideally the immediate constant placed by the assembler into the machine instruction here
would be 0x2000 (or wherever else the .data section ends up). But, since this value is unknown at assembly
time, the assembler just puts the offset, 0, in the instruction on a temporary basis, to be resolved later by the
linker.

In Line 29 we see an indirect-to-register add. Its op code is 0000001100, followed by three bits for the desti-
nation register and then three bits for the source register (the latter being used in indirect mode). We will state
this notationally as 0000001100DDDSSS. An add which is register-to-indirect, e.g. addl %ecx,(%ebx), has
the format 0000000100SSSDDD.

Of course, the choice of the codes for operations, registers and addressing modes is arbitrary, decided by the
hardware designers. Typically it is chosen according to two considerations:

• Instructions which are expected to be more commonly used should have shorter codes, in order to
conserve memory and disk space.

• The circuitry may be easier to design, or made faster, with some codes.

In Line 31 we see a register decrement operation. A little experimentation—changing the register to EBX
and then observing how the machine code changes—reveals that the format for this kind of instruction is
01001DDD, where DDD is the destination register.

5.3.4 Format and Operation of Jump Instructions

There is quite a bit to discuss on Line 32. The format for this jump-if-Zero-flag-not-set instruction is
01110101IMM1, where 01110101 is the op code and IMM1 is a 1-byte immediate signed constant which
indicates the target of the jump, i.e. where to jump to if the Zero flag is not set. The constant is actually the
(signed) distance to the target, as follows.

4We describe our earlier register-to-register move format as 1000100111SSSDDD.
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Recall that any computer has a register whose generic name is the Program Counter (PC) which points to
the next instruction to be executed. Let’s say that the .text part of the program starts at 0x300ba. Then the
instruction shown here in Line 32 will be at 0x300ba+0x15 = 0x300cf, and our target (shown in Line 29)
will be at address 0x300ba+0xf = 0x300c9.

Recall also that as soon as an instruction is fetched for execution, the PC, which had been pointing to that
instruction, is incremented to point to the next instruction. In the case of the instruction in Line 32, here is
how the incrementing occurred: The PC had contained 0x300cf, and the CPU fetched the instruction from
that location. Then the CPU, seeing that the instruction begins with 01110101, realizes that this is a JNZ
instruction, thus 2 bytes in length. So, the CPU increments the PC by 2, to point to the instruction in Line
33, at 0x300cf+2 = 0x300d1.

Now, to execute the JNZ instruction, the CPU checks the Zero flag. If the flag is not set, the CPU adds
the IMM1 part of the JNZ instruction to the current PC value, treating IMM1 as an 8-bit 2s complement
number. As such, 0xf8 = -8, so the sum in question will be 0x300d1-8 = 0x300c9. This latter quantity is
exactly what we want, the address of our target. The CPU puts this number in the PC, which means that
the next instruction fetch will be done from location 0x300c9—in other words, we jump to the line we had
named top in our assembly language source file, just as desired.

Of course, the assembler knows that the CPU will add IMM1 to the current PC value, and thus sets IMM1
accordingly. Specifically, the assembler computes IMM1 to equal the distance from the instruction following
the JNZ instruction to the target instruction.5

IMM1 is just 8 bits. If the distance to the target is greater than what can be expressed as an 8-bit 2s comple-
ment number, the Intel instruction set does have an alternate version of JNZ with format 0000111110000101IMM4.

Keep in mind that the circuitry which implements JNZ will be quite simple. It will check the Zero Flag, and
if that flag is 1, the circuitry will then add the second byte of the instruction (-8 in our example here) to the
EIP register. That’s all!

5.3.5 Other Issues

The assembler goes through the .s source file line by line, translating each line to the corresponding machine
code. By the time the assembler sees this JNZ instruction, it has already seen the line labeled top. Thus it
knows the offset of top within the .text section, and can compute the distance to that target, as we saw here.
But what if the jump target were to come after this line with JNZ? In this case, the assembler won’t know
the offset of the target yet, and thus will not be able to completely translate the instruction yet. Instead, the
assembler will make a note to itself, saying that it will come back and finish this line after it finishes its first
pass through the .s file. So, assemblers are two-pass, going through the .s file twice.

5This implies that it doesn’t matter that the execution-time address of top is unknown at assembly time, unlike the case in Line
27, where the lack of knowledge of the execution-time address of x caused a problem.
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In doing the computation 0x300d1-8, the CPU must first make the two quantities compatible in terms of
size. So, the CPU will do a sign extension, extending the 8-bit version of -8, i.e. 0xf8, to the 32-bit version,
i.e. 0xfffffff8. So, technically, the CPU is performing 0x000300d1+0xfffffff8, which does indeed come out
to 0x300c9.

The formats for some other conditional jump instructions are: JZ, 01110100IMM1; JS format 01111000IMM1;
JNS 01111001IMM1; and so on. The unconditional jump JMP has format 11101011IMM1.

The Intel instruction set contains hundreds of instructions, and their formats become quite complex. We will
not pursue this any further.

Note, though, that even in the few formats we’ve seen here, there is a large variation in instruction length.
Some instructions are only one byte long, some are two bytes, and so on, with lengths ranging up to six
bytes in the instructions here. This is in great contrast to RISC CPUs such as MIPS, in which all instructions
are four bytes long. RISC architectures aim for uniformity of various kinds, which helps make a “lean and
mean” machine.

5.4 It Really Is Just a Mechanical Process

As pointed out earlier, the assembler is just acting like a clerk, mechanically translating English-like codes
to the proper bits. To illustrate this, note that we could “write” our own machine language in hex, right there
in the middle of our assembly code! For instance, recall from our earlier example that the instruction decl
%eax has the machine language 0x48. We could set that 0x48 ourselves:

... # same code as before, but not shown here
movl $x, %ecx

top: addl (%ecx), %ebx
addl $4, %ecx
.byte 0x48 # we write "directly" in machine language
jnz top

done: movl %ebx, sum

With that .byte directive, we are simply saying to the assembler, “After you translate addl $4, %ecx to
machine code, put a byte 0x48 right after that code.” Since this is what the assembler would have done
anyway in assembling decl %eax, we get exactly the same result. Try assembling and running the program
with this change; you’ll see that it works fine.
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5.5 You Could Write an Assembler!

A common exercise in assembly language courses is to write a simple assembler. Even if you are not
assigned to do so, it would be a very enriching exercise if you were to at least give some thought as to how
you would do it. For example, just stick to the few instructions covered in this chapter. Your job would
be to write a program, say in C, which translates assembly code for the instructions and addressing modes
covered in this chapter to machine language.



Chapter 6

Compilation and Linking Process

In learning computer systems, it’s vital to understand how the systems software works. In this chapter, we’ll
look at compiling and linking.

6.1 GCC Operations

Say our C program consists of source files x.c and y.c, and we compile as follows:

gcc -g x.c y.c

GCC1 is basically a “wrapper” program, serving only a manager of the compilation process; it does not do
the compilation itself. Instead, GCC will run other programs which actually do the work. We’ll illustrate
that here, using the x.c/y.c example throughout.

6.1.1 The C Preprocessor

First GCC will run the C preprocessor, cpp, which processes your #define, #include and other similar
statements. For example:

% cat y.c
// y.c

#define ZZZZ 7

1The “English” name of this compiler is the GNU C Compiler, with acronym GCC, so it is customary to refer to it that way.
The actual name of the file is gcc.
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#include "w.h"

main()
{ int x,y,z;

scanf("%d%d",&x,&y);
x *= ZZZZ;
y += ZZZZ;
z = bigger(x,y);
printf("%d\n",z);

}

% cat w.h
// w.h

#define bigger(a,b) (a > b) ? (a) : (b)

% cpp y.c
# 1 "y.c"
# 1 "<built-in>"
# 1 "<command line>"
# 1 "y.c"

# 1 "w.h" 1
# 6 "y.c" 2

main()
{ int x,y,z;

scanf("%d%d",&x,&y);
x *= 7;
y += 7;
z = (x > y) ? (x) : (y);
printf("%d\n",z);

}

The preprocessor’s output, seen above, now can be used in the next stage:

6.1.2 The Actual Compiler, CC1, and the Assembler, AS

Next, GCC will start up another program, cc1, which does the actual code translation. Even cc1 does not
quite do a full compile to machine code. Instead, it compile only to assembly language, producing a file x.s
GCC will then start up the assembler, AS (file name as), which translates x.s to a true machine language (1s
and 0s) file x.o. The latter is called an object file.

Then GCC will go through the same process for y.c, producing y.o.

Finally, GCC will start up the linker program, LD (file name ld), which will splice together x.o and y.o into
an executable file, a.out. GCC will also delete the intermediate .s and .o files it produced along the way, as
they are no longer needed.
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6.2 The Linker: What Is Linked?

Recall our example above of a C program consisting of two source files, x.c and y.c. We noted that the
compilation command,

gcc -g x.c y.c

would temporarily produce two object files, x.o and y.o, and that GCC would call the linker program, LD to
splice these two files together to form the executable file a.out.

Exactly what does the linker do? Well, suppose main() in x.c calls a function f() in y.c. When the compiler
sees the call to f() in x.c, it will say, “Hmm...There is no f() in x.c, so I can’t really translate the call, since
I don’t know the address of f().” So, the compiler will make a little note in x.o to the linker saying, “Dear
linker: When you link x.o with other .o files, you will need to determine where f() is in one of those files,
and then finish translating the call to f() in x.c.”2

Similarly, x.c may declare some global variable, say z, which the code in y.c references. The compiler will
then leave a little note to the linker in y.o, etc.

So, the linker’s job is to resolve issues like this before combining the .o files into one big executable file,
a.out.

It doesn’t matter whether our original source code was C/C++ or assembly language. Machine code is
machine code, no matter what its source is, so the linker won’t care which original language was the source
of which .o file.

Though GCC invokes LD, we can run it directly too, which as we have seen is common in the case of writing
assembly language code.3

6.3 Headers in Executable Files

Even if our source code consists of just one file (as opposed to, for instance, our example of x.c and y.c
above), so that there is nothing to link, we must still invoke the linker to to produce an executable file. There
are a couple of reasons for this.

First, in the case of C, you are linking in libraries without realizing it. If you run the ldd command on an
executable which was compiled from C, you’ll find that the executable uses the C library, libc.so. (More
on ldd below.) At the very least, that library provides a place to begin execution, the label start which we

2Or, in our GCC command line we may ask the linker to get other functions from libraries. See Section 6.4 below.
3We can also apply GCC to the assembly-language file. GCC will notice that the file name has a .s extension, and thus will

invoke the assembler, AS.
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found in Section 3.4.1 is needed, and sets up your program’s stack. That library also includes many basic
functions, such as printf() and scanf().

But beyond that, executable files consist not only of the actual machine code but also a header, a kind of
introduction, at the start of the file. The header will state at what memory locations the various sections are
to be loaded, how large the sections are, at what address execution is to begin, and so on. The linker will
make these decisions, and place them in the header.

The are various standard formats for these headers. In Linux, the ELF format is used. If you are curious, the
Linux readelf command will tell you what is in the header of any executable file. By running this command
with, e.g., the -s option, you can find out the final addresses assigned to your labels by the linker.4

There are headers in object files as well; the Linux command objdump will display these for you.

6.4 Libraries

A library is a conglomeration of several object files, collected together in one convenient place. Libraries
can be either static or dynamic, as explained below. In Unix, library names end with .a (static) or .so
(dynamic), possibly followed by a version number.5 The names also usually start with “lib,” so that for
example libc.so.6 is version 6 of the C library.

When you need code from a static library, the linker physically places the code in with your machine code.
In the dynamic case, though, the linker merely places a note in your machine code, which states which
libraries are needed; at run time, the OS will do the actual linking then. Dynamic libraries save a lot of disk
space and memory (at the slight cost of a bit of a delay in loading the program into memory at run time),
since we only need a single copy of any given library. Here is an overview of how the libraries are created
and used:

One creates a static library by applying the ar command to the given group of .o files, and then possibly
running ranlib. For example:

% gcc -c x.c
% gcc -c y.c
% ar lib8888.a x.o y.o
% ranlib lib8888.a

Later, if someone wants to check what’s inside a static library, one runs ar on the .a file, with the t option,
e.g.

4A more common command for this is nm. It’s more general, as it does not apply only to ELF files, but it only gives symbol
information.

5You may have encountered dynamic libraries on Windows systems, which have the suffix .dll.
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% ar t lib8888.a

To create a dynamic library, one needs to use the -fPIC option when compiling to produce the .o files, and
then one compiles the library by using GCC’s -shared option, e.g.

% gcc -g -c -fPIC x.c
% gcc -g -c -fPIC y.c
% gcc -shared -o lib8888.so x.o y.o

In systems that use ELF, you can check what’s in a dynamic library by using readelf, e.g.

% readelf -s lib8888.so

When you link to a library, GCC’s -l option can be used to state which library to link in. For example, if you
have a C program w.c which calls sqrt(), which is in the math library libm.so, you would type

% gcc -g w.c -lm

The notation “-lxxx” means “link the library named libxxx.a or libxxx.so.”

One point to note, though, is that the library you need may not be in the default directories /usr/lib, /lib and
those listed in /etc/ld.so.cache. If for example your library libqrs.so is in the directory /a/b/c , you would
type

% gcc -g w.c -lqrs -L/a/b/c

This is fine in the static case, but remember that in the dynamic case, the library is not actually acquired
at link time. All that is put in our executable file is the name of the library, but NOT its location. In other
words, in the dynamic case, the -L/a/b/c in the example above is used by the linker to verify that the library
does exist, but this location is NOT recorded. When the program is actually run, the OS will still look only
in the default directories. There are various ways to tell it to look at others. One of the ways is to specify
/a/b/c within the Unix environment variable LD LIBRARY PATH, e.g.

% setenv LD_LIBRARY_PATH /a/b/c

If you need to know which dynamic libraries an executable file needs, run ldd, e.g.

% ldd a.out

Clearly this is a complex topic. If you ever need to know more than what I have in this introduction, plug
something like “shared library tutorial” into a Web search engine.
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6.5 A Look at the Final Product

So, let’s say we take our first sample program, in Section 3.4, and assemble it and link it, with the executable
file being tot.

Recall that we had .data and .text sections. The linker chooses addresses for the sections. We can determine
those, for example, by running

% readelf -s tot

on our executable file tot. The relevant excerpt of the output is

9: 08049094 0 NOTYPE LOCAL DEFAULT 2 x
10: 080490a4 0 NOTYPE LOCAL DEFAULT 2 sum
11: 08048083 0 NOTYPE LOCAL DEFAULT 1 top
12: 0804808b 0 NOTYPE LOCAL DEFAULT 1 done
13: 08048074 0 NOTYPE GLOBAL DEFAULT 1 _start

So we see that ld has arranged things so that, when our program is loaded into memory at run time, the .data
section will start at 0x08049094 and the .text section at 0x08048074.

We can use GDB to confirm that these addresses really hold at run time:

% gdb tot
(gdb) p/x &x
$1 = 0x8049094
(gdb) p/x &_start
$2 = 0x8048074

We can also confirm that the linker really did fix the temporary machine code the assembler had produced
from

movl $x, %ecx

Recall that the assembler didn’t know the address of x, since the location of the .data section would not be
set until later, when the linker ran. So, the assembler left a note in the .o file, asking the linker to put in the
real address. Let’s check that it did:

(gdb) b 24
Breakpoint 1 at 0x804807e: file tot.s, line 24.
(gdb) r
Starting program: /root/50/tot
Breakpoint 1, _start () at tot.s:24
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24 movl $x, %ecx # ECX will point to the current
Current language: auto; currently asm
(gdb) disassemble
Dump of assembler code for function _start:
0x08048074 <_start+0>: mov $0x4,%eax
0x08048079 <_start+5>: mov $0x0,%ebx
0x0804807e <_start+10>: mov $0x8049094,%ecx
End of assembler dump.
(gdb) x/5b 0x0804807e
0x804807e <_start+10>: 0xb9 0x94 0x90 0x04 0x08

We see that the machine code for the instruction really does contain the actual address of x.
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Chapter 7

Subroutines on Intel CPUs

7.1 Overview

Programming classes usually urge the students to use top-down and modular design in their coding. This
in turn means using a lot of calls to functions or methods in C-like languages, which are called subroutines
at the machine/assembly level.1

This document serves as a brief introduction to subroutine calls in Intel machine language. It assumes some
familiarity with Intel 32-bit assembly language, using the AT&T syntax with Linux.

7.2 Stacks

Most CPU types base subroutine calls on the notion of a stack. An executing program will typically have
an area of memory defined for use as a stack. Most CPUs have a special register called the stack pointer
(SP in general, ESP on 32-bit Intel machines), which points to the top of the stack.

Note carefully that the stack is not a “special” area of memory, say with a “fence” around; wherever SP
points, that is the stack. And that is true even if we aren’t using a stack at all, in which case the “stack” is
garbage.

Stacks typically grow toward memory address 0.2 If an item is added—pushed—onto the stack, the SP is
decremented to point to the word preceding the word it originally pointed to, i.e. the word with the next-
lower address than that of the word SP had pointed to beforehand. Similarly SP is incremented if the item
at the top of the stack is popped, i.e. removed. Thus the words following the top of the stack, i.e. with

1This latter term is also used in various high-level languages, such as FORTRAN and Perl.
2For this reason, we usually draw the stack with memory address 0 at the top of the picture, rather than the bottom.
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numerically larger addresses, are considered the interior of the stack.

Say for example we wish to push the value 35 onto the stack. Intel assembly language code to do this would
be, for instance,

subl $4,%esp # expand the stack by one word
movl $35,(%esp) # put 35 in the word which is the new top-of-stack

However, typically a CPU will include a special instruction to do pushes. On Intel machines, for example,
we could do the above using just one instruction:3

push $35

(There is also a pushl instruction, for consistency with instructions like movl, but it is just another name for
push. Note that this is because the items on the stack must be of word size anyway.)

By the way, instructions like

pushl w

where w is a label in the .data section, are legal, a rare exception to Intel’s theme of not allowing direct
memory-to-memory operations.

Similarly, if we wish to pop the stack and have the popped value placed in, say, ECX, we would write

pop %ecx

Note carefully that it is the stack which is popped, not the ECX register.

Keep in mind that a pop does not change memory. The item is still there; the only change is that it is
not considered part of the stack anymore. And the stack pointer merely is a means for indicating what is
considered part of the stack; by definition, the stack consists of the word pointed to by ESP plus all words
at higher addresses than that. The popped item will still be there in memory until such time, if any, that
another push is done, overwriting the item.

A process’ amount of stack space is set when the program is loaded. One can run the Linux commands limit
(C shell) and ulimit (Bash shell) to change this value.

3This would be not only easier to program, but more importantly would also execute more quickly.
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7.3 CALL, RET Instructions

The actual call to a subroutine is done via a CALL instruction. Execution of this instruction consists of two
actions:

• The current value of the PC is pushed on the stack.

• The address of the subroutine is placed into the PC.

We say that the first of these two actions pushes the return address onto the stack, meaning the place that
we wish to return to after we finish executing the subroutine.

Note that both of the actions above, like those of any instruction, are performed by the hardware.

For example, consider the code

call abc
addl %eax,%ebx

At first the PC is pointing to the call instruction. After the instruction is fetched from memory, the CPU, as
usual, increments the PC to point to the next instruction, i.e. the addl. From the first bullet item above, we
see that that latter instruction’s address will be pushed onto the stack — which is good, because we do want
to save that address, as it is the place we wish to return to when the subroutine is done. So, the terminology
used is that the call instruction saves the return address on the stack.

What about the second bullet item above? Its effect is that we do a jump to the subroutine. So, what call
does is save the return address on the stack and then start execution of the subroutine.

The very last instruction which the programmer puts into the subroutine will be ret, a return instruction. It
pops the stack, and places that popped value into the PC. Since the return address had been earlier pushed
onto the stack, we now pop it back off, and the return address will now be in the PC — so we are executing
the instruction immediately following the call, such as the addl in the example above, just as desired.4

7.4 Arguments

Functions in C code usually have arguments (another term used is parameters), and that is also true in
assembly language. The typical way the arguments are passed to the subroutine is again via the stack. We
simply push the arguments onto the stack before the call, and then pop them back off after the subroutine is
done.

4This assumes we’ve been careful to first pop anything we pushed onto the stack subsequent to the call. More on this later.
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For instance, in the example above, suppose the subroutine abc has two integer arguments, and in this
particular instance they will have the values 3 and 12. Then the code above might look like

push $12
push $3
call abc
pop %edx # assumes EDX isn’t saving some other data at this time
pop %edx
addl %eax,%ebx

The subroutine then accesses these arguments via the stack. Say for example abc needs to add the two
arguments and place their sum in ECX. It could be written this way:

...
movl 4(%esp),%ecx
addl 8(%esp),%ecx
...
ret

In that movl, the source operand is 4 bytes past where SP is pointing to, i.e. the next-to-top element of the
stack. In the call example above, this element will be the 3. (The top element of the stack is the return
address, since it was the last item pushed.) The second addl picks up the 12.

Here’s what the stack looks like at the time we execute that movl:

argument 2
argument 1

ESP→ saved return address
towards 0 ↓

7.5 Ensuring Correct Access to the Stack

But wait a minute. What if the calling program above had also been storing something important in ECX?
We must write abc to avoid a clash. So, we first save the old value of ECX—where else but the stack?—and
later restore it. So, the beginning and end of abc might look like this:

push %ecx
...
movl 8(%esp),%ecx
addl 12(%esp),%ecx
... # ECX used here
pop %ecx
ret
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Note that we had to replace the stack offsets 4 and 8 by 8 and 12, to adjust for the fact that one more item
will be on the stack. No one but the programmer can watch out for this kind of thing. The assembler and
hardware, for example, would have no way of knowing that we are wrong if we were to fail to make this
adjustment; we would access the wrong part of the stack, and neither the assembler nor hardware would
complain.

7.6 Cleaning Up the Stack

Also, note that just before the ret, we “clean up” the stack by popping it. This is important for several
reasons:

• Whatever we push onto the stack, we should eventually pop, to avoid inordinate growth of the stack.
For example, we may be using memory near 0 for something else, so if the stack keeps growing, it
will eventually overlap that other data, overwriting it.

• We need to restore ECX to its state prior to the call to abc.

• We need to ensure that the return instance does return to the correct place.5

Note that in our call to abc above, we followed the call with some stack cleanup as well:

pop %edx # assumes EDX isn’t saving some other data at this time
pop %edx

We needed to remove the two arguments which we had pushed before the call, and these two pops do that.

The pop operation insists that the popped value be placed somewhere, so we use EDX in a “garbage can”
role here, since we won’t be using the popped values. Or, we could do it this way:

addl $8,%esp

This would be faster-executing and we wouldn’t have to worry about EDX.

7.7 Full Examples

7.7.1 First Example

In the following modification of an example from Chapter 3, we again sum up elements of an array, but we
handle initialization of the registers by a subroutine. We also allow starting the summmation in the middle

5The reader should ponder what would happen if the programmer here forgot to include that pop just before the return.
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of the array, by specifying the starting point as an argument to the subroutine, and allow specification that
only a given number of elements be summed:

1 .data
2 x:
3 .long 1
4 .long 5
5 .long 2
6 .long 18
7 .long 8888
8 .long 168
9 n: .long 3

10 sum:
11 .long 0
12

13 .text
14 # EAX will contain the number of loop iterations remaining
15 # EBX will contain the sum
16 # ECX will point to the current item to be summed
17

18 .globl _start
19 _start:
20 # push the arguments before call: place to start summing, and
21 # number of items to be summed
22 push $x+4 # here we specify to start summing at the 5
23 push n # here we specify how many to sum
24 call init
25 addl $8, $esp # clean up the stack
26 top: addl (%ecx), %ebx
27 addl $4, %ecx
28 decl %eax
29 jnz top
30 done: movl %ebx, sum
31

32 init:
33 movl $0, %ebx
34 # pick up arguments from the stack
35 mov 8(%esp), %ecx
36 mov 4(%esp), %eax
37 ret

Here is the output assembly listing:

GAS LISTING full.s page 1
1 .data
2 x:
3 0000 01000000 .long 1
4 0004 05000000 .long 5
5 0008 02000000 .long 2
6 000c 12000000 .long 18
7 0010 B8220000 .long 8888
8 0014 A8000000 .long 168
9 0018 03000000 n: .long 3
10 sum:
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11 001c 00000000 .long 0
12
13 .text
14 # EAX will contain the number of loop iterations remaining
15 # EBX will contain the sum
16 # ECX will point to the current item to be summed
17
18 .globl _start
19 _start:
20 # push the arguments before call: place to start summing, and
21 # number of items to be summed
22 0000 68040000 push $x+4 # here we specify to start summing at the 5
22 00
23 0005 FF351800 push n # here we specify how many to sum
23 0000
24 000b E8110000 call init
24 00
25 0010 83C408 addl $8, %esp # clean up the stack
26 0013 0319 top: addl (%ecx), %ebx
27 0015 83C104 addl $4, %ecx
28 0018 48 decl %eax
29 0019 75F8 jnz top
30 001b 891D1C00 done: movl %ebx, sum
30 0000
31
32 init:
33 0021 BB000000 movl $0, %ebx
33 00
34 # pick up arguments from the stack
35 0026 8B4C2408 mov 8(%esp), %ecx
36 002a 8B442404 mov 4(%esp), %eax
37 002e C3 ret

DEFINED SYMBOLS
full.s:2 .data:00000000 x
full.s:9 .data:00000018 n
full.s:10 .data:0000001c sum
full.s:19 .text:00000000 _start
full.s:32 .text:00000021 init
full.s:26 .text:00000013 top
full.s:30 .text:0000001b done

NO UNDEFINED SYMBOLS

Note from line 24 of the assembly output listing that the CALL instruction assembled to e811000000. That
breaks down to an op code of e8 and a distance field of 11000000. The latter (after accounting for little-
endianness) is the distance from the instruction after the CALL to the subroutine, which from lines 25 and
33 can be seen to be 0x0021-0x0010 = 0x11.6

6This is what is known for Intel machines as a near call. Back in the days when Intel CPUs could only access 64K segment of
memory at a time, they needed “near” (within-segment) and “far” (inter-segment) calls, but with the flat 32-bit addressing model
used today, this is outmoded, and everything is “near.”
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Note that in the call to addone(), the argument was the address of x, not x itself. Thus the push instruction
generated by the compiler pushes $x, not x. By contrast, in the translation of the call to printf(), x is pushed.
Note that the format string is an argument too.

To gain a more concrete understanding of how the stack is used in subroutine calls, let’s use GDB to inspect
what happens with the stack when this program is run:

% gdb a.out
GNU gdb Red Hat Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
...
Breakpoint 1, _start () at SubArgsEx.s:24
24 call init
Current language: auto; currently asm
(gdb) p/x $eip
$1 = 0x804807f
(gdb) p/x $esp
$2 = 0xbfffcec8
(gdb) si
33 movl $0, %ebx
(gdb) p/x $eip
$3 = 0x8048093
(gdb) p/x $esp
$4 = 0xbfffcec4
(gdb) x/3w $esp
0xbfffcec4: 0x08048084 0x00000003 0x080490a8
(gdb) p/x &x
$5 = 0x80490a4

So, the PC value changed from 0x804807f to 0x0x8048093, reflecting the fact that a CALL does do a jump.

The CALL also does a push (of the return address), and sure enough, the stack did expand by one word, as
can be seen by the fact that ESP decreased by 4, from 0xbfffcec8 to 0xbfffcec4.

The stack should now have the return address at the top, followed by the value of n and the address of x
plus 4. Let’s check that return address. The PC value just before the call had been, according our GDB
output above, 0x804807f, and since (as discovered above from the output of as -a) the CALL was a 5-byte
instruction, the saved return address should be 0x804807f+5 = 0x8048084, which is indeed what we see on
the top of the stack.

By the way, you should be able to deduce the address at which the .text section begins. Do you see how?

7.7.2 If the PC Points to Garbage, the Machine Will Happily “Execute” the Garbage

Now look at the rest of our GDB session:

(gdb) b done
Breakpoint 2 at 0x804808d: file SubArgsEx.s, line 30.
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(gdb) c
Continuing.

Breakpoint 2, done () at SubArgsEx.s:30
30 done: movl %ebx, sum
(gdb) si
33 movl $0, %ebx
(gdb) p sum
$6 = 25
(gdb) si
35 mov 8(%esp), %ecx
(gdb) q
The program is running. Exit anyway? (y or n) y

After executing the instruction at done, I checked to see if sum was correct, which it was. At that point, I
really should have stopped, since the program was indeed done. But I continued anyway, issuing another si
command to GDB. Did GDB refuse? Did “the little man inside the computer” refuse? Heck, no! Remember,
it’s just a dumb machine. The CPU has no idea that the instruction at done was the last instruction in the
program. So, it keeps going, executing the next instruction in memory. That instruction is the MOV at the
beginning of the subroutine init()! So, you can see that there is nothing “special” about a subroutine. There
is no physical boundary between modules of code, in this case between the calling module and init(). It’s
all just a bunch of instructions.

In the late 1980s, it was not common for personal computers to have virtual memory hardware, nor an
operating system (OS) to take advantage of that hardware if it does exist. Imagine what happened when
a user ran a recursive function, and through error, had not provision to terminate the recursion. Each call
would push material on the stack, resulting in the stack pointer getting closer and closer to 0. But when it
reached 0, it would keep going! Remember, -4 is simply a very large positive number if viewed as unsigned,
which addresses are. So, the program would keep going, and the stack would keep growing.

Eventually the stack would grow to a point at which a push operation would write over the program itself!
This would eventually cause garbage to be executed, which would likely result at some point in execution
of an “instruction” that has a nonexistent op code. This would crash the program.

Along the way, the stack would also overwrite the OS. This would not immediately cause a problem, as the
OS is dormant while your program is running. If your program makes a system call, such as for input/output,
that by definition is a call to the OS, so trouble might arise then. But the recursive function in our example
would probably not do this.

7.7.3 Second Example

The next example speaks for itself, through the comments at the top of the file. By the way, when you read
through it, make sure you understand what we are doing with the SHR instruction.
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1 # the subroutine findfirst(v,w,b) finds the first instance of a value v in a
2 # block of w consecutive words of memory beginning at b, returning
3 # either the index of the word where v was found (0, 1, 2, ...) or -1 if
4 # v was not found; beginning with _start, we have a short test of the
5 # subroutine
6

7 .data # data section
8 x:
9 .long 1

10 .long 5
11 .long 3
12 .long 168
13 .long 8888
14 .text # code section
15 .globl _start # required
16 _start: # required to use this label unless special action taken
17 # push the arguments on the stack, then make the call
18 push $x+4 # start search at the 5
19 push $4 # search 4 words
20 push $168 # search for 168
21 call findfirst
22 done:
23 movl %edi, %edi # dummy instruction for breakpoint
24 findfirst:
25 # finds first instance of a specified value in a block of words
26 # EBX will contain the value to be searched for
27 # ECX will contain the number of words to be searched
28 # EAX will point to the current word to search
29 # return value (EAX) will be index of the word found (-1 if not found)
30 # fetch the arguments from the stack
31 movl 4(%esp), %ebx
32 movl 8(%esp), %ecx
33 movl 12(%esp), %eax
34 movl %eax, %edx # save block start location
35 # top of loop; compare the current word to the search value
36 top: cmpl (%eax), %ebx
37 jz found
38 decl %ecx # decrement counter of number of words left to search
39 jz notthere # if counter has reached 0, the search value isn’t there
40 addl $4, %eax # otherwise, go on to the next word
41 jmp top
42 found:
43 subl %edx, %eax # get offset from start of block
44 shrl $2, %eax # divide by 4, to convert from byte offset to index
45 ret
46 notthere:
47 movl $-1, %eax
48 ret

7.8 Interfacing C/C++ to Assembly Language

Programming in assembly language is very slow, tedious and unclear, so we try to avoid it, sticking to high-
level languages such as C. But in some cases we need to write part of a program in assembly language,
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either because there is something which is highly machine-dependent,7 or because we need extra program
speed and this part of the program is the main time consumer.

A good example is Linux. Most of it is written in C, for convenience and portability across machines,
but small portions are written in assembly language, to get access to certain specific features of the given
hardware. When Linux is ported to a new type of hardware, these portions must be rewritten, but fortunately
they are small.

At first it might seem “unnatural” to combine C and assembly language. But remember, both .c and .s files
are translated to machine language, so we are just combining machine language with machine language, not
unnatural at all.

7.8.1 Example

So, here we will see how we can interface C code to an assembly language subroutine. Here is our C code:

1 // TryAddOne.c, example of interfacing C to assembly language
2 // paired with AddOne.s, which contains the function addone()
3 // compile by assembling AddOne.s first, and then typing
4 //
5 // gcc -g -o tryaddone TryAddOne.c AddOne.o
6 //
7 // to link the two .o files into an executable file tryaddone
8 // (recall the gcc invokes ld)
9

10 int x;
11

12 main()
13

14 { x = 7;
15 addone(&x);
16 printf("%d\n",x); // should print out 8
17 exit(1);
18 }
19

I wrote the function addone() in assembly language. In order to do so, I needed to know how the C compiler
was going to translate the call to addone() to machine/assembly language. In order to determine this, I
compiled the C module with the -S option, which produces an assembly language version of the compiled
code:

1 % gcc -S TryAddOne.c
2 % more TryAddOne.s

7Note that to a large extent we can deal with machine-dependent aspects even from C. We can deal with the fact that different
machines have different word sizes, for example, by using C’s sizeof() construct. However, this is not the case for some other
situations.
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3 .file "TryAddOne.c"
4 .version "01.01"
5 gcc2_compiled.:
6 .section .rodata
7 .LC0:
8 .string "%d\n"
9 .text

10 .align 4
11 .globl main
12 .type main,@function
13 main:
14 pushl %ebp
15 movl %esp, %ebp
16 subl $8, %esp
17 movl $7, x
18 subl $12, %esp
19 pushl $x
20 call addone
21 addl $16, %esp
22 subl $8, %esp
23 pushl x
24 pushl $.LC0
25 call printf
26 addl $16, %esp
27 subl $12, %esp
28 pushl $1
29 call exit
30 .Lfe1:
31 .size main,.Lfe1-main
32 .comm x,4,4
33 .ident "GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-85)"
34 %

There is quite a lot in that .s output file, but the part of interest to us here, for the purpose of writing addone(),
is this:

pushl $x
call addone

This confirms what we expected, that the compiler would produce code that transmits the argument to
addone() by pushing it onto the stack before the call.8 So, we write addone() so as to get the argument from
the stack:

1 # AddOne.s, example of interfacing C to assembly language
2 #
3 # paired with TryAddOne.c, which calls addone
4 #
5 # assemble by typing
6 #
7 # as --gstabs -o AddOne.o AddOne.s

8Note, though, that the compiler also first expanded the stack by 12 bytes, for no apparent reason. More on this below.
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8 #
9

10 # note that we do not have a .data section here, and normally would not;
11 # but we could do so, and if we wanted that .data section to be visible
12 # from the calling C program, we would have .globl lines for whatever
13 # labels we have in that section
14

15 .text
16

17 # need .globl to make addone visible to ld
18 .globl addone
19

20 addone:
21

22 # will use EBX for temporary storage below, and since the calling
23 # module might have a value there, better save the latter on the stack
24 # and restore it when we leave
25 push %ebx
26

27 # at this point the old EBX is on the top of the stack, then the
28 # return address, then the argument, so the latter is at ESP+8
29

30 movl 8(%esp), %ebx
31

32 incl (%ebx) # need the (), since the argument was an address
33

34 # restore value of EBX in the calling module
35 pop %ebx
36

37 ret

The comments here say we should save, and later restore, the EBX register contents as they were prior to the
call. Actually, our main() here does not use EBX in this case (see the assembly language version above),
but since we might in the future want to call addone() from another program, it’s best practice to protect
EBX as we have done here.

So, by the time we reach the movl instruction, the stack looks like this:

argument
saved return address

ESP→ saved EBX value
towards 0 ↓

The movl instruction thus needs to go 8 bytes deep into the stack to pick up the argument, which was
the address of the word to be incremented. Then the incl instruction does the incrementing via indirect
addressing, again since the argument is an address.

The reader is urged to compile/assemble/link as indicated in the comments in the .c and .s files above, and
then execute the program, to see that it does indeed work. Seeing it actually happen will increase your
understanding!
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Note carefully that TryAddOne.c and AddOne.s are not “programs” by themselves. They are each the
source code for a different portion of the same program, the executable file tryaddone. This is no different
from the situation in which we have C source code in two .c files, compile them into two .o files, and then
link to make a single executable.

7.8.2 Cleaning Up the Stack?

Let’s check whether the compiler fulfilled its “civic responsibility ” by cleaning up the stack after the call.
In the .s file produced by gcc -S above, we saw this code:

subl $12, %esp
pushl $x
call addone
addl $16, %esp
subl $8, %esp

This is a bit odd. Since we had only pushed one argument, i.e. one word, the natural cleanup would have
been to then pop one word, as follows:

call addone
addl $4, %esp

(or use a pop instruction instead of the addl). In other words, we should shrink the stack by 4 bytes after the
call. Yet the net effect of the code generated by the compiler is to shrink the stack by 16 - 8 = 8 bytes, not 4.

On the other hand, recall that with the instruction

subl $12, %esp

the compiler expanded the stack by 12 bytes too much before the call. In other words, the overall effect of
the call has been to expand the stack by 12 - (16-8) = 4 bytes!

Supposedly the GCC people designed things this way, to leave gaps between one call and the next on the
stack. This has makes things a little safer, as it is harder for a return address to be accidentally overwritten.

7.8.3 More Sections

By the way, the compiler has used the .comm directive to set up storage for our global variable x. It asks for
4 bytes of space, aligned on an address which is a multiple of 4. (See Section 1.3.1.1.) The linker will later
set things up so that the variable x will be stored in the .bss section, which is like the .data section except
that the data is uninitialized. Recall that in our program above, the declaration of x, a global variable, was
simply
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int x;

If instead the declaration had been

int x = 28;

then x would be in the .data section.

Also, the label .LC0 is in yet another kind of section, .rodata (“read-only data”).

The reader is strongly encouraged to run the Unix nm command on any executable file, say the compiled
version of the C program here. In the output of that command, symbols (names of functions and global
variables) are marked as T, D, B, R and so on, indicating that the item is in the .text section, .data section,
.bss section, .rodata section, etc., and the addresses assigned to them by the linker are shown.

In Linux, the stack section begins at address 0xbfffffff, and as mentioned, grows toward 0. The heap, from
which space is allocated dynamically when your program calls malloc() or invokes the C++ operator new,
starts at 0xbffff000 and grows away from 0.

7.8.4 Multiple Arguments

What if addone() were to have two arguments?9 A look at the output of the compilation of the call to
printf() above shows that arguments are pushed in reverse order, in this case the second before the first.
So, if addone() were to have two arguments, we would have to write the code for the function accordingly,
making use of the fact that the first argument will be closer to the top of the stack than the second.

7.8.5 Nonvoid Return Values

The above discussion presumes that return value for the assembly language function is void. If this is not the
case, then the assembly language function must place the return value in the EAX register. This is because
the C compiler will place code after the call to the function which picks up the return value from EAX.

That assumes that the return value fits in EAX, which is the case for integer, character or pointer values. It
is not the case for the type long long in GCC, implemented on 32-bit Intel machines in 8 bytes. If a function
has type long long, GCC will return the value in the EDX:EAX pair, similar to the IMUL case.

The case of float return values is more complicated. The Intel chip has separate registers and stack for
floating-point operations. See Chapter 4.

9Note that when the C compiler compiles TryAddOne.c above, it does not know how many arguments addone() really has,
since addone() is in a separate source file. (The compiler won’t even know whether that source file is C or assembly code.) It
simply knows how many arguments we have used in this call, which need not be the same.
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7.8.6 Calling C and the C Library from Assembly Language

The same principles apply if one has a C function which one wishes to call from assembly language. We
merely have to take into account the order of parameters, etc., verifying by running gcc -S on the C function.

A bit more care must be taken if we wish to call a C library function, e.g. printf(), from assembly language.
Your call is the same, of course, but the question is how to do the linking. The easiest way to do this is to
actually use GCC, because it will automatically handle linking in the C library, etc.

Here is an example, again from our first assembly language example of summing up four array elements:

1 .data
2

3 x:
4 .long 1
5 .long 5
6 .long 2
7 .long 18
8

9 sum:
10 .long 0
11

12 fmt: .string "%d\n"
13

14 .text
15

16 .globl main
17 main:
18 movl $4, %eax # EAX will serve as a counter for
19 # the number of words left to be summed
20 movl $0, %ebx # EBX will store the sum
21 movl $x, %ecx # ECX will point to the current
22 # element to be summed
23 top: addl (%ecx), %ebx
24 addl $4, %ecx # move pointer to next element
25 decl %eax # decrement counter
26 jnz top # if counter not 0, then loop again
27 printsum:
28 pushl %ebx
29 pushl $fmt
30 call printf
31 done: movl %eax, %eax

We wanted to print out the sum which was in EBX. We know that printf() has as its first parameter the
output format, which is a character string, with the other parameters being the items to print. We only have
one such item here, EBX. So we push it, then push the address of the format string, then call.

We then run it through GCC.

gcc -g -o sum sum.s
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Given that we have chosen to use GCC (which, recall, we did in order to avoid having to learn where the
C library is, etc.), this forced us to chose main as the label for the entry point in our program, instead of
start. This is because GCC will link in the C startup library. The label start is actually in that library, and

when our program here, or any other C program, begins execution, it actually will be at that label. The code
at that label will do some initialization and then will call main. So, we had better have a label main in our
code!

Note that the C library function that you call may use EAX, ECX and EDX! For example, most C library
functions have return values, typically success codes, and of course they are returned in EAX. Recall from
Section 7.8.8.1 that if you write a C function, you don’t have to worry about the calling module having
“live” values in EAX, ECX and EDX—that is, if the calling module is in C. Here it isn’t.

7.8.7 Local Variables

Not only does the compiler use the stack for storage of arguments, it also stores local variables there.
Consider for example

int sum(int *x, int n)
{ int i=0,s=0;

for (i = 0; i < n; i++)
s += x[i];

return s;
}

As mentioned in Chapter 1, the locals will be stored in “reverse” order: The two variables will be in adjacent
words of memory, but the first one, i.e. the one at the lower address, will be s, not i. As you will see below,
this will be done by in essence pushing i and then pushing s onto the stack.

Let’s explore this by viewing the compiled code (in assembly language form) for this by running gcc -S.
Here is an excerpt from the output:10

...
sum:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
movl $0, -8(%ebp)
movl $0, -4(%ebp)

You can see that the compiler first put in code to copy ESP to EBP, a standard operation which is explained
below in Section 7.8.8, and then put in code to expand the stack by 8 bytes for the two local variables.

10Different versions of GCC may produce somewhat different code.
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set both locals to 0.11 Note that the local variables are not really “pushed” onto the stack; there is simply
room made for them on the stack. Note also that later in the compiled code for sum() (not shown here),
the compiler needed to insert code to pop off those local variables from the stack before the ret instruction;
without this, the ret would try to jump to the place pointed to by the first local variable—total nonsense.

7.8.8 Use of EBP

7.8.8.1 GCC Calling Convention

Recall that in Chapter 3, we mentioned that you should not use ESP for general storage if you are using
subroutines. It should now be clear why we noted that restriction. Now, here is a new restriction: If you are
interfacing assembly language to C/C++, you should avoid using the EBP register for general storage. In
this section, we’ll see why.

Note the first three instructions in the implementation of sum() above:

pushl %ebp
movl %esp, %ebp
subl $8, %esp

This prologue is standard for C compilers on Intel machines. The old value of EBP is pushed on the stack;
the current value of ESP is saved in EBP; and the stack is expanded (by decreasing ESP) to allocate space
for the locals.

If you use GCC, then GCC will make sure that the calling module will not have any “live” values in EAX,
ECX or EDX. So, the called module need not save the values in any of these registers. But if the called
module uses ESI, EDI or EBX, the called module must save these in the prologue too.

These are referred in the computer world as calling conventions, a set of guidelines to follow in writing
subroutines for a given machine under a given compiler.

7.8.8.2 The Stack Frame for a Given Call

Consider the following scenario: f() calls g(), which in turn calls h(). At any given time, the stack can be
viewed as being broken down in a portion for each current function call. Each function in that call chain
will be accessing a certain section of the stack, call the stack frame for that function. So in the above
scenario, f() would have a stack frame, below which (i.e. toward memory address 0) would be g()’s stack
frame, below which in turn would be that for h().

11Different versions of gcc may not produce the same code. Always run gcc -S before doing any interfacing of C to assembly
language.
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Consider g() above. The stack frame for g() looks like this (in order of decreasing addresses):

(a) a word containing a pointer to f()’s stack frame

(b) g()’s local variables

(c) extra space used by g() for scratch space via pushes, if any

(d) arguments for the call to h()

(e) return address to get back to g() from h()

Portions (a) and (b) exist immediately after the prologue of g() is executed. Portion (c) may or may not be
added later, depending on whether the author of this function decides to do some pushes. Portions (d) and
(e) will come from h() is called.

At any given time during the execution of g() (after the prologue), EBP points to the beginning of g()’s stack
frame, and ESP points to the end of that frame. As you can see, the end of the frame can move during this
process.

Here is what g()’s stack frame (and a bit of f()’s and h()’s) will consist of, just after the CALL is executed
but before h()’s prologue begins executing:

address in f() to return to when g() is done (end of f()’s frame)
EBP→ address of f()’s stack frame (start of g()’s frame)

g()’s first declared local variable
g()’s second declared local variable
...
g()’s last declared local variable
any stack space g() is currently using as ”scratch area”
last argument in g()’s call to h()
...
second argument in g()’s call to h()
first argument in g()’s call to h()

ESP→ address in g() to return to when h() is done (end of g()’s frame)
address of g()’s stack frame (start of h()’s frame)

towards 0 ↓

Of course, after we execute h()’s prologue, ESP will change again, and will demarcate the end of h()’s stack
frame (and EBP will demarcate the beginning of that frame). Once h() finishes execution, the stack will
shrink back again, and ESP will increase and demarcate the end of g()’s frame again.
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7.8.8.3 The Stack Frames Are Chained

As noted above, in any function’s stack frame, the first (i.e. highest-address) element will contain a pointer
to the beginning of the caller’s stack frame. But the beginning of the caller’s frame will in turn point to the
beginning of its caller’s frame, and so on. In that sense, the beginning elements of the various stack frames
form a linked list, enabling one to trace through the stack information in a chain of nested calls. And since
we know that EBP points to the current frame, we can use that as our starting point in traversing this chain.

The authors of GDB made use of this fact when they implemented GDB’s bt (“backtrace”) command. Let’s
review that command. Consider the following example:

1 void h(int *w)
2 { int z;
3 *w = 13 * *w;
4 }
5

6 int g(int u)
7 { int v;
8 h(&u);
9 v = u + 12;

10 return v;
11 }
12

13 main()
14 { int x,y;
15 x = 5;
16 y = g(x);
17 }

Let’s execute it in GDB:

(gdb) b h
Breakpoint 1 at 0x804833a: file bt.c, line 3.
(gdb) r
Starting program: /root/50/a.out

Breakpoint 1, h (w=0xfef5d2ac) at bt.c:3
3 *w = 13 * *w;
(gdb) bt
#0 h (w=0xfef5d2ac) at bt.c:3
#1 0x08048360 in g (u=5) at bt.c:8
#2 0x0804839c in main () at bt.c:16

We are now in h() (shown as frame 0 in the bt output), having called it from location 0x08048360 in g()
(frame 1), which in turn had been called from location 0x0804839c in main() (frame 2).

And GDB allows us to temporarily change our context to another frame, say frame 1, and take a look around:

(gdb) f 1
#1 0x08048360 in g (u=5) at bt.c:8
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8 h(&u);
(gdb) p u
$1 = 5
(gdb) p v
$2 = 0

Make sure you understand how GDB—which, remember, is itself a program—is able to do this. It does it
by inspecting the stack frames of the various functions, and the way it gets from one frame to another within
the stack is by the fact that the first element in a function’s stack frame is a pointer to the first element of the
caller’s stack frame.

By using the structure shown above, the compiler is ensuring that we will always be able to get to return
addresses, arguments and so on of “ancestral” calls.

7.8.8.4 ENTER and LEAVE Instructions

We’ve noted before that after return from a function call, the caller should clean up the stack, i.e. remove
the arguments it had pushed onto the stack before the call. Similarly, within the function itself there should
be a cleanup, to remove the locals and make sure that EBP is adjusted properly. That means: restoring ESP
and EBP to the values they had before the prologue:

movl %ebp, %esp
popl %ebp

Let’s call this the “epilogue.” The prologue and epilogue codes are some common that Intel included ENTER
and LEAVE instructions in the chip to do them. The above prologue, a three-instruction sequence which set
8 bytes of space for the locals, would be done, for instance, by the single instruction

enter 8, 0

(The 0 is never used in flat memory mode.)

The two-instruction epilogue above can be done with the single instruction

leave

7.8.8.5 Application of Stack Frame Structure

The following code implements a “backtrace” like GDB’s. A user program calls getchain(), which will
return a list of the return addresses of all the current stack frames. It is required that the user program first
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call the function initbase(), which determines the address of main()’s stack frame and stores it in base. It is
assumed that getchain() will not be called from main() itself.

The C prototype is

void getchain(int *chain, int *nchain)

with the space for the array chain and its length nchain provided by the caller.

In reading the code, keep in mind this picture of the stack after the three pushes are done:

address of nchain
address of chain
saved return address from getchain() back to the caller
saved EAX
saved EBX

ESP→ saved ECX
towards 0 ↓

1 .data
2 base: # address of main()’s stack frame
3 .long 0
4

5 .text
6 .globl initbase, getchain
7 initbase: # initializes base
8 movl %ebp, base
9 ret

10 getchain:
11 # register usage:
12 # EAX will point to the current element of chain to be filled
13 # EBX will point to the frame currently being examined
14 push %eax
15 push %ebx
16 push %ecx
17 # get address of chain
18 movl 16(%esp), %eax
19 # get return address from this subroutine, getchain()
20 movl 12(%esp), %ecx
21 # write it to the first element of the chain
22 movl %ecx, (%eax)
23 addl $4, %eax
24 # EBP still points to the caller’s frame, perfect since we don’t want
25 # to include the frame for this subroutine
26 movl %ebp, %ebx
27 # loop through all the frames
28 top:
29 # if this is main()’s frame, then done so leave
30 cmpl %ebx, base
31 jz done
32 # get return address for this frame
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33 movl 4(%ebx), %ecx
34 # write it to chain
35 movl %ecx, (%eax)
36 addl $4, %eax
37 # go to next frame
38 movl (%ebx), %ebx
39 jmp top
40 done:
41 # find nchain, by subtracting start of chain from EAX and adjusting
42 subl 16(%esp), %eax
43 shrl $2, %eax
44 movl 20(%esp), %ebx
45 movl %eax, (%ebx)
46 pop %ecx
47 pop %ebx
48 pop %eax
49 ret

Example of calls:

1 int chain[5],nchain;
2

3 void h(int *w)
4 { int z;
5 int chain[10],nchain;
6 z = *w +28;
7 getchain(chain,&nchain);
8 *w = 13 * z;
9 }

10

11 int g(int u)
12 { int v;
13 h(&u);
14 v = u + 12;
15 getchain(chain,&nchain);
16 return v;
17 }
18

19 main()
20 { int x,y;
21 initbase();
22 x = 5;
23 y = g(x);
24 }

7.8.9 The LEA Instruction Family

The name of the LEA instruction family stands for Load Effective Address. Its action is to compute the
memory address of the first operand, and store that address in the second.

For example, the instruction
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leal -4(%ebp), %eax

computes -4 + c(EBP) and places the result in EAX. If we had a single local variable z within a C function,
the above instruction would be computing &z and placing it in EAX. The compiler often uses this technique.

7.8.10 The Function main() IS a Function, So It Too Has a Stack Frame

It’s important to keep in mind that main() is a function too, so it has information stored on the stack. Recall
that a typical declaration of main() is

int main(int argc, char **argv)

This clearly shows that main() is a function. Note that we’ve given main() an int return value, typically
used as a success code, again illustrating the fact that main() is a function.

Let’s take a closer look. When you compile your program, the compiler (actually linker) puts in some C
library code which is used for startup. Just like your assembly language programs, there is a label there,
start, at which execution begins. The code there will prepare the stack, including the argc and argv

arguments, and will then call main().

Note by the way that we are not required to give these formal parameters the names argc and argv. It is
merely customary. As a veteran C programmer, you know that you can name the formal parameters whatever
you want. When any subroutine is called, the caller, in this case the C library startup code, neither knows
nor cares what the names of the formal parameters are in the module in which the subroutine is defined.

Accordingly, upon entry to main(), the stack will consist of the return address, then argc, then argv, and
space will be made on the stack for any local variables main() may have. To illustrate that, consider the
code

1 main(int argc, char **argv)
2 { int i;
3 printf("%d %s\n",argc,argv[1]);
4 }

After applying gcc -S to this, we get

1 .file "argv.c"
2 .section .rodata
3 .LC0:
4 .string "%d %s\n"
5 .text
6 .align 2
7 .globl main
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8 .type main,@function
9 main:

10 pushl %ebp
11 movl %esp, %ebp
12 subl $8, %esp
13 andl $-16, %esp
14 movl $0, %eax
15 subl %eax, %esp
16 subl $4, %esp
17 movl 12(%ebp), %eax
18 addl $4, %eax
19 pushl (%eax)
20 pushl 8(%ebp)
21 pushl $.LC0
22 call printf
23 addl $16, %esp
24 leave
25 ret
26 .Lfe1:
27 .size main,.Lfe1-main
28 .ident "GCC: (GNU) 3.2 20020903 (Red Hat Linux 8.0 3.2-7)"

We see that argc and argv are 8 and 12 bytes from EBP, respectively. This makes sense, since from Section
7.8.8 we know that upon entry to main(), the stack headed by the place pointed to by EBP will look like
this:

argv
argc
return address
saved EBP

At the end of main(), the GCC compiler will put the return value in EAX, and will produce a LEAVE
instruction.

Let’s look at this from one more angle, by running this program via GDB:

1 % gcc -S argv.c
2 % as --gstabs -o argv.o argv.s
3 % gcc -g argv.o
4 % gdb -q a.out
5 (gdb) b 10
6 Breakpoint 1 at 0x8048328: file argv.s, line 10.
7 (gdb) r abc def
8 Starting program:
9 /fandrhome/matloff/public_html/matloff/public_html/50/PLN/a.out abc def

10

11 Breakpoint 1, main () at argv.s:10
12 10 pushl %ebp
13 Current language: auto; currently asm
14 (gdb) x/3x $esp
15 0xbfffe33c: 0x42015967 0x00000003 0xbfffe384
16 (gdb) x/3x 0xbfffe384
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17 0xbfffe384: 0xbfffe95c 0xbfffe99c 0xbfffe9a0
18 (gdb) x/s 0xbfffe95c
19 0xbfffe95c:
20 "/fandrhome/matloff/public_html/matloff/public_html/50/PLN/a.out"
21 (gdb) x/s 0xbfffe99c
22 0xbfffe99c: "abc"
23 (gdb) x/s 0xbfffe9a0
24 0xbfffe9a0: "def"

So we see that the return address to the C library is 0x42015967, argc is 3 and argv is 0xbfffe384. The latter
should be a pointer to an array of three strings, which is confirmed in the subsequent GDB commands.

By the way, the instruction

andl $-16, %esp

forces the top of the stack to be located at an address which is a multiple of 16. (It zeros out the last 4 bits.)
The hardware structure makes memory accesses at such addresses most efficient.

By the way, the C library code provides a third argument to main() as well, which is a pointer to the envi-
ronment variables (current working directory, executable search path, username, etc.). Then the declaration
would be

int main(int argc, char **argv, char **envp)

7.8.11 Once Again, There Are No Types at the Hardware Level!

You have been schooled—properly so—in your beginning programming classes about the importance of
scope, meaning which variables are accessible or inaccessible from which parts of a program. But if a
variable is inaccessible from a certain point in a program, that is merely the compiler doing its gatekeeper
work for that language. It is NOT a restriction by the hardware. There is no such thing as scope at the
hardware level. ANY instruction in a program—remember, all C/C++ and assembly code gets translated to
machine instructions—can access ANY data item ANYWHERE in the program.

In C++, you were probably taught a slogan of the form

“A private member of a class cannot be accessed from anywhere outside the class.”

But that is not true. The correct form of the statement should be

“The compiler will refuse to compile any C++ code you write which attempts to access by name
a private member of a class from anywhere outside the class.”



7.8. INTERFACING C/C++ TO ASSEMBLY LANGUAGE 153

Again, the gatekeeper here is the compiler, not the hardware. The compiler’s actions are desirable, because
the notion of scope helps us to organize our data, but it has no physical meaning. Consider this example:

1 #include <iostream.h>
2

3 class c {
4 private:
5 int x;
6 public:
7 c(); // constructor
8 // printx() prints out x
9 void printx() { cout << x << endl; }

10 };
11

12 c::c()
13 { x = 5; }
14

15 int main(int argc, char *argv[])
16 { c ci;
17 ci.printx(); // prints 5
18 // now point p to ci, thus to the first word at ci, i.e. x
19 int *p = (int *) &ci;
20 *p = 29; // change x to 29
21 ci.printx(); // prints 29
22 }

The point is that the member variable x in the class c, though private, is nevertheless in memory, and we
can get to any memory location by setting a pointer variable to that location. That is what we have done
in this example. We’ve managed to change the value of x in an instance of the class through code which is
outside the class.

The point also applies to local variables. We can actually access a local variable in one function from code
in another function. The following example demonstrates that (make sure to review Section 7.8.8 before
reading the example):

1 void g()
2 { int i,*p;
3 p = &i;
4 p = p + 1; // p now points to main()’s EBP
5 p = *p; // p now equals main()’s EBP value
6 p = p - 1; // p now points to main()’s x
7 *p = 29; // changes x to 29
8 }
9

10 main()
11 { int x = 5; // x is local to main()
12 g();
13 printf("%d\n",x); // prints out 29
14 }
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7.8.12 What About C++?

If the calling program is C++ instead of C, you must inform the compiler that the assembly language routine
is “C style,” by inserting

extern "C" void addone(int *);

(for our earlier example) in the C++ source file. You need to do this, because your assembly language
routine will be in the C style, i.e. utilize C conventions such as that concerning EBP above.

In the case of instance (i.e. non-static) functions, note that the this pointer is essentially an argument too.
The convention is that it is pushed last, i.e. it is treated as the first argument.

7.8.13 Putting It All Together

To illustrate a number of the concepts we’ve covered here, let’s look at the full assembly code produced
from the function sum() in Section 7.8.7. Here is the original C and then the compiled code:

1 int sum(int *x, int n)
2 { int i=0,s=0;
3

4 for (i = 0; i < n; i++)
5 s += x[i];
6 return s;
7 }

1 .file "sum.c"
2 .text
3 .align 2
4 .globl sum
5 .type sum,@function
6 sum:
7 pushl %ebp
8 movl %esp, %ebp
9 subl $8, %esp

10 movl $0, -4(%ebp)
11 movl $0, -8(%ebp)
12 movl $0, -4(%ebp)
13 .L2:
14 movl -4(%ebp), %eax
15 cmpl 12(%ebp), %eax
16 jl .L5
17 jmp .L3
18 .L5:
19 movl -4(%ebp), %eax
20 leal 0(,%eax,4), %edx
21 movl 8(%ebp), %eax
22 movl (%eax,%edx), %edx
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23 leal -8(%ebp), %eax
24 addl %edx, (%eax)
25 leal -4(%ebp), %eax
26 incl (%eax)
27 jmp .L2
28 .L3:
29 movl -8(%ebp), %eax
30 leave
31 ret
32 .Lfe1:
33 .size sum,.Lfe1-sum
34 .ident "GCC: (GNU) 3.2 20020903 (Red Hat Linux 8.0 3.2-7)"

We see that the compiler has first placed the standard prologue at the beginning of the code, allowing for
two local variables:

1 sum:
2 pushl %ebp
3 movl %esp, %ebp
4 subl $8, %esp

It then initializes both of those locals to 0.

1 movl $0, -4(%ebp)
2 movl $0, -8(%ebp)

Since our code sets i to 0 twice, the compiler does so too, since we didn’t ask the compiler to optimize.

Our for loop compares i to n, which is done here:

1 movl -4(%ebp), %eax
2 cmpl 12(%ebp), %eax
3 jl .L5
4 jmp .L3

The code must add x[i] to the sum:

1 .L5:
2 movl -4(%ebp), %eax
3 leal 0(,%eax,4), %edx
4 movl 8(%ebp), %eax
5 movl (%eax,%edx), %edx
6 leal -8(%ebp), %eax
7 addl %edx, (%eax)

Note the use of the LEA instruction and advanced addressing modes.

We need to increment i and go to the top of the loop:
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1 leal -4(%ebp), %eax
2 incl (%eax)
3 jmp .L2

When the function is finished, it needs to put the sum in EAX, as described in Section 7.8.5, clean up the
stack and return:

1 .L3:
2 movl -8(%ebp), %eax
3 leave
4 ret

Note the use of the LEAVE instruction.

Now, what if we declare that local variable s as static?

1 int sum(int *x, int n)
2 { int i=0; static s=0;
3

4 for (i = 0; i < n; i++)
5 s += x[i];
6 return s;
7 }

Recall that this means that the variable will retain its value from one call to the next.12 That means that the
compile can’t use the stack for storage of this variable, as it would likely get overwritten by calls from other
subroutines. So, it must be stored in a .data section:

1 .file "Sum.c"
2 .data
3 .align 4
4 .type s.0,@object
5 .size s.0,4
6 s.0:
7 .long 0
8 .text
9 .align 2

10 .globl sum
11 .type sum,@function
12 sum:
13 pushl %ebp
14 movl %esp, %ebp
15 subl $4, %esp
16 movl $0, -4(%ebp)
17 movl $0, -4(%ebp)
18 .L2:
19 movl -4(%ebp), %eax

12Our code initializes s to 0, but this is done only once, as you can see from the assembly language here.
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20 cmpl 12(%ebp), %eax
21 jl .L5
22 jmp .L3
23 .L5:
24 movl -4(%ebp), %eax
25 leal 0(,%eax,4), %edx
26 movl 8(%ebp), %eax
27 movl (%eax,%edx), %eax
28 addl %eax, s.0
29 leal -4(%ebp), %eax
30 incl (%eax)
31 jmp .L2
32 .L3:
33 movl s.0, %eax
34 leave
35 ret
36 .Lfe1:
37 .size sum,.Lfe1-sum
38 .ident "GCC: (GNU) 3.2 20020903 (Red Hat Linux 8.0 3.2-7)"

You can tell from the code

movl s.0, %eax
leave
ret

that our C variable s is being stored at a label s.0 in the .data section.

7.9 Subroutine Calls/Returns Are “Expensive”

On most machines, subroutine calls and returns add overhead. Not only does it mean that extra instructions
must be executed, but also stack access, being memory access, is slow. So, it makes sense to ask how CPUs
could be designed to speed this up.

One approach would be to make a special cache for the stack. Note that since the stack is in memory, some
of it may be in an ordinary cache, but by devoting a special cache to the stack, we would decrease the cache
miss rate for the stack.

But a more aggressive approach would be to design the CPU so that the top few stack elements are in the
CPU itself. This is done in Sun Microsystems’ SPARC chip, and was done back in the 60s and 70s on
Burroughs mainframes. This would be better than a special cache, since the latter, with its complex circuitry
for miss processing and so on, would have more delay.

On the other hand, space on a chip is precious. It may be that such usage of the space may not be as good as
some other usage.
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7.10 Debugging Assembly Language Subroutines

7.10.1 Focus on the Stack

At first, debugging assembly language subroutines would seem to be similar to debugging assembly lan-
guage in general, and for that matter, debugging any kinds of code. However, what makes the assembly-
language subroutine case special is the use of the stack. Many bugs involve errors in accessing the stack,
such as failure to restore a register value which had been saved on the stack.

Recall that the essence of good debugging is confirmation. One uses the debugger, say ddd, to step through
one’s code line by line, and in each line confirms that our stored data (variables in C/C++, register and
memory values in assembly language) have the values we expect them to. In stepping through our code,
we also confirm that we execute the lines we expect to be executed, such as a conditional branch being
taken when we expect it to be taken. Eventually this process will lead us to a line in which we find that our
confirmation fails. This then will pinpoint where our bug is, and we can start to analyze what is wrong with
that line.

For assembly language subroutines, our confirmation process consists of confirming that the contents of the
stack are exactly as we expect them to be. Eventually we will find a line of code at which that confirmation
fails, and we then will have pinpointed the location of our bug, and we can start to analyze what is wrong
with that line.

To do that, you have to know how to inspect the stack from within your debugger, e.g. ddd. The key point
is that the stack is part of memory, and the debugger allows you to inspect memory. So, first find out from
the debugger the current value of ESP, and then inspect a few words of memory starting at wherever ESP
points to, e.g.

x/4w $esp

to inspect the first four words of the stack in GDB.13

Note that if during a debugging session you run your program several times without exiting GDB,14 the
stack will keep growing. Thus any stack addresses which you jot down for later use may become incorrect.

7.10.2 A Special Consideration When Interfacing C/C++ with Assembly Language

When you are interfacing C/C++ to assembly language and while debugging you reach a function call in your
C/C++ code, it is often useful to view the assembly language, especially the addresses of the instructions.

13You can now see an advantage of designing the hardware so that stacks grow toward 0. This causes consecutive elements of
the stack to be in consecutive locations, making it easier to inspect the stack.

14And this is the proper way to do it. You SHOULD stay in GDB from one run to the next, so as to retain your breakpoints etc.
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You may find GDB’s disassemble command useful in this regard. It reverse-translates the machine code
for the program into assembly language (regardless of whether the program source was originally assembly
language or C/C++), and lists the assembly language instructions and their addresses. Note that the latter
will be addresses with respect to the linker’s assignments of the .text section location, not offsets as in the
output of as -a. Also note that .data section symbols won’t appear; the actual addresses will show up.

The disassemble command has several formats. If you run it without arguments, it will disassemble the
code near your current location. You can also run it on any label in the .text section, e.g.

(gdb) disas _start

and

(gdb) disas main

In the latter case, where we have a function name, the entire function will be disassembled.

You can also specify a range of memory addresses, e.g.

(gdb) disas 0x08048083 0x08048099

7.11 Macros

Subroutines—functions, at the C/C++ level—are really good for writing one’s code in a modular manner,
which is a highly laudable goal. However, they are costly in terms of performance.

A subroutine/function call involves one or more pushes onto the stack, and it involves a jump. The pushes
take time, as does the jump. This causes a slowdown. And since pushes and instruction fetches involve the
memory, the call increases the number of memory accesses, and thus increases the chance of a cache miss,
the latter being a big blow to performance.

A macro is like a subroutine in the sense that it makes one’s programming more modular, but without such
overhead. Instead, it is merely yet another “abbreviation” for the clerk, albeit one that makes our code
modular.

To see what this means, consider this example from Chapter 3:

1 .data
2 x:
3 .long 1
4 .long 5
5 .long 2
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6 .long 18
7 sum:
8 .long 0
9 .text

10 .globl _start
11 _start:
12 movl $4, %eax
13 movl $0, %ebx
14 movl $x, %ecx
15 top: addl (%ecx), %ebx
16 addl $4, %ecx
17 decl %eax
18 jnz top
19 done: movl %ebx, sum

Those first three lines of executable code,

movl $4, %eax
movl $0, %ebx
movl $x, %ecx

perform various initializations. To make our program more modular, we could make a subroutine out of
them, say as init() in Section 7.7 (either with or without the argument). This would be fine, but it would
slow down the execution of the program a bit, as noted above.

An alternative would be to convert those three instructions to a macro:

1 .macro init
2 movl $4, %eax
3 movl $0, %ebx
4 movl $x, %ecx
5 .endm
6

7 .data
8 x:
9 .long 1

10 .long 5
11 .long 2
12 .long 18
13 sum:
14 .long 0
15

16 .text
17 .globl _start
18 _start:
19 init
20 top: addl (%ecx), %ebx
21 addl $4, %ecx
22 decl %eax
23 jnz top
24 done: movl %ebx, sum
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Though the “init” at start has the look of a subroutine call, it really isn’t. Instead, when the assembler sees
this line at start, it replaces that line with the three lines of code defined for “init” at the top of the file. In
our definition of this macro init, starting with .macro and ending with .endm, we are saying to the clerk,
“Clerk, if you ever see a line in my assembly file here that consists of init, treat that as if I had typed the
following code at that point...”

In other words, the macro version of the program will produce exactly the same machine code as did the
original nonmodular version. We can see this by running both files through as -a; here are excerpts from the
outputs of this command from the original and macro versions of the program:

...
23 _start:
24 0000 B8040000 movl $4, %eax
24 00
25 0005 BB000000 movl $0, %ebx
25 00
26 000a B9000000 movl $x, %ecx
26 00
27 000f 0319 top: addl (%ecx), %ebx

...

...
20 _start:
21 0000 B8040000 init
21 00BB0000
21 0000B900
21 000000
22 000f 0319 top: addl (%ecx), %ebx

...

So, both versions of the program would produce the same .o file. By contrast, the subroutine version
produces different code:

...
23 _start:
24 0000 E80E0000 call init
24 00
25 0005 0319 top: addl (%ecx), %ebx

...
31 init:
32 0013 B8040000 movl $4, %eax
32 00
33 0018 BB000000 movl $0, %ebx
33 00
34 001d B9000000 movl $x, %ecx
34 00
35 0022 C3 ret

Note the machine code for the call instruction and the ret. So, by using a macro we get the efficiency of the
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nonmodular version while still getting a modular view for the programmer.15

Macros allow arguments too. Within a macro itself, the macro’s arguments are rereferred to using back-
slashes.

For example, the macro yyy has two arguments, u and v:

.macro yyy u,v
movl \u,%eax
addl \v,%eax

.endm

So the call

yyy $5,$12

will produce the same code as we had written

movl $5, %eax
addl $12, %eax

Similarly, the call

yyy %ebx,y

will produce the same code as we had written

movl %ebx, %eax
addl y, %eax

Note that here we could not even use a subroutine instead of the macro, as the subroutine could not do
“substitution” for us.

Since macros give us the modularizing benefit of subroutines without their performance-inhibiting overhead,
why just always use macros? Here are some reasons:

• Macros make the program’s executable file larger. If we call the same macro at many different points
in a program, we get many copies of the code.

• Debugging tools usually do not handle macros well.
15Though this modular view will not appear in a debugging tool, a drawback.
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• Macros cannot handle recursion.16

You can write macros in C/C++ too, e.g.

#define PRINT2INTS(i1,i2) (printf("%d %d\n",i1,i2))

main()
{ PRINT2INTS(5,12); }

7.12 Inline Assembly Code for C++

The C++ language includes an asm construct, which allows you to embed assembly language source code
right there in the midst of your C++ code.17

This feature is useful, for instance, to get access to some of the fast features of the hardware. For example,
say you wanted to make use of Intel’s fast MOVS string copy instruction. You could write an assembly
language subroutine using MOVS and then link it to your C++ program, but that would add the overhead of
subroutine call/return. Instead, you could write the MOVS code there in your C++ source file.

Here’s a very short, overly simple example:

// file a.c

int x;

main()

{ scanf("%d",&x);
__asm__("pushl x");

}

After doing

gcc -S a.c

the file a.s will be

.file "a.c"

.section .rodata

16Pointed out by Mikel McDaniel. Of course, one can do recursion “by hand,” by managing a stack with one’s own code, but the
point is that subroutines do this automatically.

17This is, as far as I know, available in most C++ compilers. Both GCC and Microsoft’s C++ compiler allow it.
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.LC0:
.string "%d"
.text

.globl main
.type main, @function

main:
leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $20, %esp
movl $x, 4(%esp)
movl $.LC0, (%esp)
call scanf

#APP
pushl x

#NO_APP
addl $20, %esp
popl %ecx

Our assembly language is bracketed by APP and NO APP, and sure enough, it is

pushl x

For an introduction to how to use this feature, see the tutorials on the Web; just plug “inline assembly
tutorial” into Google. For instance, there is one at http://www.opennet.ru/base/dev/gccasm.
txt.html.

http://www.opennet.ru/base/dev/gccasm.txt.html
http://www.opennet.ru/base/dev/gccasm.txt.html


Chapter 8

Overview of Input/Output Mechanisms

8.1 Introduction

During the early days of computers, input/output (I/O) was of very little importance. Instead computers,
as their name implied, were used to compute. A typical application might involve huge mathematical
calculations needed for some problem in physics. The I/O done in such an application would be quite
minimal, with the machine grinding away for hours at a time with little or no I/O being done.

Today, I/O plays a key role in computer applications. In fact, applications in which I/O plays an important
role can arguably be viewed as the most powerful “driving force” behind the revolutionary rise to prominence
of computers in the last decade or two. Today we make use of computers in numerous aspects of our business
and personal lives–and in the vast majority of such uses, the programs center around I/O operations.

In some of these applications, the use of a computer is fairly obvious: First and foremost, the Internet, but
also credit-card billing, airline reservations, word processors, spreadsheets, automatic teller machines, real
estate databases, drafting programs for architects, video games, and so on. Possibly less obvious is the
existence of computers in automobiles, and in such household items as washing machines and autofocus
cameras. However, whether the existence of computers in these applications is obvious or hidden, the
common theme behind them is that they all are running programs in which I/O plays an important
role, usually the dominant role.

To give some concrete of the central role played by I/O, consider the example of the ATM machine. Here
are some of the I/O devices the computer in the machine will have:

• The motor used to drag the card in and push it out.

• The scanner which reads the magnetic strip on the card.

165
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• The motors used to prepare and push out the cash.

• The screen and keypad.

• The connection to the network (which leads to a central computer for the bank chain).

8.2 I/O Ports and Device Structure

An I/O device connects to the system bus through ports. I/O ports are similar in structure to CPU registers.
However, a port is not in the CPU, being instead located between the I/O device and the system bus, in the
interface card for the device.

Ports are usually 8 bits in width. They have addresses, just like words in memory do, and these addresses
are given meaning through the address bus, just as is the case for words in memory.

8.3 Program Access to I/O Ports

Note that a potential ambiguity arises. Suppose we wish to communicate with port 50, which is connected
to some I/O device. The CPU will place the value 50 in the MAR to go out onto the address bus. Since all
items which are connected to the bus will see what is on the address bus, how can they distinguish this 50,
intended for an I/O port, from a value of 50 meant to address 50 of memory? In other words, how can the
CPU indicate that it wants to address I/O port 50 rather than memory word 50? There are two fundamental
systems for handling this problem, described next.

8.3.1 I/O Address Space Approach

Recall that the system bus of a computer consists of an address bus, a data bus, and a control bus. The
control bus in many computers, such as those based on Intel CPUs, has a special line or lines to indicate that
the current value on the address bus is meant to indicate an I/O port, rather than a word in memory. We will
assume four such lines, MR (memory read), MW (memory write), IOR (I/O read) and IOW (I/O write).

To access I/O port 50, the CPU will assert either IOR or IOW (depending on whether it wants to read from
or write to that port), while to access word 50 in memory, the CPU will assert either MR or MW. In either
case the CPU will place the value 50 on the address bus, but the values it simultaneously places on these
lines in the control bus will distinguish between I/O port 50 and word 50 of memory.

The programmer himself or herself controls which of these lines will be asserted, by choosing which in-
struction to use.



8.3. PROGRAM ACCESS TO I/O PORTS 167

movb 50, %al

and

inb $50, %al

will both cause the value 50 to go out onto the address bus, and in both cases the response will be sent back
via the data bus. But the MOV will assert the MR line in the control bus, while the IN instruction will assert
the IOR line in that bus. As a result, the MOV will result in copying the memory byte at address 50 to AL,
while the IN will copy the byte from I/O port 50 to AL.1

Since the lines IOR/IOW and MR/MW allow us to distinguish between I/O ports and memory words having
identical addresses, we can describe this by saying that the I/O ports have a separate address space from
that of memory. Thus we will call this the I/O address space approach.

Note the profound hardward dependency here. The asserting of IOR/IOW or MR/MW comes from using
IN/OUT or MOV, respectively, and thus the machine must have such instructions.

8.3.2 Memory-Mapped I/O Approach

Another approach to the “duplicate port/memory address” problem described above is called memory-
mapped I/O.”2

Under this approach, there are no special lines in the control bus to indicate I/O access versus memory access
(though there still must be one or two lines to distinguish a read from a write, of course), and thus no special
I/O instructions such as IN and OUT. One simply uses ordinary instructions such as MOV, whether one is
accessing I/O ports or memory. Of course, the people who put the computer together must avoid placing
memory at the addresses used by I/O ports.

An advantage of memory-mapped I/O is that it can be done directly in C, e.g.:

char c,*p;
...
p = 50;
c = *p;

Say c and p were global variables. Then the compiler will likely translate the line
1You may wonder why the dollar sign is needed in the second instruction, which seems inconsistent with that of the first

instruction. But this comes from Intel tradition, so we are stuck with it.
2Unfortunately, many terms in the computer field are “overloaded.” It has become common on personal computers to refer to

the mapping of video monitor pixels to memory addresses also as “memory-mapped I/O.” However, this is not the original use of
the term, and should not be confused with what we are discussing here.
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c = *p;

to something like

movl p, %ebx
movb (%ebx), %al
movb %al, c

So you can see that from the CPU’s point of view, reading that I/O port, which is done by the instructions

movb (%ebx), %al

is the same as reading from memory. Indeed, the CPU is not aware of the fact that we are reading from an
I/O port, which has a very different operation and physical structure from memory.

8.4 Wait-Loop I/O

Consider the case of reading a character from the keyboard. The program which will read the character has
no idea when the user will hit a key on the keyboard. How should the program be written to deal with this
time problem? (Note that we are for the moment discussing programs which directly access the keyboard,
rather than going through the operating system, as is the case with programs you usually write; more on this
point later.)

On an Intel-based PC, the keyboard data port (KDP) has address 0x60, and its status port (KSP) is at 0x62.
Among other things, the KSP tells us whether a key has been typed yet; Bit 4 will be 1 if so, 0 otherwise.3

Bit 5 of the KSP plays a role too. When we read the character, we have to notify the keyboard hardware that
we’ve gotten it, so that it can give us another character when one is typed. To do this, we briefly set Bit 5 to
1 and then back to 0. This will cause Bit 4 of the KSP to revert to 0 too.

Wait-loop I/O then consists of writing a loop, in which the program keeps testing Bit 4 of the KSP until
that bit indicates “character ready,” and then read the character from KDP into some register:4

1 # loop around until a character is ready
2 lp:
3 inb $0x62, %bl # get value of KSP
4 andb $0x10, %bl # check Bit 4
5 jz lp # if that bit is 0, try again
6 ready:

3As usual, we are naming the least significant bit “Bit 0,” etc.
4By the way we won’t have the character in ASCII form. Instead, we will have it as a scan code. More on this below.
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7 # get the character
8 inb $0x60, %cl
9 # acknowlege getting the character

10 # set Bit 5 of KSP to 1
11 orb $0x20, %bl
12 outb %bl, $0x62
13 # reset Bit 5 of KSP to 0
14 andb $0xdf, %bl
15 outb %bl, $0x62
16 done:

During the time before the user hits a key, the value read from the KSP will always have a 0 in Bit 4, so that
the AND results in 0, and we jump back to lp. But eventually the user will hit a key, resulting in Bit 4 of
the KSP being 1, and we leave the loop. We then pick up the character in the code starting at done.

8.5 PC Keyboards

On Intel- (or Intel clone-) based PCs, the keyboard is not directly wired for ASCII. Instead, each of the keys
has its own scan code—actually two codes, one which the keyboard emits when a key is pressed and the
other, 128 more than the first code, which the keyboard emits when the key is released. For example, the A
key has codes 0x1e and 0x9e, respectively.5 The keyboard driver will then convert to ASCII.

Say for instance that the user wishes to type ‘A’, i.e. the capital letter. She may hit the left Shift key (code
0x2a), then hit the A key (code 0x1e), then release the A key (code 0x9e) then release the left Shift key
(code 0xaa). The keyboard driver can be written to notice that when the A key is hit, the Shift key has not
yet been released, and thus the user must mean a capital ‘A’. The driver then produces the ASCII code 0x41.

8.6 Interrupt-Driven I/O

8.6.1 Telephone Analogy

Wait-loop I/O is very wasteful. Usually the speed of I/O device is very slow compared to CPU speed. This
is particularly true for I/O devices which are mainly of a mechanical rather than a purely electronic nature,
such as printers and disk drives, and thus are usually orders of magnitude slower than CPU actions. It is
even worse for a keyboard: Not only is human typing extremely slow relative to CPU speeds, but also a lot
of the time the user is not typing at all; he/she may be thinking, taking a break, or whatever.

Accordingly, if we use wait-loop I/O, the CPU must execute the wait loop many times between successive
I/O actions. This is wasted time and wasted CPU cycles.

5These codes are for keyboards with a standard connection to the computer. Keyboards with a USB-based connection use a
different set of scan codes.
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An analogy is the following. Suppose you are expecting an important phone call at the office. Imagine how
wasteful it would be if phones didn’t have bells—-you would have to repeatedly say, “Hello, hello, hello, ...”
into the phone until the call actually came in! This would be a big waste of time. The bell in the phone frees
you from this; you can do other things around the office, without paying attention to the phone, because the
bell will notify you when a call arrives.

Thus it would be nice to have an analog of a telephone bell in the computer. This does exist, in the form of
an interrupt. It takes the form of a pulse of current sent to the CPU by an I/O device. This pulse forces the
CPU to suspend, i.e. “interrupt,” the currently-running program, say “X,” and switch execution to another
procedure, which we term the interrupt service routine (ISR) for that I/O device.6

The ISR is usually is known as the device driver for that I/O device. It is typically part of the operating
system, but it of course exists on systems without an OS too.

8.6.2 What Happens When an Interrupt Occurs?

Think for example of the keyboard or any other I/O device which receives characters.

There will be an interrupt request line (IRQ) in the control bus. When an I/O device receives a character, it
will assert IRQ.

Recall that we have described the CPU as repeatedly doing Step A, Step B, Step C, Step A, Step B, etc.
where Step A is instruction fetch, Step B is instruction decode, and Step C is instruction execution. Well,
in addition, the CPU will check the IRQ line after every Step C it does. If it sees IRQ asserted, it will do a
Step D, consisting of the following in the Intel case:

CPU pushes current EFLAGS value on stack
CPU pushes current CS value on stack (irrelevant in 32-bit protected mode)
CPU pushes current PC value on stack
CPU does PC <-- ISR addresss

The next Step A will, as usual, fetch from wherever the PC points, which in this case will be the ISR. The
ISR will start executing.

At the end of the ISR there will be an IRET (“interrupt return”) instruction, which “undoes” all of this:

CPU pops stack and placed popped value into PC
CPU pops stack and placed popped value into CS
CPU pops stack and placed popped value into EFLAGS

6This is called a hardware interrupt or external interrupt. Those who have done prior assembly-language programming on
PCs should not confuse this with the INT instruction. The latter is almost the same as a procedure CALL instruction, and is used
on PCs to implement systems calls, i.e. calls to the operating system.
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Say this occurs when persons X and Y are both using this machine, say X at the console and Y remotely
via ssh. X’s and Y’s programs take turns using the machine (details in Chapter ??). Say during Y’s turn,
X types a character. That causes an interrupt, which will be noticed by the CPU when it finishes Step C of
whatever instruction in Y’s program it had been executing when X hit the key.

From the above description, you can see that the CPU will make a sudden jump to the ISR, so Y’s program
will stop running. But the hardware saves the current PC and EFLAGS values of Y’s program on the stack,
so that Y’s program can resume later in exactly the same conditions it had at the time it was interrupted.
Note carefully that all of that will be done by the hardware, without a single instruction being executed.

The IRET instruction at the end of the ISR is what restores those conditions. Note for instance that it is
crucial that Y’s EFLAGS value be restored. If for example Y was in the midst of executing the first of the
pair of instructions

subl %eax, %ebx
jz x

execution of the second, which will occur when Y’s program resumes, will check whether the Z (Zero) flag
in EFLAGS had been set by the SUB instruction. So, EFLAGS must be saved by the CPU when the interrupt
occurs, and restored by the IRET.

Make absolutely SURE you understand that the jump to the ISR did NOT occur from a jump or call instruc-
tion in Y’s program. Y did nothing to cause that jump. However, the jump back to Y did occur because the
OS programmer put an IRET at the end of the ISR.

Note too what happens if Y hits a key while X’s program is running. That will cause an interrupt to be felt
at Y’s CPU, which will result in it sending the character through the network, eventually ending up in the
Ethernet data port of the machine where X is–causing an interrupt on THAT machine.

8.6.3 Game Example

Consider a situation in which we’re devloping a game program, to run on a dedicated computer, i.e. the
computer is used only for the game.

Suppose that when the user is doing nothing, the program is continually computing to display animation
on the screen. When the game player hits a key, moves the mouse or joystick, or whatever, we want the
animation computation to be temporarily suspended, and the user’s I/O processed. The latter will consist of
changing some variable, say the direction or speed of an airplane on the screen. After the user’s action is
processed, we want the animation program to resume.

Suppose all the code is in assembly language. (It of course need not be.) Then the .text section might
contain a label anim, where the animation code begins, a label kbisr, where the ISR for the keyboard ISR



172 CHAPTER 8. OVERVIEW OF INPUT/OUTPUT MECHANISMS

begins, and so on.

Picture what will happen when the player strikes a key on the keyboard. The animation code had been
running continuously, driving the animation on the screen. Suddenly the player hits the A key. This causes
a pulse of current to flow from the keyboard into the INTR pin on the CPU chip, which in turn causes the
CPU to do the pushes you saw in the last section, and to place the ISR address, kbisr into the PC. (How the
CPU knows to go to the keyboard ISR, as opposed say to the mouse ISR, will be diuscussed below.) That
get the keyboard ISR running. We’ve written it to change one or more of the variables in the program, say
to change the direction of the plane. We’ve also put in an IRET insruction at the end. When that is executed,
the hardware will do the pops we saw in the last section, which will put into the PC the value that had been
in there when the animation had been interrupted. That makes the animation code resume where it had left
off at the time of the interrupt.

8.6.4 Alternative Designs

By the way, note that when an interrupt occurs, the CPU doesn’t even see it until it finishes Step C of
whatever instruction was executing at the time the INTR line was asserted. It could be designed differently,
by setting up the circuitry so that instructions would be inerruptible in the middle. That would reduce
interrupt response time a bit, which is good, but at a great expense in complexity. Not only would the
circuitry have to save the values of the EFLAGS, CS and PC registers on the stack, but it would also have
to save information as to just how much of the instruction had been executed at the time it was interrupted.
That would be a lot of extra design work, for rather little performance benefit.

However, in the Intel case, they did make one concession to this idea, in the case of the MOVS instruction
family. A MOVS instruction may take so long to execute that it is worth interrupting in the middle, and the
Intel engineers did design it this way.

8.6.5 Glimpse of an ISR

Here is what a simple keyboard ISR might look like, assuming we wish to store the character at a label
keybdbuf in memory:

1 # save interrupted program’s EAX and EBX
2 pushl %eax
3 pushl %ebx
4 # get character
5 inb $0x60, %al
6 # copy it to the keyboard buffer
7 movb %al, keybdbuf
8 # acknowlege getting the character
9 inb $0x62, %bl

10 orb $0x20, %bl
11 outb %bl, $0x62
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12 andb $0xdf, %bl
13 outb %bl, $0x62
14 # restore interrupted program’s EAX, EBX values
15 popl %ebx
16 popl %eax
17 # back to the interrupted program
18 iret

The OS/ISR is not running when the interrupt occurs. The key point is that at some times (whenever someone
hits a key, in this case) the ISR will need to be run, and from the point of view of the interrupted program,
that time is unpredictable. In the example here, each time a character is typed, a different instruction within
the program might get interrupted.

8.6.6 I/O Protection

Linux runs the Intel CPU in flat protected mode, which sets 32-bit addressing and enables the hardware
to provide various types of security features needed by a modern OS, such as virtual memory. Again for
security reasons, we want I/O to be performed only by the OS. The Intel CPU has several modes of operation,
which we will simplify here to just User Mode and Kernel (i.e. OS) Mode. The hardware is set up so that
I/O instructions such as IN and OUT can be done only in Kernel Mode, and that an interrupt causes entry to
Kernel Mode.7

8.6.7 Distinguishing Among Devices

8.6.7.1 How Does the CPU Know Which I/O Device Requested the Interrupt?

Each I/O device is assigned an ID number, known colloquially as its “IRQ number.” In PCs, typcally the
8253 timer has IRQ 0, the keyboard has IRQ 1, the mouse IRQ 12, and so on.

After the I/O device asserts the IRQ line in the bus and the CPU notices, the CPU will then assert the INTA,
Interrupt Acknowledge, line in the bus. That assertion is basically a query from the CPU to all the I/O
devices, saying, “Whoever requested the interrupt, please identify yourself.” The requesting I/O device then
sends its ID number (e.g. 1 in the case of the keyboard) to the CPU along the data lines in the bus, so that
the CPU knows that it was device 1 that requested the interrupt.

7By setting a special flag in EFLAGS, the OS can allow user programs to execute IN and OUT for specified devices.
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8.6.7.2 How Does the CPU Know Where the ISR Is?

The Intel CPU, like many others, uses vectored interrupts. Each I/O device will have its own “vector,”
which consists of a pointer to the I/O device’s ISR in memory, plus some additional information.8 The
pointer and the additional information comprise the “vector” for this I/O device.

All the vectors are stored in an interrupt vector table in memory, a table which the OS fills out upon bootup.
Each vector is 8 bytes long, so the vector for I/O device i is located at c(IDT)+8*i, where c() means “contents
of.” The CPU has an Interrupt Descriptor Table register, IDT. Upon bootup, the OS will point this register
to the beginning of the table. So for example, upon bootup, the OS initializes the first 4 bytes at c(IDT)+8
to point to the OS’s keyboard device driver (ISR).

Note the hardware/software interaction here: The CPU hardware is what reacts to the interrupt, but the place
that the CPU jumps to was specified by the software, i.e. the OS, in the interrupt vector table in memory.
The ISR is of course also software.

8.6.7.3 Revised Interrupt Sequence

We now see that we have to expand the description in Section 8.6.2 of what the circuitry does when an
interrupt occurs:

CPU pushes current EFLAGS value on stack
CPU pushes current CS value on stack (irrelevant in 32-bit protected mode)
CPU pushes current PC value on stack
CPU asserts INTA line
CPU reads i from data bus
CPU computes j = c(IDT)+8*i
CPU reads location j+4, sets interrupt hardware options
CPU reads location j; let k = c(j)
CPU does PC <-- k

8.6.8 How Do PCs Prioritize Interrupts from Different Devices?

Interrupt systems can get quite complex. What happens, for example, when two I/O devices both issue
interrupts at about the same time? Which one gets priority? Similarly, what if during execution of the ISR
for one device, another device requests an interrupt? Do we suspend the first ISR, i.e. give priority to the
second?

To deal with this problem, PCs also includes another piece of Intel hardware, the Intel 8259A interrupt
controller chip. The I/O devices are actually connected to the 8259A, which in turn is connected to the IRQ

8One piece of such “additional information” is the mode in which the ISR is to be run, which typically will be set to Kernel
Mode. Later, when the ISR ends by executing an IRET instruction, the mode of the interrupted program will be restored.
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(Interrupt Request) line, instead of the devices being connected directly to the IRQ. The 8259A has many
input pins, one for each I/O device.9 So, the 8259A acts as an “agent,” sending interrupt requests to the CPU
“on behalf of” the I/O devices.

If several I/O devices cause interrupts at about the same time, the 8259A can “queue” them, so that all will
be processed, and the 8259A can prioritize them. Lots of different priority schemes can be arranged, as the
8259A is a highly configurable, complex chip.

Note that this configuration is done by the OS, at the time of bootup. The 8259A has various ports, e.g. at
0x20 and 0x21, and the OS can set or clear various bits in those ports to command the 8259A to follow a
certain priority scheme among the I/O devices.

Today a PC will typically have two 8259A chips, since a single chip can work with only eight devices. The
two chips are cascaded, meaning that the second will feed into the first. The IRQ output of the second
8259A will feed into one of I/O connection pins of the first 8259A, so that the second one looks like an I/O
device from the point of view of the first.

Many other methods of prioritizing I/O devices are possible. For example, we can have the CPU ignore all
interrupts until further notice. There is an Interrupt Enable Flag in EFLAGS. The CLI instruction clears it,
telling the CPU to ignore interrupts (i.e. skip all Step Ds), while the STI instruction makes the CPU resume
responding to interrupts (resume executing a Step D after each Step C).

Designing hardware and software for systems with many I/O devices in which response time is crucial, say
for an airplane computer system, is a fine art, and the software aspect is known as real-time programming.

8.7 Direct Memory Access (DMA)

In our keyboard ISR example above, when a user hit a key, the ISR copied the character from the KDP into
a register,

inb $0x60, %al

then copied the register to memory,

movb %al, keybdbuf

This is wasteful; it would be more efficient if we could arrange for the character to go directly to memory
from the KDP. This is called direct memory access (DMA).

9These pins are labeled IRQ0, IRQ1, etc., corresponding the IRQ numbers for the devices.
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DMA is not needed for devices which send or receive characters at a slow rate, such as a keyboard, but it is
often needed for something like a disk drive, which sends/receives characters at very high rates. So in many
machines a disk drive is connected to a DMA controller, which in turn connects to the system bus.

A DMA controller works very much like a CPU, in the sense that it can work as a bus master like a CPU
does. Specifically, a DMA controller can read from and write to memory, i.e. assert the MR and MW lines
in the bus, etc.

So, the device driver program for something like a disk drive will often simply send a command to the DMA
controller, and then go dormant. After the DMA controller finishes its assignment, saying writing one disk
sector to memory, it causes an interrupt; the ISR here will be the device driver for the disk, though the ISR
won’t have much work left to do.

8.8 Disk Structure

Your disk files consist of sequences of bytes, which in turn consist of bits. Each bit on a disk is stored as a
magnetized spot on the disk (a 1 value being represented by one polarity, and a 0 by the opposite polarity).
The spots are arranged in concentric rings called tracks. Within each track, the spots are grouped into
sectors, say 512 bytes each. A disk drive will read or write an entire sector at a time; you cannot request
it to access just one bit or byte. The disk rotates at a rate of several thousand RPM. A read/write head
reads/writes the bits which rotate under it.

Each time we do a disk access there are three components of the access time:

• First, the disk’s read/write head must be moved to the proper track, an action called the seek. This
typically takes on the order of tens of milliseconds.

• Then we must wait for the rotational delay, i.e. for the desired sector to rotate around to the read/write
head.

• Finally, there is the transfer time, i.e. the time while the sector is actually being read/written.

Optimization of disk access is a big business. For example, a large banking chain has millions of credit
card transactions to deal with every day. If the database program were to not access the disk as quickly as
possible, the bank literally might not be able to keep up with the transaction load. Thus careful placement
of files on disk is a necessity.

On large systems, several disks (platters might be stacked up, one above another. Think for instance of all
the Track 3s on the various disks. They will collectively look like a cylinder, and thus even on single-disk
systems a synonym for track is cylinder.
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8.9 USB Devices

The acronym USB stands for Universal Serial Bus. The term bus here means that many I/O devices can
be attached to the same line, i.e. the same USB plug (though on typical home PCs there is no need for this,
since there are usually enough USB ports to use separately). The term serial refers to the fact that there is
only one data line per USB port, as opposed to the 32 or more parallel lines on a system bus.

There are two ways that multiple devices can be attached to the same USB port:

• They can be daisy-chained, meaning that, say, device X connects to device Y which in turn is con-
nected to the USB port.

• Several devices can be connected to a USB hub. The latter would in turn be connected to a USB port,
or into other USB devices or hubs. In this manner, the set of devices connected to a given USB port
can has a tree structure.

At most 127 I/O devices can be connected to a given USB port.

The USB idea really makes things convenient, for several reasons:

• We can connect new devices without having to open up the machine.

• We don’t need a lot of expansion slots inside the machine.

• Devices can be hot-swapped, i.e. we can connect a new device to a machine which is already running.

• Since we are working with the same general structure, it is easier to write device drivers that work
across machines.
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Chapter 9

Overview of Functions of an Operating
System: Processes

9.1 Introduction

9.1.1 It’s Just a Program!

First and foremost, it is vital to understand that an operating system (OS) is just a program—a very large,
very complex program, but still just a program. Someone—or more typically, a group of “someones”—
wrote it, probably using the C language.

The OS provides support for the loading and execution of other programs (which we will refer to below
as “application programs”), and the OS will set things up so that it has some special privileges which user
programs don’t have, but in the end, the OS is simply a program.

Consider Linux.1 It consists of 2.8 millions lines of code, mostly C but with some assembly language. In the
early years, almost all the code was written by volunteers, but today some corporations (the new volunteers)
write most of it.

Another way to see that an OS is just a program is that you can actually see the binary program file on Linux
systems, typically under the name vmlinuz. Look for it in your Linux machine, say in the directory /boot.

Note carefully that when your program, say a.out,2 is running, the OS is not running, Thus the OS has no
power to suspend your program while your program is running—since the OS isn’t running!3 This is a key

1The material in this paragraph is based on the article “75% of Linux Code Now Written by Paid Developers,” APC, January
20, 2010.

2 Or it could be a program which you didn’t write yourself, say gcc.
3This is not the case on a multicore system, but in this chapter we assume a single core.
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concept, so let’s first make sure what the statement even means.

What does it mean for a program to be “running” anyway? Recall that the CPU is constantly performing
its fetch/execute/fetch/execute/... cycle. For each fetch, it fetches whatever instruction the Program Counter
(PC) is pointing to. If the PC is currently pointing to an instruction in your program, then your program
is running! Each time an instruction of your program executes, the circuitry in the CPU will update the
PC, having it point to either the next instruction (the usual case) or an instruction located elsewhere in your
program (in the case of jumps), but in any case that means your program is still running.

The point is that the only way your program can stop running is if the PC is changed to point to another
program, say the OS. How might this happen? There are only two ways this can occur:

• Your program can voluntarily relinquish the CPU to the OS. It does this via a system call.which is a
call to some function in the operating system which provides some useful service.
For example, suppose the C source file from which a.out was compiled had a call to scanf(). The
scanf() function is a C library function, which was linked into a.out. But scanf() itself calls read(),
a function within the OS. So, when a.out reaches the scanf() call, that will result in a call to the
OS. After the OS does the read from the keyboard, the OS will return to a.out via a RET or IRET
instruction, and your program will resume running.

• The other possibility is that a hardware interrupt occurs. This is a signal—a physical pulse of current
along an interrupt-request line in the bus—from some input/output (I/O) device such as the keyboard
to the CPU. The circuitry in the CPU is designed to then jump to a place in memory which we
designated upon bootup of the machine. This will be a place in the OS, so the OS will now run. The
OS will attend to the I/O device, e.g. record the keystroke in the case of the keyboard, and then return
to the interrupted program via an IRET instruction.

Note in our keystroke example that the keystroke may not have been made by you. While your pro-
gram is running, some other user of the machine may hit a key. The interrupt will cause your program
to be suspended; the OS will run the device driver for whichever device caused the interrupt—the
keyboard, if the person was sitting at the console of the machine, or the network interface card, if the
person was logged in remotely, say via ssh—which will record the keystroke in the buffer belonging
to that other user; and the OS will execute an IRET to return from the interrupt, causing your program
to resume.

A hardware interrupt can also be generated by the CPU itself, e.g. if your program attempts to divide
by 0, or tries to access memory which the hardware finds is off limits to your program. (The latter
case describes a seg fault; more on this later.)

So, when your program is running, it is king. The OS has no power to stop it, since it is NOT running. The
only ways your program can stop running is if it voluntarily does so or is forced to stop by action occuring
at an I/O device.



9.1. INTRODUCTION 181

9.1.2 What Is an OS for, Anyway?

A computer might not even have an OS, say in embedded applications. A computer embedded in a washing
machine will just run one program (in ROM). So, there are no files to worry about, no issues of timesharing,
etc., and thus no need for an OS.

But on a general-purpose machine, we need an OS to do:

• Input/output device management:

If you recall the example in Chapter 8, we saw that at the machine level it takes about a dozen lines
of code just to read one character from the keyboard. We certainly would not want to have to deal
with that in our own programs, but fortunately the OS provides this service for us. Let’s see what that
means in the case of the keyboard.

First, the OS includes the keyboard device driver, so that we do not need to write our own. Second,
the OS provides the read() function for us to call in order to pick up the characters the keyboard
driver has collected for us. Suppose for instance that you have a scanf() call or a cin statement in
your program. When the user types some characters, each keystroke will cause an interrupt.4 When
the interrupt occurs, the keyboard driver will add the character to an array, typically referred to as a
buffer. Your program’s scanf() call or cin statement will include to a call to read(), a function in the
OS. That function will then pick up the characters in the keyboard buffer, parse them according to
whatever kind of read format you asked for, and return the result to your program.

Again, the central point here is that the OS is doing a big service for you, in that it is alleviating you
of the burden of writing all this code.

• File management:

For example, suppose you are writing a program to write a new file. You wouldn’t want to have to
deal with the details of knowing where the empty space is on the disk, choosing some of it for the file,
etc. Again, the OS does this for you.

• Process management:

When you want to run a program, the OS loads it into memory for you and starts its execution.

The OS enables timesharing, in which many application programs seem to be running simultaneously
but are actually “taking turns,” by coordinating with hardware operations.

• Memory management:

The OS must keep track of which parts of memory are currently in use, so that it knows what areas it
can load a program to when the program is requested for execution.

4Actually two interrupts, one for key press and one for release, but let’s say one here, for simplicity.
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The OS also enables virtual memory operations for application programs, which both allows flexible
use of memory and enforces security, again by by coordinating with hardware operations.

How the OS does these things is explained in the following sections. We will model the discussion after a
Linux system, but the description here applies to most modern OSs. It is assumed here that the reader is
familiar with basic Linux commands; a Linux tutorial is available at http://heather.cs.ucdavis.
edu/˜matloff/unix.html

9.2 Application Program Loading

9.2.1 Basic Operations

Suppose you have just compiled a program, producing, say for a Linux system, an executable file a.out.
(And the following would apply equally well to gcc or any other program.) To run it, you type

% a.out

For the time being, assume a very simple machine/OS combination, with no virtual memory. Here is what
will occur:

• During your typing of the command, the shell is running, say tcsh or bash. Again, the shell is just
a program (one which could be assigned as a homework problem in a course). It prints out the ‘%’
prompt using printf(),5 and enters a loop in which it reads the command you type using scanf().6

• The shell will then make a system call, execve(),7 asking the OS to run a.out. The OS is now running.

• The OS will look in its disk directory, to determine where on disk the file a.out is. It will read the
header, i.e. beginning section of a.out, which contains information on the size of the program, a list
of the data sections used by the program, and so on.8

• The OS will check its memory-allocation table (this is just an array in the OS) to find an unused
region or regions of memory large enough for a.out. (Note that the OS has loaded all currently-
active programs in memory up to now, just like it is loading a.out now, so it knows exactly which

5Most shells are written in C.
6Note that there will be an interrupt each time you type a character. The OS will store these characters until you hit Enter, in

which case the OS will finally “wake” the shell program, whose scanf() will now finally execute. See also Sleep and Run states
later in this chapter.

7It will also call another system call, fork(), but we will not go into that here.
8You can read that information yourself, using the readelf command in Linux.

http://heather.cs.ucdavis.edu/~matloff/unix.html
http://heather.cs.ucdavis.edu/~matloff/unix.html
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parts of memory are in use and which are free.) We need space both for a.out’s instructions, in the
.text section, its static data (in the .data section for uninitialized variables, and in the .bss section for
initialized variables), as well as for stack space and the heap.

The heap is used for calls to malloc() or for invocations of the C++ operator new. With the GCC
compiler, these are one and the same, since the internal implementation of new calls malloc(). There
will be a data structure there which keeps track of which parts of the heap are in use and which are
free. Of course, they are initially all free. Each time we need new memory, we use parts of the heap,
and they will be marked as in use. Calling free() or invoking delete will result in the space being
marked as free again. All the marking is done by malloc().

• The OS will then load a.out (including text and data) into those regions of memory, and will update
its memory-allocation table accordingly.

• The OS will check a certain section of the a.out file, in which the linker previously recorded a.out’s
entry point, i.e. the instruction in a.out at which execution is to begin. (This for example is start in
our previous assembly language examples.)

• The OS is now ready to initiate execution of a.out. It will set the stack pointer to point to the place
it had chosen earlier for a.out’s stack. (The OS will save its own register values, including stack
pointer value, beforehand.) Then it will place any command-line arguments on a.out’s stack, and then
actually start a.out, say by executing a JMP instruction (or equivalent) to jump to a.out’s entry point.

• The a.out program is now running!

9.2.2 Chains of Programs Calling Programs

Note that a.out itself may call execve() and start other programs running. We mentioned above that the shell
does this, and so for example does gcc.9 It first runs the cpp C preprocessor (which translates #include,
#define etc. from your C source file). Then it runs cc1, which is the “real” compiler (gcc itself is just a
manager that runs the various components, as you can see now); this produces an assembly language file.10

Then gcc runs as, the assembler, to produce a .o machine code file. The latter must be linked with some code,
e.g. /usr/lib/crt1.o and other files which set up the main() structure, e.g. access to the argv command-line
arguments, and also linked to the C library, /lib/libc.so.6 or some such file; so, gcc runs the linker, ld. In all
these cases, gcc starts these programs by calling execve().

9Remember, a compiler is just a program too. It is a very large and complex program, but in principle no different from the
programs you write.

10You can view this file by running gcc with its -S option. This is often handy if you are going to write an assembly-language
subroutine to be called by your C code, so that you can see how the compiler will deal with the parameters in the call to the
subroutine.
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9.2.3 Static Versus Dynaming Linking

Say your C code includes a call to printf(). Even though someone else wrote printf(), when you link it in to
your program (which GCC does for you when it calls LD), it becomes part of your program. The question
is when this occurs.

With static linking, LD will put printf()’s machine code into your a.out executable. However, since most
programs make use of the C library, they would collectively take up a lot of disk space if static linking were
used.

So, the default is that GCC and LD would set up dynamic linking for printf() in your program. In your
a.out file, there will be a message saying that your code calls printf(), and that when your program is loaded
into memory and is run, printf() should be linked in to it at that time.

9.2.4 Making These Concepts Concrete: Commands You Can Try Yourself

9.2.4.1 Mini-Example

Below is a simple illustration of execve() in action. The program run.c makes this system call to get the
program greeting.c running. Assume the executable files are named greeting and run.

1 // greeting.c
2

3 main()
4 { printf("hello\n"); }

1 // run.c
2

3 main()
4 { char **a[2], // arguments to "greeting" (none here; see man page)
5 **p[2]; // environment for "greeting" (none here)
6

7 a[0] = ""; a[1] = 0;
8 p[0] = ""; p[1] = 0;
9 execve("./greeting",a,p); }

1 % run
2 hello

Note that the shell will do something like this too, when you request that your program a.out be run.
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9.2.4.2 The strace Command

The Linux strace command will report which system calls your program makes. Place it before your
program name on the command line, e.g.

% strace a.out

The output will be rather overwhelming, but if you sift through it11 You will see that a call execve() is made
by the shell to launch a.out, as well as the various systems call made by a.out.

9.3 OS Bootup

As was explained earlier, when we wish to run an application program, the OS loads the program into
memory. But wait! The OS is a program too, so how does it get loaded into memory and begin execution?
The answer is that another program, the boot loader, will load the OS into memory. But then how does the
boot loader get loaded in memory?! It sounds like we have an endless, “chicken and egg” problem. The
resolution is that the boot loader is permanently in memory, in ROM, so it doesn’t have to be loaded.

The process by which the OS is loaded into memory is called bootup. We will explain this using the Intel
Pentium architecture for illustration.12

The circuitry in the CPU hardware will be designed so that upon powerup the Program Counter (PC) is
initialized to some specific value, 0xfffffff0 in the case of Intel CPUs. And those who fabricate the computer
(i.e. who put together the CPU, memory, bus, etc. to form a complete system) will include a small ROM
at that same address, again 0xfffffff0 in the Intel case. The contents of the ROM include the boot loader
program. So, immediately after powerup, the boot loader program is running!

The goal of the boot loader is to load in the OS from disk to memory. In the simple form, the boot loader
reads a specified area of the disk, copies the contents there—which will be part of the OS—to some section
of memory, and then finally executes a JMP instruction (or equivalent) to that section of memory—so that
now the OS is running. The OS then reads the rest of itself into memory.

For the sake of concreteness, let’s look more closely at the Intel case. The program in ROM here is the
BIOS, the Basic I/O System. It contains parts of the device drivers for that machine,13 and also contains the
first-stage boot loader program.

11I recommend running the Linux script command before you run strace. It will keep a record of everything that appears on
your screen. After you are done running strace, type exit to leave the shell created by script. Then the record of your session is
in a file named typescript. You can then browse through it using your favorite text editor.

12An overview of that architecture is presented in Section 11.5.
13These may or may not be used, depending on the OS. Windows uses them, but Linux doesn’t.
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The boot loader program in the BIOS has been written to read some information, to be described now, from
the first physical sector of the disk.14 That sector is called the Master Boot Record (MBR).

There will be one or more partitions for the disk. If, say, the disk has 1,000 cylinders, then for example we
may have the first 200 as one partition and the remaining 800 as the second partition.15 These simply divide
up parts of the disk for different purposes. A typical example would be that there are two partitions, one for
Windows and the other for Linux. Your machine was probably shipped with the entire disk consisting of
just one partition, but you can split it into several partitions to accommodate different OSs.

These partitions are defined in the partition table in the MBR. Note that there is no physical separation from
one partition to the next; the boundary between one partition and the next is only defined by the partition
table. Exactly one of the primary partitions will be marked in the table as active, meaning bootable.

The MBR also contains the second-stage boot loader program. The boot loader program in the BIOS will
read this second-stage code into memory and then jump to it, so that that program is now running. That
program reads the partition table, to determine which partition is the active one. It then goes to the first
sector in that partition, reads in the third-stage boot loader program into memory from there, and then jumps
to that program.

Now if the machine had originally been shipped with Windows installed, the second-stage code in the MBR
had been written to then load into memory the third-stage code from the Windows partition. If on the other
hand the machine had been shipped with Linux or some other OS installed, there would be a partition for
that OS; the code in the MBR would have been written accordingly, and that OS would now be loaded into
memory.

Many people who use Linux retain both Windows and Linux on their hard drives, and have a dual-boot
setup. They start with a Windows machine, but then install Linux as well, so both OSs are on the machine.
As part of the process of installing Linux, the old MBR is copied elsewhere, and a program named LILO
(Linux Loader) is written into the MBR.16 In other words, LILO will be the second-stage boot loader. LILO
will ask the user whether he/she wants to boot Linux or Windows, and then go to the corresponding partition
to load and execute the third-stage boot loader which is there.17

In any case, after the OS is loaded into memory by the third-stage code, that code will perform a jump to the
OS, so the OS is running.

14The boot device could be something else instead of a hard drive, such as a floppy or a CD-ROM. This is set in the BIOS, with
a priority ordering of which device to try to boot from first.

15You should review the material on disks in Chapter 8.
16A newer, now more popular alternative to LILO is GRUB. But the principle is the same for both, so we will just refer to LILO

here for simplicity.
17The partition does not have to be the active one. The term active applies only from the point of view of the Windows second-

stage boot loader which had originally been installed in the MBR.
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9.4 Timesharing

9.4.1 Many Processes, Taking Turns

Suppose you and someone else are both using the computer pc12 in our lab, one of you at the console and
the other logged in remotely. Suppose further that the other person’s program will run for five hours! You
don’t want to wait five hours for the other person’s program to end. So, the OS arranges things so that the
two programs will take turns running. It won’t be visible to you, but that is what happens.

Timesharing involves having several programs running in what appears to be a simultaneous manner.18 If
the system has only one CPU (for simplicity, we will exclude the case of multiprocessor systems in this
discussion), this simultaneity is of course only an illusion, since only one program can run at any given
time, but it is a worthwhile illusion, as we will see.

First of all, how is this illusion attained? The answer is that we have the programs all take turns running,
with each turn—called a quantum or timeslice—being of very short duration, for example 50 milliseconds.
Say we have four programs, u, v, x and y, running currently. What will happen is that first u runs for 50
milliseconds, then u is suspended and v runs for 50 milliseconds, then v is suspended and x runs for 50 mil-
liseconds, and so on. After y gets its turn, then u gets a second turn, etc. Since the turn-switching, formally
known as context-switching,19 is happening so fast (every 50 milliseconds), it appears to us humans that
each program is running continuously (though at one-fourth speed), rather than on and off, on and off, etc.20

But how can the OS enforce these quanta? For example, how can the OS force the program u above to stop
after 50 milliseconds? As discussed earlier, the answer is, “It can’t! The OS is dead while u is running.”
Instead, the turns are implemented via a timing device, which emits a hardware interrupt at the proper time.
For example, we could set the timer to emit an interrupt every 50 milliseconds. We would write a timer
device driver, and incorporate it into the OS.

We will make such an assumption here. However, what is more common is to have the timer interrupt
more frequently than the desired quantum size. On a PC, the 8253 timer interrupts 100 times per second.
Every sixth interrupt, the Linux OS will perform a context switch. That results in a quantum size of 60
milliseconds. But this can be changed, simply by changing the count of interrupts needed to trigger a
context switch.

The timer device driver saves all u’s current register values, including its PC value and the value in its
EFLAGS register. Later, when u’s next turn comes, those values will be restored, and u will resume execu-
tion as if nothing ever happened. For now, though, the OS routine will restore v’s’s previously-saved register
values, making sure to restore the PC value last of all. That last action forces a jump from the OS to v, right

18These programs could be from different users or the same user; it doesn’t matter.
19We are switching from the “context” of one program to another.
20Think of a light bulb turning on and off extremely rapidly, with half the time on and half off. If it is blinking rapidly enough,

you won’t see it go on and off. You’ll simply see it as shining steadily at half brightness.
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at the spot in v where v was suspended at the end of its last quantum. (Again, the CPU just “minds its own
business,” and does not “know” that one program, the OS, has handed over control to another, v; the CPU
just keeps performing its fetch/execute cycle, fetching whatever the PC points to, oblivious to which process
is running.)

At any given time, there are many different processes in memory. These are instances of executions of
programs. If for instance there are three users running the gcc C compiler right now on a given machine,
here one program corresponds to three processes.

9.4.2 Example of OS Code: Linux for Intel CPUs

Here is a bit about how the context switch is done in Linux, in the version for Intel machines.21

The OS maintains a process table, which is simply an array of structs, one for each process. The struct for
a process is called the Task State Segment (TSS) for that process, and stores various pieces of information
about that process, such as the register values which the program had at the time its last turn ended. Re-
member, these need to be stored somewhere so that we can restore them at the program’s next turn; here’s
where we store them.

As an example of the operations performed, and to show you concretely that the OS is indeed really a
program with real code, here is a typical excerpt of Linux internal code:22

1 pushl %esi
2 pushl %edi
3 pushl %ebp
4 movl %esp, 532(%ebx)
5 ...
6 movl 532(%ecx), %esp
7 ...
8 popl %ebp
9 popl %edi

10 popl %esi
11 ...
12 iret

This code is the ISR for the timer. Upon entry, u’s turn has just ended, having been interrupted by the timer.
In code not shown here, the OS has pointed the registers EBX and ECX to the TSSs of the process whose
turn just ended, u, and the process to which we will give the next turn, say v.

By the way, how does the OS know that the process whose turn just ended was u’s? The answer is that
whenever the OS gives a process a turn, it records which process it was. In Linux this is information is

21This was as of Linux kernel version 2.3. I have slightly modified some of this section for the sake of simplicity.
22Linux is constantly evolving. This code existed in Linux at the time it was included in this book, but could have changed

subsequently.
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stored at address 0xffffe000, and the macro GET CURRENT() is used to fetch it and place it into a register
specified by the programmer; in our situation here, the register would be EBX. So the OS knows where to
point EBX. The OS will make a decision as to which process to next give a turn to, and point ECX to it.

Here is what that code does. The source code for Linux includes a variable tss, which is the TSS struct for
the current process. In that struct is a field named esp. So, tss.esp contains the previously-stored value of
ESP, the stack pointer, for this process; this field happens to be located 532 bytes past the beginning of the
TSS.23

Now, upon entry to the above OS code, ESP is still pointing to u’s stack, so the three PUSH instructions
save u’s values of the ESI, EDI and EBP registers on u’s own stack.24 The other register values of u must
be saved too, including its value of ESP. The latter is done by the MOV, which copies the current ESP value,
i.e. u’s ESP value, to tss.esp in u’s TSS. Other register saving is similar, though not shown here.

Now the OS must prepare to start v’s next turn. Thus v’s previously-saved register values must be restored
to the registers. To understand how that is done, you must keep in mind that that same code we see above
had been executed when v’s last turn ended. Thus v’s value of ESP is in tss.esp of its TSS, and the second
MOV we see above copies that value to ESP. So, now we are using v’s stack.

Next, note similarly that at the end of v’s last turn, its values of ESI, EDI and EBP were pushed onto its
stack, and of course they are still there. So, we just pop them off, and back into the registers, which is what
those three POP instructions do.

Finally, what actually get’s v’s new turn running? To answer this, note that the mechanism which made v’s
last turn end was a hardware interrupt from the timer. At that time, the values of the Flags Register, CS and
PC were pushed onto the stack. Now, the IRET instruction you see here pops all that stuff back into the
corresponding registers. Note only does that restore registers, but since v’s old PC value is restored to the
PC register, v is now running!

9.4.3 Process States

The OS maintains a process table which shows the state of each process in memory, mainly Run state versus
Sleep state. A process which is in Run state means that it is ready to run but simply waiting for its next turn.
The OS will repeatedly cycle through the process table, starting turns for processes which are in Run state
but skipping over those in Sleep state. The processes in Sleep state are waiting for something, typically an
I/O operation, and thus currently ineligible for turns. So, each time a turn ends, the OS will browse through
its process table, looking for a process in Run state, and then choosing one for its next turn.

Say our application program u above contains a call to scanf() to read from the keyboard. Recall that scanf()
23In the C source code, this field is referred to as tss.esp, but in assembly language we can only use the 532, as field names of

structs are not shown.
24 Note the need to write this in assembly language instead of C, since C would not give us direct access to the registers or the

stack. Most of Linux is written in C, but machine-dependent operations like the one here must be done in assembly language.
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calls the OS function read(). The latter is in the OS, so now the OS is running, and this function will check
to see whether there are any characters ready in the keyboard buffer. Typically there won’t be any characters
there yet, because the user has not started typing yet. In this case the OS will place this process in Sleep
state, and then start a turn for another process.

How does a process get switched to Run state from Sleep state? Say our application program u was in Sleep
state because it was waiting for user input from the keyboard, waiting for just a single character, in raw
mode.25

As explained earlier, when the user hits a key, that causes a hardware interrupt from the keyboard, which
forces a jump to the OS. Suppose at that time program v happened to be in the midst of a quantum. The
CPU would temporarily suspend v and jump to the keyboard driver in the OS. The latter would notice that
the program u had been in Sleep state, waiting for keyboard input, and would now move u to Run state.

Note, though, that that does not mean that the OS now starts u’s next turn; u simply becomes eligible to run.
Recall that each time one process’ turn ends, the OS will select another process to run, from the set of all
processes currently in Run state, and u will now be in that set. Eventually it will get a turn.

To make all this concrete, say u is running the vi text editor, v is running a long computational program, and
user w is also running some long computational program. Remember, vi is a program; its source code might
have a section like this:

while (1) {
KeyStroke = getch();
if (KeyStroke == ’x’) DeleteChar();
else if (KeyStroke = ’j’) CursorDown();
else if ...

}

Here you see how vi would read in a command from the user, such as x (delete a character), j (move the
cursor down one line) and so on. Of course, DeleteChar() etc. are functions, whose code is not shown here.

When during a turn for u, vi hits the getch() line, the latter calls read(), which is in the OS, so now the OS
is running. Assuming u has not hit a key yet (almost certainly the case, since the CPU is a lot faster than
u’s hand, not to mention the fact that u might have gone for a lunch break), the OS will mark u’s process as
being in Sleep state in the OS’s Process Table.

Then the OS will look for a process in Run state to give the next turn to. This might be, say, v. It will run
until the timer interrupt comes. That pulse of current will cause the CPU to jump to the OS, so the OS is
running again. This time, say, w will be run.

Say during w’s turn, u finally hits a key. The resulting interrupt from the keyboard again forces the CPU to
jump to the OS. The OS read the character that u typed, notices in its Process Table that u’s process was in

25Recall from Chapter 8 that in this mode, a character is made available to a program as input the minute the user strikes the key.
In ordinary, cooked, mode, the program doesn’t see the input until the user hits the Enter key.
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Sleep state pending keyboard input, and thus changes u’s entry in the Process Table to Run state. The OS
then does IRET, which makes w’s process resume execution, but when the next timer interrupt comes, the
OS will likely give u a turn again.

9.4.4 What About Background Jobs?

For example, you could run the Firefox Web browser by typing

% firefox

at the command line. But that would tie up the window you typed it into; you wouldn’t be able to run any
other commands until you quit Firefox, which might be a very long time. To solve this problem, you can
run it in the background, as follows.

You could type

% firefox &

with the ampersand meaning, “Run this job in the background.” The shell would start Firefox, and then print
out a prompt, inviting you to run other commands. What is really happening here?

The first point to be made here is that it really means nothing to the OS. The entry for the Firefox process
in the OS’ process table will not state whether this program is background or foreground; the OS doesn’t
know.

The only meaning of that ampersand was for the shell. We used it to tell the shell, “Go ahead and launch
a.out for me, but don’t wait for it to finish before giving me your ‘%’ prompt again. Give me the prompt
right away, because I want to run some other programs too.”26

9.4.5 Threads: “Lightweight Processes”

A very important type of application programming is that of threads. Thread libraries are offered by any
modern OS. On Unix-family systems such as Linux, for instance, a popular thread package is pthreads,
which we will assume for concreteness here.

Threading is pervasive in computing today. Most Web servers are threaded, for instance. Also many GUI
(“graphical user interface”) programs are threaded too.

26To do this, the shell must first create a new process, by calling the fork() system call, and then calling execve() from the child
process. That way, the parent process—the shell–can keep running and give you the prompt.
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Threading is also the standard way of programming on multiprocessor systems. Since such systems are now
common even at the household level—the term dual core means two CPUs—you can see how important
threaded programming has become. We’ll pursue this in more detail in Chapter 10.

9.4.5.1 The Mechanics

Threads, of the “system” type discussed here, are processes.27 If your program creates three threads on
a Unix-family system such as Linux, for example, you may (depending on the OS) see three entries for
them in the output of the ps command which displays processes. (For Linux, type ps axms.) These will
correspond to three entries in the process table. Thus the threads take turns running, in the usual timesharing
manner. The turn taking includes the other processes too, of course.

From the programmer’s point of view, the main difference between threads and processes is that in threaded
programs all global variables of the program are shared.28 This is the way the different threads communicate
with each other, by reading and writing these shared variables.

(This may come as a shock to readers who were taught that shared variables are “evil.” In my opinion,
shared variables are fine for general programming (within reason), but whether one agrees with that notion
or not, the fact is that in threaded programming one must use global variables.)

Each thread does have its own local variables, though. So, the various threads of a program will share the
same .data and .comm sections, but each will have its own separate stack.

One creates a thread by calling pthread create(). One of its arguments must be a pointer to a function in the
application program. For instance, in a GUI program, we might have one thread for the mouse, one thread
for the keyboard, etc. The function which handles mouse events (movement and clicks) would be specified
as an argument to pthread create(), and basically the thread would consist of executing that function. There
would also be a function for the keyboard, etc.

Key to threaded programming is locks. Suppose for instance that an airline reservation system is threaded,
and that there is one seat left for a particular flight. We want to make sure to avoid a situation in which two
clerks both sell that last seat. (Ignore the issue of overbooking.) So, the two threads running for the two
clerks must cooperate, and not try to access that flight’s record at the same time. In other words, we want
access to that record to be atomic.

This is achieved by using lock variables, of type pthread mutex t, which are locked and unlocked via calls
to pthread mutex lock() and pthread mutex unlock(). The portion of the code which needs to accessed
atomically, called a critical section, must be surrounded by lock/unlock code.

27What we are describing here are system-level threads, i.e. those provided by the OS, which is the case for pthreads. There are
also user-level threads. These, exemplified by the GNU pth library, are handled internally to the application program. Basically,
the library runs its own private processes, with its own private process table!

28It is actually possible to have different processes share memory too, using the system call shmget(). However, this is unwieldy
and involves a lot of system overhead, and is not commonly done.
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Threads are often called lightweight processes. The term lightweight here refers to the fact that cre-
ating a thread involves much less overhead than creating a process. In pthreads, for instance, calling
pthread create() has a lot less work to do than would be involved in calling execve() to make a new pro-
cess. Among other things, the latter requires finding memory for the new process, whereas a new thread
would simply use the same memory.

9.4.5.2 Threads Example

Examples of threaded programming tend to be rather elaborate, so I’ve written the following simple (if a bit
contrived) example:29

1 // HelloWorld.c, a baby-level first example of threaded programming
2

3 // doesn’t actually print out "hello world." :-), but it’s of that level
4 // of simplicity, so I gave it that name anyway
5

6 // reads from each of several keyboard input sources, in different
7 // windows on the same console; records the inputs, making sure not to
8 // mix them
9

10 // for simplicity, the program has no mechanism for stopping
11

12 // Linux compilation: gcc -g -o hw HelloWorld.c -lpthread
13

14 // usage: hw first_keybd_input_filename second_keybd_input_filename ...
15 // e.g. hw /dev/pts/4 /dev/pts/6
16

17 #define MAX_THREADS 20
18

19 #include <stdio.h>
20 #include <pthread.h> // required for threads usage
21

22 int nthreads; // number of threads to be run
23

24 pthread_mutex_t numlock = PTHREAD_MUTEX_INITIALIZER;
25 // ID structs for the threads
26 pthread_t id[MAX_THREADS];
27

28 // each thread runs this routine
29 void *worker(char *fname) // fname is file name
30 { FILE *kb; // note separate stacks, so separate kb’s
31 int num; // separate num’s too
32 kb = fopen(fname,"r"); // open this keyboard input, read only
33 while(1) {
34 fscanf(kb,"%d",&num); // wait for user to type in this window
35 pthread_mutex_lock(&numlock);
36 printf("read %d from %s\n",num,fname);
37 pthread_mutex_unlock(&numlock);
38 }
39 }

29Note that this example uses only a few of the many functions in the pthreads library.
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40

41 main(int argc, char **argv)
42 { int i;
43 nthreads = argc - 1;
44 // get threads started
45 for (i = 0; i < nthreads; i++) {
46 // this next call says to create a thread, record its ID in the array
47 // id, and get the thread started executing the function worker(),
48 // passing the argument argv[i+1] to that function
49 pthread_create(&id[i],NULL,worker,argv[i+1]);
50 }
51 while(1) ; // dummy loop, to keep main() from exiting, killing
52 // the other threads
53 }

The program reads keyboard input from two different windows on the same console on the same machine.
This is the contrived part. A typical example would have input coming from keyboards on other machines,
with the characters being sent across a network. But I wanted to avoid bringing in network programming.

As you can see, main() starts up the threads. Once they are started, they take turns running, since they are
processes. Note that main() is considered a thread too, the parent of those created by it. So, all three threads
take turns running.30

I ran the program on the windows /dev/pts/4 and /dev/pts/6 on my Linux machine at home. In each window
I typed

% sleep 10000

to put the shell to sleep, ensuring that the input I type in those windows would go to my program rather than
to the shells.

In a third window, I ran the program. In window 6 I then typed 5 and 12, and then 13 in window 5, then 168
in window 6 again. The output in the third window was

% a.out /dev/pts/4 /dev/pts/6
read 5 from /dev/pts/6
read 12 from /dev/pts/6
read 13 from /dev/pts/4
read 168 from /dev/pts/6

Here’s how it works:

The issue here is that we don’t know which keyboard input will have some activity next. If we simply call
scanf() in nonthreaded fashion (and don’t resort to something called nonblocking I/O), our program would

30Since main() is doing nothing useful, it would be better not to give it turns. There are other functions in the pthreads library
that would set this up.
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wait forever for input from one nonactive window when there is input waiting at another window. The
solution is to use threads, with one thread for each window.

Each source of keyboard input is considered a different file. (In Unix-family systems such as Linux, I/O
devices are considered ”files.”) We determine the file name by running the who am i command in the given
window. If for instance the answer is pts/6, the keyboard input there is /dev/pts/6.

Each time there is keyboard input from somewhere, the program will report what number was typed.

Just to make sure that some printf() output doesn’t get mixed with another, we treat that line as a critical
section, surrounding it with lock/unlock operations. When a thread reaches the lock call, one of two things
will occur:

• If the lock is not locked, the thread will be allowed to immediately enter the critical section.

• If the lock is locked, the thread will be suspended—put in Sleep state, given no more turns—until
the thread currently in the section executes the unlock. Then the waiting thread will be resumed, i.e.
placed in Run state.

Of course, in that second scenario, if multiple threads are waiting when an unlock occurs, the OS must
choose one to reactivate.

Note that, as in all of this chapter, we are assuming only a single CPU. Thus only one thread can run at
a time. In Chapter ?? our context will be that of multiple processors, allowing multiple threads to run
simultaneously.

REMINDER TO THE READER: Don’t become overly obsessed with how to do pthreads programming.
Learn how to write such code, yes, but also focus on the concepts relevant to our course. Think especially
of the role of interrupts here. Threads take turns running, with a turn ending either from a timer interrupt or
from a thread voluntarily relinquishing its turn via a system call, in this case read() being called by fscanf().
In the latter situation, an interrupt from the keyboard will change a thread from Sleep to Run state.

9.4.5.3 Debugging Threads Programs

Most debugging tools include facilities for threads. Here’s an overview of how it works in GDB.

First, as you run a program under GDB, the creation of new threads will be announced, e.g.

(gdb) r 100 2
Starting program: /debug/primes 100 2
[New Thread 16384 (LWP 28653)]
[New Thread 32769 (LWP 28676)]
[New Thread 16386 (LWP 28677)]
[New Thread 32771 (LWP 28678)]
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You can do backtrace (bt) etc. as usual. Here are some threads-related commands:

• info threads (gives information on all current threads)

• thread 3 (change to thread 3)

• break 88 thread 3 (stop execution when thread 3 reaches source line 88)

tem break 88 thread 3 if x==y (stop execution when thread 3 reaches source line 88 and
the variables x and y are equal)

Of course, many GUI IDEs use GDB internally, and thus provide the above facilities with a GUI wrapper.
Examples are DDD, Eclipse and NetBeans.

9.4.6 Making These Concepts Concrete: Commands You Can Try Yourself

First, try the ps command. On Linux systems, much information on current processes is given by the ps
command, including:

• state (Run, Sleep, etc.)

• page usage (how many pages, number of page faults, etc.; see material on virtual memory below)

• ancestry (which process is the “parent” of the given process, via a call to execve())

The reader is urged to try this out. You will understand the concepts presented here much better after
seeing some concrete information which the ps command can give you. The format of this command’s
options varies somewhat from machine to machine (on Linux, I recommend ps axms), so check the man
page for details, but run it with enough options that you get the fullest output possible.

Another command to try is w. One of the pieces of information given by the w command is the average
number of processes in Run state in the last few minutes. The larger this number is, the slower will be the
response time of the machine as perceived by a user, as his program is now taking turns together with more
programs run by other people.

On Linux (and some other Unix) systems, you can also try the pstree command, which graphically shows
the “family tree” (ancestry relations) of each process. For example, here is the output I got by running it on
one of our CSIF PCs:

% pstree
init-+-atd

|-crond
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|-gpm
|-inetd---in.rlogind---tcsh---pstree
|-kdm-+-X
| ‘-kdm---wmaker-+-gnome-terminal-+-gnome-pty-helpe
| | ‘-tcsh-+-netscape-commun---netscape-+
| | ‘-vi
| |-2*[gnome-terminal-+-gnome-pty-helpe]
| | ‘-tcsh]
| |-gnome-terminal-+-gnome-pty-helpe
| | ‘-tcsh---vi
| ‘-wmclock
|-kerneld
|-kflushd
|-klogd
|-kswapd
|-lpd
|-6*[mingetty]
|-2*[netscape-commun---netscape-commun]
|-4*[nfsiod]
|-portmap
|-rpc.rusersd
|-rwhod
|-sendmail
|-sshd
|-syslogd
|-update
|-xconsole
|-xntpd
‘-ypbind---ypbind

%

On Linux systems, the first thing the OS does after bootup is to start a process named init, which will be
the parent (or grandparent, great-grandparent, etc.) of all processes. That init process then starts several OS
daemons. A daemon in Linux parlance means a kind of server program. In Linux, the custom is to name
such programs with a ‘d’ at the end, standing for “daemon.”

For example, you can see above that init started lpd (“line printer daemon”), which is the print server.31

When users issue lpr and other print commands, the OS refers them to lpd, which arranges for the actual
printing to be done.

Often daemons spawn further processes. For example, look at the line

|-inetd---in.rlogind---tcsh---pstree

The inetd is an Internet request server. The system administrator can optionally run this daemon in lieu of
some other network daemons which are assumed to run only rarely. Here the user (me) had done rlogin,
a login program like ssh32, to remotely login to this machine. The system administrators had guessed that

31Another common print server daemon is cupsd.
32But no longer allowed on CSIF.
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rlogin would be used only rarely, so they did not have init start the corresponding daemon, in.rlogind, upon
bootup. Instead, any network daemon not started at bootup will be launched by inetd when the need arises,
which as you can see occurred here for in.rlogind. The latter then started a shell for the user who logged in
(me), who then ran pstree. Note again that the shell is the entity which got pstree started.



Chapter 10

Multiple Core Systems

Today many applications require speed, with run times of minutes, hours or even more. Since physical
obstacles, e.g. chip feature size, clock signal distribution and heat dissipation make it difficult to keep in-
creasing clock speed, the primary method of speedup today is to many computations in parallel, on multiple
processors.

Multiple processor systems used to be only for “the rich,” meaning large corporations such as insurance
companies or banks. Multiple CPU chips would be attached to a comomn bus, to which memory modules
are also attached, shared among the processors:

This is called a symmetric multiprocessor system (SMP, the word symmetric referring to the fact that all
the processors have the same basic access to memory. More elaborate systems, use complex interconnection
networks instead of a bus; they are not covered here.

Now similar systems have entered the home. They can be cheaply made, by placing many processors—
called cores—onto one CPU chip, hence the name multicore. As mentioned in the Preface to this book,
today it is hard to buy a desktop, laptop or even a smart phone that is not multicore. Dual core is the de facto
standard, quad core is widely available in chain electronics stores, and larger systems are not too expensive.

A note on terminology: A multicore chip is still called a processor, somewhat contradictingly. In our
treatment here, we will use the terms core for both the cores in a multicore chip and for a processor that
is not multicore. If for example we have a single-bus system consisting of eight chips, each of which is
quad-core, we refer to it as a 32-core system. In other words, we use the number of cores to indicate the

199
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degree of parallel computation possible in a system.

Another type of many-core hardware of great interest today is graphics processing units (GPUs). If your
desktop or laptop machine has a somewhat high-end graphics card, you actually have, as a slogan puts it, “a
supercomputer on your desk,” with hundreds or even thousands of cores.

The primary vehicle for programming multicore/SMP systems in via threads, but with a major difference:
In our previous discussion of threads in Section 9.4.5 assume just one core, so that only one thread could
run at a time; now, with mutiple cores, we can have multicore threads active at once, thus achieving true
parallelism.

This chapter will give you an introduction to these issues.

Note that there is another form of parallel processing machines, knowing as message-passing systems.
Today these typically take the form of a set of ordinary computers connected via an Ethernet or other
network. Here memory is not shared; location 500 on one computer is physically separate from one on
another. The software infrastructure, the most popular of which is a library called MPI, consists of two
fundamental functions send() and recv() (plus other related ones). This kind of system will not be covered
here.

10.1 GPU Material Focuses on NVIDIA

Please note: The material here on GPU will be specific to the family produced by NVIDIA, currently
the most popular vehicle for general purpose programming of GPUs. Thus the term GPU will always be
understood to mean NVIDIA GPU.

10.2 Sample Pthreads Program

In order to motivate the hardware issues to be discussed in this chapter, we first consider a sample threads
program. We saw a sample in Section 9.4.5.2, but that did not involve computation, and it is the latter that
is the main point of having multiple processors.

Here is a threads program that does involve computation, involving counting prime numbers. It’s not the
most efficient possible prime finder, but it will illustrate the principles.

1 / / P r i m e s T h r e a d s . c
2
3 / / t h r e a d s−based program t o f i n d t h e number o f p r im es between 2 and n ;
4 / / u s e s t h e S i e v e o f E r a t o s t h e n e s , d e l e t i n g a l l m u l t i p l e s o f 2 , a l l
5 / / m u l t i p l e s o f 3 , a l l m u l t i p l e s o f 5 , e t c .
6
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7 / / f o r i l l u s t r a t i o n p u r p o s e s on ly ; NOT c l a i m e d t o be e f f i c i e n t
8
9 / / Linux c o m p i l a t i o n : gcc −g −o p r i m e s t h r e a d s P r i m e s T h r e a d s . c − l p t h r e a d −lm

10
11 / / usage : p r i m e s t h r e a d s n n u m t h r e a d s
12
13 # i n c l u d e <s t d i o . h>
14 # i n c l u d e <math . h>
15 # i n c l u d e <p t h r e a d . h> / / r e q u i r e d f o r t h r e a d s usage
16
17 # d e f i n e MAX N 100000000
18 # d e f i n e MAX THREADS 25
19
20 / / s h a r e d v a r i a b l e s
21 i n t n t h r e a d s , / / number o f t h r e a d s ( n o t c o u n t i n g main ( ) )
22 n , / / r a n g e t o check f o r p r i m e n e s s
23 pr ime [MAX N+ 1] , / / i n t h e end , pr ime [ i ] = 1 i f i prime , e l s e 0
24 n e x t b a s e ; / / n e x t s i e v e m u l t i p l i e r t o be used
25 / / l o c k f o r t h e s h a r e d v a r i a b l e n e x t b a s e
26 p t h r e a d m u t e x t n e x t b a s e l o c k = PTHREAD MUTEX INITIALIZER ;
27 / / ID s t r u c t s f o r t h e t h r e a d s
28 p t h r e a d t i d [MAX THREADS ] ;
29
30 / / ” c r o s s e s o u t ” a l l odd m u l t i p l e s o f k
31 vo id c r o s s o u t ( i n t k )
32 { i n t i ;
33 f o r ( i = 3 ; i ∗k <= n ; i += 2) {
34 pr ime [ i ∗k ] = 0 ;
35 }
36 }
37
38 / / each t h r e a d r u n s t h i s r o u t i n e
39 vo id ∗worker ( i n t t n ) / / t n i s t h e t h r e a d number ( 0 , 1 , . . . )
40 { i n t l im , base ,
41 work = 0 ; / / amount o f work done by t h i s t h r e a d
42 / / no need t o check m u l t i p l i e r s b i g g e r t h a n s q r t ( n )
43 l im = s q r t ( n ) ;
44 do {
45 / / g e t n e x t s i e v e m u l t i p l i e r , a v o i d i n g d u p l i c a t i o n a c r o s s t h r e a d s
46 / / l o c k t h e l o c k
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47 p t h r e a d m u t e x l o c k (& n e x t b a s e l o c k ) ;
48 base = n e x t b a s e ;
49 n e x t b a s e += 2 ;
50 / / un loc k
51 p t h r e a d m u t e x u n l o c k (& n e x t b a s e l o c k ) ;
52 i f ( ba se <= l im ) {
53 / / don ’ t b o t h e r c r o s s i n g o u t i f ba se known c o m p o s i t e
54 i f ( pr ime [ base ] ) {
55 c r o s s o u t ( ba se ) ;
56 work ++; / / l o g work done by t h i s t h r e a d
57 }
58 }
59 e l s e r e t u r n work ;
60 } w h i l e ( 1 ) ;
61 }
62
63 main ( i n t a rgc , c h a r ∗∗ a rgv )
64 { i n t npr imes , / / number o f p r i me s found
65 i , work ;
66 n = a t o i ( a rgv [ 1 ] ) ;
67 n t h r e a d s = a t o i ( a rgv [ 2 ] ) ;
68 / / mark a l l even numbers nonprime , and t h e r e s t ” pr ime u n t i l
69 / / shown o t h e r w i s e ”
70 f o r ( i = 3 ; i <= n ; i ++) {
71 i f ( i%2 == 0) pr ime [ i ] = 0 ;
72 e l s e pr ime [ i ] = 1 ;
73 }
74 n e x t b a s e = 3 ;
75 / / g e t t h r e a d s s t a r t e d
76 f o r ( i = 0 ; i < n t h r e a d s ; i ++) {
77 / / t h i s c a l l s a y s c r e a t e a t h r e a d , r e c o r d i t s ID i n t h e a r r a y
78 / / id , and g e t t h e t h r e a d s t a r t e d e x e c u t i n g t h e f u n c t i o n worker ( ) ,
79 / / p a s s i n g t h e argument i t o t h a t f u n c t i o n
80 p t h r e a d c r e a t e (& i d [ i ] ,NULL, worker , i ) ;
81 }
82
83 / / w a i t f o r a l l done
84 f o r ( i = 0 ; i < n t h r e a d s ; i ++) {
85 / / t h i s c a l l s a y s w a i t u n t i l t h r e a d number i d [ i ] f i n i s h e s
86 / / e x e c u t i o n , and t o a s s i g n t h e r e t u r n v a l u e o f t h a t t h r e a d t o our
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87 / / l o c a l v a r i a b l e work h e r e
88 p t h r e a d j o i n ( i d [ i ] ,& work ) ;
89 p r i n t f (”%d v a l u e s o f base done\n ” , work ) ;
90 }
91
92 / / r e p o r t r e s u l t s
93 npr imes = 1 ;
94 f o r ( i = 3 ; i <= n ; i ++)
95 i f ( pr ime [ i ] ) {
96 npr imes ++;
97 }
98 p r i n t f ( ” t h e number o f p r im es found was %d\n ” , np r imes ) ;
99

100 }

To make our discussion concrete, suppose we are running this program with two threads on a dual core
machine. Suppose also that both threads are running simultaneously most of the time. This will occur if
they if there are no other big threads. (Actually, the original thread is main(), but it lies dormant most of the
time, as you’ll see.)

Note the global variables:

i n t n t h r e a d s , / / number o f t h r e a d s ( n o t c o u n t i n g main ( ) )
n , / / r a n g e t o check f o r p r i m e n e s s
pr ime [MAX N+ 1] , / / i n t h e end , pr ime [ i ] = 1 i f i prime , e l s e 0
n e x t b a s e ; / / n e x t s i e v e m u l t i p l i e r t o be used

p t h r e a d m u t e x t n e x t b a s e l o c k = PTHREAD MUTEX INITIALIZER ;
p t h r e a d t i d [MAX THREADS ] ;

This will require some adjustment for those who’ve been taught that global variables are “evil.” All
communication between threads is via global variables, so if they are evil, they are a necessary evil.
Personally I think the stern admonitions against global variables are overblown anyway. See http:
//heather.cs.ucdavis.edu/˜matloff/globals.html, and in the shared-memory context,
http://software.intel.com/en-us/articles/global-variable-reconsidered/?wapkw=

As mentioned earlier, the globals are shared by all threads. If one processor, for instance, assigns the value
0 to prime[35] in the function crossout(), then that variable will have the value 0 when accessed by any of
the other processors as well. On the other hand, local variables have different values at each processor; for
instance, the variable i in that function has a different value at each processor.

Note that in the statement

p t h r e a d m u t e x t n e x t b a s e l o c k = PTHREAD MUTEX INITIALIZER ;

http://heather.cs.ucdavis.edu/~matloff/globals.html
http://heather.cs.ucdavis.edu/~matloff/globals.html
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the right-hand side is not a constant. It is a macro call, and is thus something which is executed.

In the code

p t h r e a d m u t e x l o c k (& n e x t b a s e l o c k ) ;
ba se = n e x t b a s e
n e x t b a s e += 2
p t h r e a d m u t e x u n l o c k (& n e x t b a s e l o c k ) ;

we see a critical section operation which is typical in shared-memory programming, as noted in Section
9.4.5. In this context here, it means that we cannot allow more than one thread to execute

base = n e x t b a s e ;
n e x t b a s e += 2 ;

at the same time. A common term used for this is that we wish the actions in the critical section to
collectively be atomic, meaning not divisible among threads. The calls to pthread mutex lock() and
pthread mutex unlock() ensure this. If thread A is currently executing inside the critical section and
thread B tries to lock the lock by calling pthread mutex lock(), the call will block until thread B executes
pthread mutex unlock().

As will be seen later, there are other operations that are different from locks but which have the same goal,
of atomic access to critical sections. The general term is to call all such operations synchronization.

Here is why this is so important: Say currently nextbase has the value 11. What we want to happen is that
the next thread to read nextbase will “cross out” all multiples of 11. But if we allow two threads to execute
the critical section at the same time, the following may occur:

• thread A reads nextbase, setting its value of base to 11

• thread B reads nextbase, setting its value of base to 11

• thread A adds 2 to nextbase, so that nextbase becomes 13

• thread B adds 2 to nextbase, so that nextbase becomes 15

Two problems would then occur:

• Both threads would do “crossing out” of multiples of 11, duplicating work and thus slowing down
execution speed.

• We will never “cross out” multiples of 13, and thus our final count of the number of primes will be
wrong.
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Thus the lock is crucial to the correct (and speedy) execution of the program.

Note that these problems could occur either on a uniprocessor or multiprocessor system. In the uniprocessor
case, thread A’s turn might end right after it reads nextbase, followed by a turn by B which executes that
same instruction. In the multiprocessor case, A and B could literally be running simultaneously, but still
with the action by B coming an instant after A.

This problem frequently arises in parallel database systems. For instance, consider an airline reservation
system. If a flight has only one seat left, we want to avoid giving it to two different customers who might be
talking to two agents at the same time. The lines of code in which the seat is finally assigned (the commit
phase, in database terminology) is then a critical section.

A critical section is always a potential bottleneck in a parallel program, because its code is serial instead
of parallel. In our program here, we may get better performance by having each thread work on, say, five
values of nextbase at a time. Our line

n e x t b a s e += 2 ;

would become

n e x t b a s e += 1 0 ;

That would mean that any given thread would need to go through the critical section only one-fifth as often,
thus greatly reducing overhead. On the other hand, near the end of the run, this may result in some threads
being idle while other threads still have a lot of work to do.

Note this code.

f o r ( i = 0 ; i < n t h r e a d s ; i ++) {
p t h r e a d j o i n ( i d [ i ] ,& work ) ;
p r i n t f (”%d v a l u e s o f base done\n ” , work ) ;

}

This is a special case of of barrier.

A barrier is a point in the code that all threads must reach before continuing. In this case, a barrier is needed
in order to prevent premature execution of the later code

f o r ( i = 3 ; i <= n ; i ++)
i f ( pr ime [ i ] ) {

npr imes ++;
}

which would result in possibly wrong output if we start counting primes before some threads are done.

Actually, we could have used Pthreads’ built-in barrier function. We need to declare a barrier variable, e.g.
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p t h r e a d b a r r i e r t b a r r ;

and then call it like this:

p t h r e a d b a r r i e r w a i t (& b a r r ) ;

The pthread join() function actually causes the given thread to exit, so that we then “join” the thread that
created it, i.e. main(). Thus some may argue that this is not really a true barrier.

Barriers are very common in shared-memory programming.

10.2.0.1 Higher-Level Threads Programming

Threads programming, e.g. surrounding critical sections by lock/unlock code, can become tedious and error-
prone. So it is common to write a higher level; the current standard for multicore is the OpenMP library,
which handles all the thread details for you.

The OpenMP library gives the programmer a higher-level view of threading. The threads are there, but
rather hidden by higher-level abstractions. However, it is beyond the scope of this book.

10.3 “Embarrassingly Parallel” Applications

As noted, the use of locks in our primes-counting code above is a potentially major source of slowdown.
Many refinements could be made to reduce the locks overhead, but the point is that the frequent access to
locks is a recurring problem in parallel applications.

There are many other applications, though, in which locks play a quite minimal role. They are generally
terms embarrassingly parallel. Technically, the term actually means something else; it refers to applica-
tions that are so easy to parallelize that it’s “embarrassing” to the programmer, since there is no challenge to
them. But the term later evolved (or devolved) to mean applications in which very little synchronization is
performed.

An example is matrix multiplication. Suppose we are multiplying a vector X by a matrix A. Since the ith

component of the overall product is equal to the product of the ith row of A with X, the computation of AX
is very easily parallelized: Say we have k threads, and that A has n rows Then have thread 0 handle the first
n/k rows of A, thread 1 handle the next n/k rows, and so on. The only synchronization needed would be a
barrier operation at the end.

Much of the discussion of parallel hardware and software revolves around the question of how it performs
on non-embarrassingly parallel applications.
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10.4 Basic Multiple-Core Hardware Structures

A multicore machine looks just like the SMP figure above, except that all the P symbols are now physically
on one chip. From the point of view of programming, performance and so on, multicore and SMP are similar.
Note in particular the shared address space in both cases; if two threads both access memory location 500,
say, they are accessing the same physical location.

GPU structure, on the other hand, is considerably more complex. An NVIDIA GPU’s processing area is
broken down into a number of streaming multiprocessors (SMs). Many threads can be active at once on
an SM, and all the SMs are active at once; thus very large degrees of parallel operation are possible. All of
the threads on all the SMs share the same main memory, as in the multicore/SMP case. However, there is
also separate memory specific to each SM, to be discussed later.

It is crucial to understand that within an SM, the threads run in lockstep. In the fetch/execute cycle, each
thread fetches the same instruction, and then either executes that instruction or does nothing at all. This
allows for having many parallel threads, but becomes problematic when a branch instruction is encountered.
If the condition of the branch holds for some threads but not others, the others are forced to be idle. If there
are k threads with k separate conditions, this effectively serializes that SM during that period.

So, although the GPU has multiple cores and threads share memory, this lockstep nature of the GPU means
that programming it is very different from multicore programming. It will also manifest itself in another
major difference, involving locks, to be discussed later.

Another interesting difference is that the GPU actually has an OS in the hardware. It decides when to run
which threads.

10.5 Hardware Support for Critical Section Access

In shared memory programming, the handling of critical sections, lock variables and the like play a vital role
in performance. Remember, a critical section in effect serializes the program if many threads are waiting to
enter it at the same time. Thus fast handling of critical sections is important, and most processors have some
support for that.

10.5.1 Test-and-Set Instructions

Consider a bus-based system. In addition to whatever memory read and memory write instructions the
processor included, there will be a TAS instruction, or one or more similar instructions.1 This instruction
controls a TAS pin on the processor chip, and the pin in turn is connected to a TAS line on the bus.

1This discussion is for a mythical machine, but any real system works in this manner.
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Applied to a location L in memory and a register R, say, TAS does the following:

copy L t o R
i f R i s 0 t h e n w r i t e 1 t o L

And most importantly, these operations are done in an atomic manner; no bus transactions by other cores
may occur between the two steps.

The TAS operation is applied to variables used as locks. Let’s say that 1 means locked and 0 unlocked. Then
the guarding of a critical section C by a lock variable L would be done by having the following code in the
program being run:

TRY: TAS R , L
JNZ TRY

C : . . . ; s t a r t o f c r i t i c a l s e c t i o n
. . .
. . . ; end of c r i t i c a l s e c t i o n

MOV L , 0 ; un loc k \ s u b s u b s e c t i o n {LOCK P r e f i x on I n t e l P r o c e s s o r s }

where of course JNZ is a jump-if-nonzero instruction, and we are assuming that the copying from the
Memory Data Register to R results in the core’s N and Z flags (condition codes) being affected.

10.5.1.1 LOCK Prefix on Intel Processors

On Pentium machines, the LOCK prefix can be used to get atomicity for certain instructions.2 For example,

l o c k add $2 , x

would add the constant 2 to the memory location labeled x in an atomic manner.

The LOCK prefix locks the bus for the entire duration of the instruction. Note that the ADD instruction
here involves two memory transactions—one to read the old value of x, and the second the write the new,
incremented value back to x. So, we are locking for a rather long time, but the benefits can be huge.

A good example of this kind of thing would be our program PrimesThreads.c in Section 10.2 above, where
our critical section consists of adding 2 to nextbase. There we surrounded the add-2 code by Pthreads lock
and unlock operations. These involve system calls, which are very time consuming, involving hundreds of
machine instructions. Compare that to the one-instruction solution above! Even more importantly, access
of lock variables can trigger very time-consuming cach coherency operations, discussed below. The very
heavy overhead of Pthreads would be thus avoided by this usage of the LOCK prefix.

2The instructions are ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD.
Also, XCHG asserts the LOCK# bus signal even if the LOCK prefix is specified. Locking only applies to these instructions in forms
in which there is an operand in memory.



10.6. MEMORY ISSUES 209

10.5.1.2 Synchronization Operations on the GPU

The lockstep-within-SM nature of the GPU makes lock operations of the sort we’ve been examining infea-
sible. There are indeed across-SM operations for synchronization, such as one for atomic addition, working
similar to the Intel add-2 example above. However, they are very slow.

At the within-SM level, synchronization is available in the form of barriers. These are fairly efficient, but
again, available only within SMs.

For these reasons, it’s very difficult to parallelize non-embarrassingly parallel applications with GPUs.

10.6 Memory Issues

Many times a scientist, engineer, economist, statistician, sociologist etc. has eagerly sat down to write
his/her first parallel program, and to be horrified to find that it actually runs more slowly than the serial
version! In most such cases, the primary culprit underlying the poor performance involves memory.

10.6.1 Overview of the Problems

Problems arising for multicore/SMP systems include:

• bus contention: Two or more threads try to access memory (though possibly in different memory
modules) at the same (near-)instant, thus all needing the bus at the same time, causing some serializa-
tion.

• memory module contention: One or more threads try to access the same memory module while it
is still busy processing the prior request of another thread. The bus is free, but the memory module
isn’t. Again, the result is some serialization.

• cache coherency transactions: One or more cores discovers that its local cache is inconsistent with
the up-to-date values held in either main memory or in the cache of another core. As with any cache
update procedure, a very large amount of bus traffic is generated, thus severely slowing performance
during that period.

• false sharing: Say two of our program variables, x and y, have no relation to each other, but happen
to be stored in the same cache line. Suppose a thread writes to x, without touching y. Then the entire
cache line at that core will be invalidated—with the consequence that y is now considered invalid at
the other threads, even though it is perfectly fine. If another thread needs to read y, that thread’s core
will need to go through a cache coherency transaction, which as noted above can really slow things
down.
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In the GPU case, problems can include:

• bank conflicts: In the old days, memory modules were called banks. The designers of the GPU
revived this term. At any rate, putting terminology aside, what problems can occur?

Once again, the lockstep nature of SMs is key: Each thread executes the same instruction at the same
time, but accessing different memory locations. So, many memory locations are accessed at once. If
they are all in different banks (better, all are to consecutive words), all those accesses can be done
simultaneously (due to the DRAM construction of memory); if not, then some serialization occurs.

• “cache misses”: The memory shared by all threads in all SMs is called global memory. Depending
on the model of GPU, each SM may have a cache, but on any model, each SM also has a programmer-
managed cache named shared memory. (The terminology is confusing, but the word shared refers to
the fact that all threads in that SM share it.) Shared memory is much faster than global memory, but
it is also very small. Thus the programmer may write code which moves data back and forth between
the two levels of memory, thus causing a slowdown.

The programmer can often refine the program to ameliorate these problems, though in some applications it
may be difficult.

10.6.2 Memory Interleaving

Here we address (pun intended) the issue of how addresses are assigned to memory modules.

Most systems today do this via low-order interleaving. Here consecutive addresses assigned to consecutive
banks (except when we get to the right end). For example, suppose for simplicity that our memory consists
of word-addresses 0 through 1023, and that there are four banks, M0 through M3. Then word-address 0
would be in M0, 1 would be in M1, 2 would be in M2, 3 would be in M3, 4 would be back in M0, 5 in M1,
and so on.

In terms of bus connections: Again for simplicity, assume that consecutive words have consecutive addresses
(i.e. bytes within words don’t have addresses). Since the address space of the system consists of 210 = 1024
words, we would have lines A0-A9 in the address bus. Each module would consist of 28 = 256 words,
connected to lines A2-A9. Lines A0-A1 would then be used to activate the correct module.

All this impacts the way we write our applications code. We want to avoid bus contention, and sometimes
proper arrangement of data structures can help in this regard.

As a simple illustration, think of the toy 4-module example above, with 4 cores. (It is typical to have as
many modules as cores, the idea being to keep all modules busy.)

Suppose we have a C array of 10 rows and 4 columns, and consider two ways to traverse the entire array—
row-by-row or column-by-column, say to find the sum of all the elements in the array. Say we have 4
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threads running. Here is the row-by-row version, with thrnum being the thread’s thread number and sum
being global:

sum = 0 ;
f o r ( i = 0 ; i < 1 0 ; i ++) {

myj = thrnum ;
sum += x [ i ] [ thrnum ] ;

}

This is meshing perfectly with the interleaving, and at least in the GPU case it should produce good perfor-
mance. The corresponding column-by-column version would have terrible performance: There would be
maximal clashes at every access.

The restriction to the GPU in the preceding paragraph is due to the lockstep nature. We know that the
machine instructions corresponding to the line

sum += x [ i ] [ thrnum ] ;

will execute simultaneously, and thus the memory accesses will occur simultaneously. On a multicore/SMP
machine, the execution is asynchronous, and the effects less clear.

10.6.2.1 Implications for the Number of Threads to Run

When one writes code for any of these systems, the question then arises at run time as to how many threads
to run.

Recall that for Pthreads, this is done by setting an environment variable. For instance, on a Linux system
running the C shell, to set up 8 threads we would give this command in the shell:

% s e t e n v OMP NUM THREADS 8

For a GPU, it’s more complicated, as one needs to decide both the number of threads per block, and the
number of blocks overall. (We don’t define the term block here, nor will we show code in CUDA, an
extension of C that is NVIDIA’s main vehicle for writing GPU code.) The point here, though, is that one
must make such decisions.

On a multicore/SMP system, it seems reasonable to set the number of threads equal to the number of cores.
This way all cores should be kept busy. Actually, sometimes it is helpful to run slightly more threads than
cores, since on occasion one thread may be in the midst of a virtual memory page fault (Chapter ??) and
thus its core may be free to work on another thread.

By contrast, the designers of the GPU intend one to run many more threads than cores. The reason for this
is that the GPU global memory has very long latency, the time it takes one bit to get from the GPU global
memory to/from a core. When the mini-OS in the GPU hardware notices that the current set of threads has
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just submitted a request to global memory, the mini-OS will do a context switch, having a different set of
threads run during the long delay of the memory request of the previous set. Hence, one should set up lots
of threads, so that the mini-OS can always find something to run.

10.7 To Learn More

Much more material on parallel processing (including the message-passing case) is available in my open
source book on the subject, at http://heather.cs.ucdavis.edu/parprocbook.

http://heather.cs.ucdavis.edu/parprocbook


Chapter 11

Overview of Functions of an Operating
System: Memory and I/O

11.1 Virtual Memory

11.1.1 Make Sure You Understand the Goals

Now let us add in the effect of virtual memory (VM). VM has the following basic goals, which are so
important to understand that I am describing in separate short sub-subsections:

11.1.1.1 Overcome Limitations on Memory Size

We want to be able to run a program, or collectively several programs, whose memory needs are larger than
the amount of physical memory available.

11.1.1.2 Relieve the Compiler and Linker of Having to Deal with Real Addresses

We want to facilitate relocation of programs, meaning that the compiler and linker do not have to worry
about where in memory a program will be loaded when it is run.

213
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11.1.1.3 Enable Security

We want to ensure that one program will not accidentally (or intentionally) harm another program’s opera-
tion by writing to the latter’s area of memory, read or write to another program’s I/O streams, etc.

11.1.2 The Virtual Nature of Addresses

The word virtual means “apparent.” It will appear that a program resides entirely in main memory, when
in fact only part of it is there. It will appear that your program variables are stored at the places the linker
assigned to them,1 when in fact they actually will be stored somewhere else.

(For the time being, it will be easier to understand VM by assuming there is no cache. We will return to this
in Section 11.1.8.)

To make this more concrete, suppose our C source file includes the following statements:

int x;
...
x = 8;
printf("%d",&x);

Recall that addresses of variables are set in the following manner. Say x is global. Then the compiler will
generate a .comm line in assembly language it produces.2 The latter will be translated by the assembler, and
then the linker will deal with the machine code. Among other things, the linker will assign an address for x.
It will be this address which is printed out above.

If x had been local, it would be stored on the stack, but that is still memory of course, and thus it would have
an address too. Again, that would be printed out.

In any case, either of these addresses would be fake. Let’s see what this really means. Suppose that x is
global, and that the compiler and linker assign it address 200, i.e. &x is 200. Then the above code

x = 8;

would correspond to an instruction in a.out something like

movl $8, 200

At the time a.out is loaded by the OS into memory, the OS will divide both the .text (instructions) and data
portions of a.out (.data, .bss, stack, heap, etc.) into chunks, and find unused places in memory at which to

1You can determine these by running readelf on your executable file, with the -s option.
2If x had been declared in initialzed form, e.g. int x = 28; then it would have been in a .data section.
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place these chunks. The chunks are called pages of the program, and the same-sized places in memory in
which the OS puts them are called pages of memory.3 The OS sets up a page table for this process, which is
an array which is maintained by the OS, in which the OS records the correspondences, i.e. lists which page
of the process is stored in which page of memory. Remember, the OS is a program, and the page table is an
array in that program, and thus it too is in memory.

What appears to be in word 200 in memory from the program code above may actually be in, say, word
1204. At the time the CPU executes that instruction, the CPU will determine where ‘Word 200” really is by
doing a lookup in the page table. In our example here, the table will show that the item we want is actually
in word 1204, and the CPU will then write to that location. The hardware would put 1204 on the address
bus, 8 on the data bus, and would assert the Memory Write line in the control bus.

In this example, we say the virtual address is 200, and the physical address is 1204.

Note that while virtual addressing is enabled (it is turned off in Kernel Mode), all addresses seen by the
hardware will be virtual. For example, the contents of ESP will be a virtual address, with the real top-of-
stack address being something else, not what ESP says. A similar statement holds for the PC, etc.

11.1.3 Overview of How the Goals Are Achieved

Let’s look at our stated goals in Section 11.1.1 above, and take a first glance at how they are achieved (details
will be covered later):

11.1.3.1 Overcoming Limitations on Memory Size

To conserve memory space, the OS will initially load only part of a.out into memory, with the remainder
being left back on disk. The pages of the program which are not loaded will be marked in the page table as
currently being nonresident, meaning not in memory, and their locations on disk will be shown in the table.
During execution of the program, if the program needs one of the nonresident pages, the CPU will notice
that the requested page is nonresident. This is called a page fault, and it causes an internal interrupt. The
interrupt number is 0xe, i.e. entry 0xe in the IDT. That causes a jump to the OS, which will bring in that
page from disk, and then jump back to the program, which will resume at the instruction which accessed the
missing page.

Note that pages will often go back and forth between disk and memory in this manner. Each time the
program needs a missing page, that page is brought in from disk and a page which had been resident is
written back to disk in order to make room for the new one. Note also that a given virtual page might be in
different physical pages at different times.

3As with the stack, etc., keep in mind that these pages are only conceptual; there is no “fence” or any other physical demarcation
between one page in memory and the next. A page is simply a unit of measurement, like acres and liters.
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A big issue is the algorithm the OS uses to decide which page to move back to disk (i.e. which page to
replace) whenever it brings a page from disk after a page fault. Due to the huge difference in CPU and disk
speeds, a page fault is a catastrophic even in terms of program speed. We hope to have as few page faults as
possible when our program runs.

So, we want to check the pages to evict very carefully. If we often evict a page which is needed again very
soon, our program’s performance will really suffer. This is called thrashing. Details of page replacement
policies are beyond the scope of this document here, but one point to notice is that the policy will be chosen
so as to work well on “most” programs. For any given policy, it will do well on some programs (i.e. produce
few page faults) while doing poorly on some other programs (produce many page faults).

So, what they try to do is come up with a policy which works reasonably well on a reasonably broad variety
of programs. Most policies are some variation on the Least Recently Used policy common for associative
caches.

11.1.3.2 Relieving the Compiler and Linker of Having to Deal with Real Addresses

This is clear from the example above, where the location “200” which the compiler and linker set up for
x was in effect changed by the OS to 1204 at the time the program was loaded. The OS recorded this in
the page table, and then during execution of the program, the VM hardware in the CPU does lookups in the
page table to get the correct addresses. The point is that the compiler and linker can assign x to location 200
without having to worry whether location is actually available at the time the program will be run, because
that variable actually won’t be at 200.

11.1.3.3 Enabling Security

The page table will consist of one entry per page. That entry will, as noted earlier, include information as
to where in memory that page of the program currently resides, of if currently nonresident, where on disk
the page is stored. But in addition, the entry will also list the permissions the program has to access this
particular page—read, write, execute—in a manner analogous to file-access permissions. If . an access
violation occurs, the VM hardware in the CPU will cause an internal interrupt (again it’s interrupt number
0xe, as for page faults), causing the OS to run. The OS will then kill the process, i.e. remove it from the
process table.

Normally data-related sections such as .data and the stack will be the only ones with write permission.
However, you can also arrange for the .text section to be writable, via the -N option to ld.

You might wonder why execute permission is included. One situation in which this would be a useful check
is that in which we have a pointer to a function. If for example we forgot to initialize the pointer, a violation
will be detected.



11.1. VIRTUAL MEMORY 217

Suppose for instance your program tries to read from virtual page number 40000 but that virtual address is
out of the ranges of addresses which the program is allocated. The hardware will check the entry for 40000
in the page table, and find that not only is that page not resident, but also it isn’t on disk either. Instead, the
entry will say that there is no virtual page 40000 among the pages allocated to this program.

We don’t want an ordinary user programs to be able to, say maliciously, access the I/O streams of other
programs. To accomplish this, we want to forbid a user program from accessing the I/O buffer space of
another program, which is easy to to accomplish since that space is in memory; we simply have the OS set
up the page table for that program accordingly. But we also need to forbid a user program from directly
performing I/O, e.g. the INB and OUTB instructions on Intel machines.

This latter goal is achieved by exploiting the fact that most modern CPUs run in two or more privilege
levels. The CPU is designed so that certain instructions, for example those which perform I/O such as INB
and OUTB, can be executed only at higher privilege levels, say Kernel Mode. (The term kernel refers to the
OS.)

But wait! Since the OS is a program too, how does it get into Kernel Mode? Obviously there can’t be some
instruction to do this; if there were, then ordinary user programs could use it to put themselves into Kernel
Mode. So, how is it done?

When the machine boots up, it starts out in Kernel Mode. Thus the OS starts out in Kernel Mode. Among
other things, the interrupts can be configured to change the privileges level of the CPU. Recall that the OS
starts a turn for a user program (including that program’s first turn) by executing an IRET instruction, a
software interrupt. So, the OS can arrange both for user programs to run in non-Kernel Mode and for Kernel
Mode to be restored when an interrupt comes during a user program is running. So for example, an interrupt
from the timer will not only end a user program’s turn, but also will place the CPU in Kernel Mode, thus
having the OS run in that mode.

11.1.3.4 Is the Hardware Support Needed?

It is instructive to think about the role of the VM hardware in achieving the three goals above—being able
to run larger programs than our RAM size; being able to shift memory addresses of programs; enabling
security. In the first two cases, we could accomplish our goal without the hardware, even though it would be
inconvenient; but in the third case, the hardware is really necesary.

In the pre-VM days, programmers used overlays. A program might need a very large array, but not have
enough RAM. If so, the programmer could insert code to move portions of the array in from disk when they
were needed, and write them back to disk when they are no longer needed. Of course, this was a nuisance
for the programmer, but anyway the goal could be accomplished.

Similarly, an executable file could be rewritten just before loading it into memory for execution, so that it
could be stored at a different address than originally planned. Depending on the archicture of the machine,
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there may be some register who usage in effect shifted everything to another place in memory.

But for the security goal, there really isn’t anything we can do. We need something to check every memory
access, and unless we run interpreted code, the hardware is needed.

11.1.4 Who Does What When?

Note carefully the roles of the players here: It is the software, the OS, that creates and maintains the page
table, but it is the hardware that actually uses the page table to generate physical addresses, check page
residency and check security. In the event of a page fault or security violation, the hardware will cause a
jump to the OS, which actually responds to those events.

The OS writes to the page table (including creating it in the first place), and the hardware reads it.

The hardware will have a special Page Table Register (PTR) to point to the page table of the current process.
When the OS starts a turn for a process, it will restore the previously-saved value of the PTR, and thus this
process’ page table will now be in effect.

On the Pentium, the name of the PTR is CR3. (Actually, the Pentium uses a two-level hierarchy for its page
tables, but we will not pursue that point here.)

11.1.5 Details on Usage of the Page Table

11.1.5.1 Virtual-to-Physical Address Translation, Page Table Lookup

Whenever the running program generates an address—either the address of an instruction, as will be the
case for an instruction fetch, or the address of data, as will be the case during the execution of instructions
which have memory operands—this address is only virtual. It must be translated to the physical address
at which the requested item actually resides. The circuitry in the CPU is designed to do this translation by
performing a lookup in the page table.

For convenience, say the page size is 4096 bytes, which is the case for Pentium CPUs. (The treatment here
is somewhat simplified, though.) Both the virtual and physical address spaces are broken into pages. For
example, consider virtual address 8195. Since

8195 = 2× 4096 + 3 (11.1)

that address would be in virtual page 2 (the first page is page 0). We can then speak of how far into a page
a given address is. Here, because of the remainder 3 in Equation (11.1), we see that virtual address 8195 is
byte 3 in virtual page 2. We refer to the 3 as the offset within the page, i.e. its distance from the beginning
of the page.
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You can see that for any virtual address, the virtual page number is equal to the address divided by the page
size, 4096, and its offset within that page is the address mod 4096. Using our knowledge of the properties
of powers of 2 and the fact that 4096 = 212, this means that for a 32-bit address (which we’ll assume
throughout), the upper 20 bits contain the page number and the lower 12 bits contain the offset.

The page/offset description of the position of a byte is quite analogous to a feet/inches description of dis-
tance. We could measure everything in inches, but we choose to use a larger unit, the foot, to give a rough
idea of the distance, and then use inches to describe the remainder. The concept of offset will be very
important in what follows.

Now, to see how the page table is used to convert virtual addresses to physical ones, consider for example
the Intel instruction

movl $6, 8195

This would copy the constant 6 to location 8195. Remember, this is page 2, offset 3. However, it is a virtual
address. The hardware would see the 8195,4 The hardware knows that any address given to it is a virtual
one, which must be converted to a physical one. So, the hardware would look at the entry for virtual page
2, and find what physical page that is; suppose it is 5. Then that page starts at physical memory location
5× 4096 = 20480.

What about the offset within that physical page 5? The custom is that an item will have the same offset, no
matter whether we are talking about its virtual address or its physical one. So, the offset of our destination
in physical page 5 would be 3. In other words, the physical address is

5× 4096 + 3 = 20483 (11.2)

The CPU would now be ready to execute the instruction, which, to refresh your memory, was

movl $6, 8195

The CPU knows that the real location of the destination is 20483, not 8195. It would put 20483 on the
address bus, put 6 on the data bus, and assert the Memory Write line in the control bus, and the instruction
would be done.

4Remember, it will be embedded within the instruction itself, as this is direct addressing mode.
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11.1.5.2 Layout of the Page Table

Suppose the entries in our page table are 32 bits wide, i.e. one word per entry.5 Let’s label the bits of an entry
31 to 0, where Bit 31 is in the most-significant (i.e. leftmost) position and Bit 0 is in the least significant
(i.e. rightmost) place. Suppose the format of an entry is as follows:

• Bits 31-12: physical page number if resident, disk location if not

• Bit 11: 1 if page is resident, 0 if not

• Bit 10: 1 if have read permission, 0 if not

• Bit 9: 1 if have write permission, 0 if not

• Bit 8: 1 if have execute permission, 0 if not

• Bit 7: 1 if page is “dirty,” 0 if not (see below)

• Bits 6-0: other information, not discussed here

Now, here is what will happen when the CPU executes the instruction

movl $6, 8195

above:

• The CPU does the computation ×4096+ 3 = 20483 and finds that virtual addrss 8195 is virtual page
number 2, offset 3.

• Since we are dealing with virtual page 2, the CPU will go to get the entry for that virtual page in the
page table, as follows. Suppose the contents of the PTR is 5000. Then since each entry is 4 bytes
long, the table entry of interest here, i.e. the entry for virtual page 2, is at location

5000 + 4× 2 = 5008 (11.3)

The CPU will read the desired entry from that location, getting, say, 0x000005e0.

• The CPU looks at Bits 11-8 of that entry, getting 0xe, finding that the page is resident (Bit 11 is 1) and
that the program has read and write permission (Bits 10 and 9 are 1) but no execute permission (Bit 8
is 0). The permission requested was write, so this is OK.

5If we were to look at the source code for the OS, we would probably see that the page table is stored as a very long array of
type unsigned int, with each array element being one page table entry.
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• The CPU looks at Bits 31-12, getting 5, so the hardware would know that virtual page 2 is actually
physical page 5. The virtual offset, which we found earlier to be 3, is always retained, so the CPU
now knows that the physical address of the virtual location 8195 is

5× 4096 + 3 = 20483 (11.4)

• The CPU puts the latter on the address bus, puts 6 on the data bus, and asserts the Write line in the
bus. This writes 6 to memory location 20483, and we are done.

By the way, all this was for Step C of the above MOV instruction. The same actions would take place in
Step A. The value in the PC would be broken down into a virtual page number and an offset; the virtual page
number would be used as an index into the page table; Bits 10 and 8 in the page table element would be
checked to see whether we have permission to read and execute that instruction; assuming the permissions
are all right, the physical page number would be obtained from Bits 31-12 of the page table element; the
physical page number would be combined with the offset to form the physical address; and the physical
address would be placed in the MAR and the instruction fetched.

Recall from above that the upper 20 bits of an address form the page number, and the lower 12 bits form the
offset. A similar statement holds for physical addresses and physical page numbers. So, all the hardware
need do is: use the upper 20 bits of the virtual address as an index in the page table (i.e. multiply this by 4
and add to c(PTR); take bits 31-12 of from the table entry reached in this manner, to get the physical page
number; and finally, concatenate this physical page number with the lower 12 bits of the original virtual
address. Then the hardware has the physical address, which it places on the address bus.

11.1.5.3 Page Faults

Suppose in our example above Bit 11 of the page table entry had been 0, indicating that the requested page
was not in memory. As mentioned earlier, this event is known as a page fault. If that occurs, the CPU will
perform an internal interrupt, and will also record the PC value of the instruction which caused the page
fault, so that that instruction can be restarted after the page fault is processed. In Pentium CPUs, the CR2
register is used to store this PC value. This will force a jump to the OS.

The OS will first decide which currently-resident page to replace, then will write that page back to disk, if
the Dirty Bit is set (see below). The OS will then bring in the requested page from disk. The OS would
then update two entries in the page table: (a) it would change the entry for the page which was replaced,
changing Bit 11 to 0 to indicate the page is not resident, and changing Bits 31-12 and possible Bit 7; and (b)
the OS would update the page table entry of the new item’s page, to indicate that the new item is resident
now in memory (setting Bit 11 to 1), show where it resides (by filling in Bits 31-12), and setting Bit 7 to 0.

The role of the Dirty Bit is as follows: When a page is brought into memory from disk, this bit will be set to
0. Subsequently, if the page is written to, the bit will be changed to 1. So, when it comes time to evict the
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page from memory, the Dirty Bit will tell us whether there is any discrepancy between the contents of this
page in memory and its copy on disk. If there is a difference, the OS must write the new contents back to
disk. That means all 4096 bytes of the page. We must write back the whole page, because we don’t know
what bytes in the page have changed. The Dirty Bit only tells us that there has been some change(s), not
where the change(s) are. So, if the Dirty Bit is 0, we avoid a time-consuming disk write.

Since accessing the disk is far, far slower than accessing memory, a program will run quite slowly if it has
too many page faults. If for example your PC at home does not have enough memory, you will find that you
often have to wait while a large application program is loading, during which time you can hear the disk
drive doing a lot of work, as the OS ejects many currently-resident pages to bring in the new application.

11.1.5.4 Access Violations

If on the other hand an access violation occurs, the OS will announce an error—in Unix, referred to as a
segmentation fault—and kill the process, i.e. remove it from the process table.

For example, considering the following code:

1 int q[200];
2

3 main()
4

5 { int i;
6

7 for (i = 0; i < 2000; i++) {
8 q[i] = i;
9 }

10

11 }

Notice that the programmer has apparently made an error in the loop, setting up 2000 iterations instead
of 200. The C compiler will not catch this at compile time, nor will the machine code generated by the
compiler check that the array index is out of bounds at execution time.

If this program is run on a non-VM platform,6 then it will merrily execute without any apparent error. It
will simply write to the 1800 words which follow the end of the array q. This may or may not be harmful,
depending on what those words had been used for.

But on a VM platform, in our case Unix, an error will indeed be reported, with a “Segmentation fault”
message.7 However, as we look into how this comes about, the timing of the error may surprise you. The
error is not likely to occur when i = 200; it is likely to be much later than that.

6 Recall that “VM platform” requires both that our CPU has VM capability, and that our OS uses this capability.
7On Microsoft Windows systems, it’s called a “general protection error.”
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To illustrate this, I ran this program under gdb so that I could take a look at the address of q[199].8 After
running this program, I found that the seg fault occurred not at i = 200, but actually at i = 728. Let’s see
why.

From queries to gdb I found that the array q ended at 0x080497bf, i.e. the last byte of q[199] was at that
address. On Intel machines, the page size is 4096 bytes, so a virtual address breaks down into a 20-bit
page number and a 12-bit offset, just as in Section 11.1.5.1 above. In our case here, q ends in virtual page
number 0x8049 = 32841, offset 0x7bf = 1983. So, after q[199], there are still 4096-1984 = 2112 bytes left
in the page. That amount of space holds 2112/4 = 528 int variables, i.e. elements “200” through “727” of
q. Those elements of q don’t exist, of course, but as discussed in Chapter 1 the compiler will not complain.
Neither will the hardware, as we will be writing to a page for which we do have write permission. But when
i becomes 728, that will take us to a new page, one for which we don’t have write (or any other) permission;
the hardware will detect this and trigger the seg fault.

We could get a seg fault not only by accessing off-limits data items, but also by trying to execute code at an
off-limits location. For example, suppose in the above example q had been local instead of global. Then it
would be on the stack. As we go past the end of q, we would go deeper and deeper into the stack. This may
not directly cause a seg fault, if the stack already starts out fairly large and is stored in physically contiguous
pages in memory. But we would overwrite all the preceding stack frames, including return addresses. When
we tried to “return” to those addresses,9 we would likely attempt to execute in a page for which we do not
have execute permission, thus causing a seg fault.

As another example of violating execute permission, consider the following code, with a pointer to a func-
tion:10

1 int f(int x)
2 { return x*x; }
3

4 // review of pointers to functions in C/C++: below p is a pointer to a
5 // function; the first int means that whatever function p points to, it
6 // returns an int value; the second int means that whatever function p
7 // points to, it has one argument, an int
8 int (*p)(int);
9

10 main()
11 { int u;
12

13 p = f; // point p to f
14 u = (*p)(5); // call f with argument 5
15 printf("%d\n",u); // prints 25
16 }

8Or I could have added a printf() statement to get such information. Note by the way that either running under gdb or adding
printf() statement will change the load locations of the program, and thus affect the results.

9Recall that main() is indeed called by other code, as explained in Chapter 7.
10If your classes on C/C++ did not cover this important topic of pointers to functions, the comments in the code below should be

enough to introduce it to you. Pointers to functions are used in many applications, such as threaded programs, as mentioned earlier.
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If we were to forget to include the line

u = (*p)(5);

then the variable p would not point to a function, and we would attempt to execute “code” in a location off
limits to us. A seg fault would result.

11.1.6 VM and Context Switches

A context switch will be accompanied by a switch to a new page table.

Say for example Process A has been running, but its turn ends and Process B is given a turn. Of course we
must now use B’s page table. So, before starting B’s turn, the OS must change the PTR to point to B’s page
table.

Thus, there is actually no such thing as “the” page table. There are many page tables. The term “the” page
table merely means the page table which PTR currently points to.

11.1.7 Improving Performance—TLBs

Virtual memory comes at a big cost, in the form of overhead incurred by accessing the page tables. For
this reason, the hardware will also typically include a translation lookaside buffer (TLB). This is a special
cache to keep a copy of part of the page table in the CPU, to reduce the number of times one must access
memory, where the page table resides.

One might ask, why not store the entire page table in the TLB? First of all, the page table theoretically
consists of 232/212 entries. This is somewhat large. Though there are ways around this, but we would need
to change this large amount of data at each context switch, which would really slow down context switching.
Note by the way that we would need to have special instructions which the OS could use to write to the TLB.
That’s OK, though, and there are other special instructions for the OS already.

11.1.8 The Role of Caches in VM Systems

Up to now, we have been assuming that the machine doesn’t have a cache.11 But in fact most machines
which use VM also have caches, and in such cases, what roles do the caches play?

The central point is that speed is still an issue. The CPU will look for an item in its cache first, since the
cache is internal to (or at least near) the CPU. If there is a cache miss, the CPU will go to memory for the

11Except for a TLB, which is of course very specialized.
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item. If the item is resident in memory, the entire block containing the item will be copied to the cache. If
the item is not resident, then we have a page fault, and the page must be copied to memory from disk, a very
slow process, before the processing of the cache miss can occur.

11.1.8.1 Addressing

An issue that arises is whether the cache is the CPU will virtually addressed or physically addressed.
Suppose for instance the instruction being executed reads from virtual address 200. If the cache is virtually
addressed, then the CPU would do its cache lookup using 200 as its index. On the other hand, if the cache
is physically addressed, then the CPU would first convert the 200 to its physical address (by checking the
TLB, and then the page table if need be), and then do the cache lookup based on that address.

A possible advantage of virtual addressing of caches would be that if we have a cache hit, we eliminate the
time delay needed for the virtual-to-physical address translation. Moreover, since we usually will have a
hit, we can afford to put the TLB in not-so-fast memory external to the CPU, which is done in some MIPS
models.

On the other hand, with physical cache addressing, two different processes could both have separate, un-
related copies of different blocks in the cache at the same time, but with the same virtual addresses. They
could coexist in the cache since their physical addresses would be different. That would mean we would not
have to flush the cache at each new timeslice, possible increasing performance.

11.1.8.2 Hardware Vs. Software

Note that cache design is entirely a hardware issue. The cache lookup and the block replacement upon a
miss is hard-wired into the circuitry. By contrast, in the VM case it is a mixture of hardware and software.
The hardware does the page table lookup, and checks page residency and access permissions. But it is the
software—the OS—which creates and maintains the page table. Moreover, when a page fault occurs, it is
the OS that does the page replacement and updates the page table.

So, you could have two different versions of Unix, say,12 running on the same machine, using the same
compiler, etc. and yet they may have quite different page fault rates. The page replacement policy for one
OS may work out better for this particular program than does the one of the other OS.

Note that the OS can tell you how many page faults your program has had (see the time command below);
each page fault causes the OS to run, so the OS can keep track of how many page faults your program had
incurred. By contrast, the OS can NOT keep track of how many cache misses your program has had, since
the OS is not involved in handling cache misses; it is done entirely by the hardware.

12Or, Linux versus Windows, etc.
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11.1.9 Making These Concepts Concrete: Commands You Can Try Yourself

The Unix time command will report how much time your program takes to run, how many page faults it
generated, etc. Place it just before your program’s name on the command line. (This program could be
either one you wrote, or something like, say, gcc.) For example, if you have a program x with argument 12,
type

% time x 12

instead of

% x 12

In fact, trying running this several times in quick succession. You main find a reduction in page faults, since
the required pages which caused page faults in the first run might be resident in later runs.

Also, the top program is very good, displaying lots of good information on the memory usage of each
process.

11.2 A Bit More on System Calls

Recall that the OS makes available to application programs services such as I/, process management, etc. It
does this by making available functions that application programs can call. Since these are function in the
OS, calls to them are known as system calls.

When you call printf(), for instance, it is just in the C library, not the OS, but it in turn calls write() which
is in the OS.13 The call to write() is a system call.

Or you can make system calls in your own code. For example, try compiling and running this code:

main()
{ write(1,"abc\n",4); }

The function write() takes three arguments: the file handle (here 1, for the Unix “file” stdout, i.e. the
screen); a pointer to the array of characters to be written [note that NULL characters mean nothing to
write()]; and the number of characters to be written.

13There is a slight complication here. Calling write() from C will take us to a function in the C library of that name. It in turn
will call the OS function. We will ignore this distinction here.
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Similarly, executing a cout statement in C++ ultimately results in a call to write() too. In fact, the G++
compiler in GCC translates cout statements to calls to printf(), which as we saw calls write(). Check this
by writing a small C++ program with a cout in it, and then running the compiled code under strace.

A non-I/O example familiar to you is the execve() service is used by one program to start the execution of
another. Another non-I/O example is getpid(), which will return the process number of the program which
calls it.

Calling write() means the OS is now running, and write() will ultimately result in the OS running code
which uses the OUT machine instruction. Recall, though, that we want to arrange things so that only can
execute instructions like Intel’s IN and OUT. So the hardware is designed so that these instructions can be
executed only in Kernel Mode.

For this reason, one usually cannot implement a system call using an ordinary subroutine CALL instruction,
because we need to have a mechanism that will change the machine to Kernel Mode. (Clearly, we cannot
just have an instruction to do this, since ordinary user programs could execute this instruction and thus get
into Kernel Mode themselves, wreaking all kinds of havoc!) Another problem is that the linker will not
know where in the OS the desired subroutine resides.

Instead, system calls are implemented via an instruction type which is called a software interrupt. On Intel
machines, this takes the form of the INT instruction, which has one operand.

We will assume Linux in the remainder of this subsection, in which case the operand is 0x80.14 In other
words, the call to write() in your C program (or in printf() or cout, which call write() will execute

... # code to put parameters values into designated registers
int $0x80

The INT instruction works like a hardware interrupt, in the sense that it will force a jump to the OS, and
change the privilege level to Kernel Mode, enabling the OS to execute the privileged instructions it needs.
You should keep in mind, though, that here the “interrupt” is caused deliberately by the program which gets
“interrupted,” via an INT instruction. This is much different from the case of a hardware interrupt, which is
an action totally unrelated to the program which is interrupted.

The operand, 0x80 above, is the analog of the device number in the case of hardware interrupts. The CPU
will jump to the location indicated by the vector at c(IDT)+8*0x80.15

When the OS is done, it will execute an IRET instruction to return to the application program which made
the system call. The iret also makes a change back to User Mode.

14Windows uses 0x21.
15By the way, users could cause mischief by changing this area of memory, so the OS would set up their page tables to place it

off limits.
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As indicated above, a system call generally has parameters, just as ordinary subroutine calls do. One pa-
rameter is common to all the services—the service number, which is passed to the OS via the EAX register.
Other registers may be used too, depending on the service.

As an example, the following Intel Linux assembly language program writes the string “ABC” and an end-
of-line to the screen, and then exits:

.text
hi: .string "ABC\n"
_start:

# write "ABC\n" to the screen
movl $4, %eax # the write() system call, number 4 obtained

# from /usr/include/asm/unistd.h
movl $1, %ebx # 1 = file handle for stdout
movl $hi, %ecx # write from where
movl $4, %edx # write how many bytes
int $0x80 # system call

# call exit()
movl $1, %eax # exit() is system call number 1
int $0x80 # system call

For this particular OS service, write(), the parameters are passed in the registers EBX, ECX and EDX (and,
as mentioned before, with EAX specifying which service we want). Whoever wrote write() has forced us
to use those registers for those purposes.

Note that we do indeed need to tell write() how many bytes to write. It will NOT stop if it encounters a null
character.

Here are some examples of the numbers (to be placed in EAX before calling int $0x80) of other system
services:

read 3
file open 5
execve 11
chdir 12
kill 37

11.3 OS File Management

The OS will maintain a table showing the starting sectors of all files on the disk. (The table itself is on the
disk.) The reason that the table need store only the starting sector of a given file is that the various sectors of
the file can be linked together in “linked-list” fashion. In other words, at the end of the first sector of a file,
the OS will store information stating the track and sector numbers of the next sector of the file.
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The OS must also maintain a table showing unused sectors. When a user creates a new file, the OS checks
this table to find space to put the file. Of course, the OS must then update its file table accordingly.

If a user deletes a file, the OS will update both tables, removing the file’s entry in the file table, and adding
the former file’s space to the unused sector table.16

As files get created and deleted throughout the usage of a machine, the set of unused sectors typically be-
comes like a patchwork quilt, with the unused sectors dispersed at random places all around the disk. This
means that when a new file is created, then its sectors will be dispersed all around the disk. This has a neg-
ative impact on performance, especially seek time. Thus OSs will often have some kind of defragmenting
program, which will rearrange the positioning of files on the disk, so that the sectors of each individual file
are physically close to each other on the disk.

11.4 To Learn More

There are several books on the Linux OS kernel. Before you go into such detail, though, you may wish to
have a look at the Web pages http://www.tldp.org/LDP/tlk/tlk.html and http://learnlinux.
tsf.org.za/courses/build/internals/, which appear to be excellent overviews.

11.5 Intel Pentium Architecture

We will assume Pentia with 32-bit word and address size. On Linux the CPU runs in flat mode, meaning
that the entire address space of 232 bytes is available to the programmer.

The main registers of interest to us here are named EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP.17 ESP
is used as the stack pointer. The program counter is EIP. There is also a condition codes register EFLAGS,
which is used to record whether the results of operations are zero, negative and so on.

In this document we use AT&T syntax for assembly code. Here is some sample code, which adds 4 elements
of an array pointed to by ECX, with the sum being stored in EBX:

1 movl $4, %eax # copy the number 4 to EAX
2 movl $0, %ebx # copy the number 0 to EBX
3 movl $x, %ecx # copy the address of the memory location
4 # whose label is x to ECX
5 top: addl (%ecx), %ebx # add the memory word pointed to by ECS to EBX
6 addl $4, %ecx # add the number 4 to ECS

16However, the file contents are still there. This is how “undelete” programs work, by attempting to recover the sectors liberated
when the user (accidentally) deleted the file.

17We will use the all-caps notation, EAX, EBX, etc. to discuss registers in the text, even though in program code they appear as
%eax, %ebx, ...

http://www.tldp.org/LDP/tlk/tlk.html
http://learnlinux.tsf.org.za/courses/build/internals/
http://learnlinux.tsf.org.za/courses/build/internals/
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7 decl %eax # decrement EAX by 1
8 jnz top # if EAX not 0, then jump to top

Pentia use vector tables for interrupt handlers. Typical Pentium-based computers include one or more Intel
8259A chips for controlling and prioritizing bus access by input/output devices.

As with most modern processor chips, Pentia are highly pipelined and superscalar, the latter term meaning
muliple ALU compoents, thus allowing more than one instruction to execute per clock cycle.

For more information see the various PDF files in http://heather.cs.ucdavis.edu/˜matloff/
50/PLN.

http://heather.cs.ucdavis.edu/~matloff/50/PLN
http://heather.cs.ucdavis.edu/~matloff/50/PLN
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