ECS 256 Group Project

Saheel Godhane
Paari Kandappan
Jack Norman
Ivana Žetko

UC Davis

March 13, 2014
The asymptotic bias of $\hat{m}_{X;Y}(t)$ at $t = 0.5$ can be calculated as follows:

\[
E(\hat{m}_{X;Y}(0.5) - m_{X;Y}(0.5)) = E(\hat{m}_{X;Y}(0.5)) - E(m_{X;Y}(0.5))
\]

\[
= E(0.5\beta) - E(0.5^{0.75})
\]

\[
\approx 0.5E(\beta) - 0.595
\]
In general, the mean squared error (MSE) associated with a particular choice of β estimated from points $t_i, \ i = 1, 2, \ldots, n$ is as follows:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{m}_X; y(t_i) - m_X; y(t_i))^2$$ \hspace{1cm} (4)

$$= \frac{1}{n} \sum_{i=1}^{n} (\beta t_i - t_i^{0.75})^2$$ \hspace{1cm} (5)
Problem 1

Error = \lim_{n \to \infty} \left(\sum_{i=1}^{n} (\beta t_i - t_i^{0.75})^2 \right) \tag{6}

= \int_{0}^{1} (\beta t_i - t_i^{0.75})^2 dt \tag{7}

= \int_{0}^{1} (\beta^2 t^2 - 2\beta t^{1.75} + t^{1.5}) dt \tag{8}

= \beta^2 \int_{0}^{1} t^2 dt - 2\beta \int_{0}^{1} t^{1.75} dt + \int_{0}^{1} t^{1.5} dt \tag{9}

= \frac{1}{3} \beta^2 - \frac{2}{2.75} \beta + \frac{1}{2.5} \tag{10}
aiclogit(): AIC

```r
aiclogit <- function(y, x) {
  y <- as.matrix(y)
  x <- as.matrix(x)
  fit <- glm(y ~ x, family=binomial())
  fitsum <- summary(fit)
  aic <- fitsum$aic
  return(aic)
}
```
\textit{ar2()}: Adjusted R^2

\begin{verbatim}
ar2 <- function(y, x) {
 y <- as.matrix(y)
 x <- as.matrix(x)
 fit <- lm(y ~ x)
 fitsum <- summary(fit)
 adjr <- fitsum$adj.r.squared
 return(adjr)
}
\end{verbatim}
prsm(): Input Validation

```r
prsm <- function(y, x, k=0.01, predacc=ar2, crit=NULL, printdel=FALSE, cls=NULL) {
  require(parallel)
  # Convert y and x to matrix for the sake lm() and glm()
  y <- as.matrix(y)
  x <- as.matrix(x)

  minmax <- NULL
  # Determine whether to minimize or maximize the PAC
  if (identical(ar2, predacc)) {
    crit <- "max"
    minmax <- max
  } else if (identical(aiclogit, predacc)) {
    crit <- "min"
    minmax <- min
  }
}
```

Saheel Godhane Paari Kandappan Jack Norman Ivana Žetko

ECS 256
prsm(): Calculate Full Model

```r
} else {
  if (is.null(crit)) {
    stop("Error: crit is NULL. Do you want to minimize or maximize the PAC?")
  }
  else if (crit == "min"){
    minmax <- min
  }
  else if (crit == "max"){
    minmax <- max
  }
}
# Calculate full model to begin
full <- predacc(y, x) # starting PAC
varsleft <- 1:ncol(x) # variable to keep track of current variables in the model
if (printdel) cat("full outcome = ", full)
```
prsm(): Begin While Loop

Loop: delete variables one at a time, a greedy approach
tmpbest ← full
flag ← TRUE
while (flag) {
 # Calculate PAC for each possible removal
 if (is.null(cls)) {
 tmp ← lapply(1:length(varsleft), function(i) {
 pac ← predacc(y, x[, varsleft[-i]])
 return(pac)
 })
 } else if (!is.null(cls)) {
 tmp ← clusterApply(cls, 1:length(varsleft), function(i) {
 pac ← predacc(y, x[, varsleft[-i]])
 return(pac)
 })
 }
}
prsm(): Find Best PAC

```R
bestpac <- minmax(unlist(tmp))

# Is the ratio "almost" enough (parsimoniously) to justify deleting the variable?
if (crit == "min") {
  flag <- (bestpac / tmpbest) < 1 + k
} else if (crit == "max") {
  flag <- (bestpac / tmpbest) > 1 - k
}
```
prsm(): Find Variable to Remove

```r
# If flag is still true, remove the variable and update varsleft
if (flag) {
  var2rem <- which(tmp == bestpac)[1]
  nameOfvar2rem <- colnames(x)[varsleft[var2rem]]
  varsleft[−var2rem]
  if (prindel) cat("\ndeleted ", nameOfvar2rem, 
    "\nnew outcome = ", bestpac)
  tmpbest <- bestpac
}
if (length(varsleft) == 1)
  break;
} # end while()
cat("\n")
print(varsleft)
return(varsleft)
```
prsm(): Pima Data Example

```r
# Compare the answers and runtimes of the serial method versus parallel method
system.time(prsm(pima[,9], pima[,1:8], predacc = aiclogit, printdel = TRUE))

full outcome = 741.4454
deleted Thick
new outcome = 739.4534
deleted Insul
new outcome = 739.4617
deleted Age
new outcome = 740.5596
deleted BP
new outcome = 744.3059
[1] 1 2 6 7
user system elapsed
0.393 0.034 0.470
```
prsm(): Pima Data Example In Parallel

```r
# make cluster for parallel method
cls <- makeCluster(rep('localhost', 4))

system.time(prsm(pima[,9], pima[,1:8], predacc = aiclogit, printdel = TRUE, cls = cls))

full outcome = 741.4454
deleted Thick
new outcome = 739.4534
deleted Insul
new outcome = 739.4617
deleted Age
new outcome = 740.5596
deleted BP
new outcome = 744.3059
[1] 1 2 6 7
user system elapsed
0.038 0.006 0.387
```
SMS Spam Dataset

Figure 1: Percent of spam (left) and ham (right) messages blocked in
5-fold cross validation.
Figure 2: Percent of spam (left) and ham (right) messages blocked in 5-fold cross validation.
Istanbul Stock Exchange Dataset

(small n, small p, regression)

<table>
<thead>
<tr>
<th></th>
<th>$k = 0.05$</th>
<th>$k = 0.01$</th>
<th>$p < 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors chosen</td>
<td>6 7</td>
<td>5 6 7</td>
<td>5 6 7</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.564</td>
<td>0.578</td>
<td>0.578</td>
</tr>
</tbody>
</table>

Figure 3: Predictors (X_i) chosen by the various parsimony inducing methods, adjusted R^2 using each of those sets of predictors
Automobile Prices Dataset

(small n, large p, regression)

<table>
<thead>
<tr>
<th>Predictors chosen</th>
<th>$k = 0.05$</th>
<th>$k = 0.01$</th>
<th>$p < 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R^2</td>
<td>0.2873</td>
<td>0.3271</td>
<td>0.578</td>
</tr>
</tbody>
</table>

Figure 4: Model fitting methods with the predictors chosen and adjusted R^2
Custom PAC: \textit{leave1out01}()

- Jackknife analysis: train $n - i$ samples and test on i^{th} sample
- Only considered the classification case
Custom PAC: \textit{leave1out01()}

- Jackknife analysis: train $n - i$ samples and test on i^{th} sample
- Only considered the classification case
- Basic idea:
 \begin{enumerate}
 \item $model = \text{lm}(y[-i,] \sim x[-i,])$
 \item $prediction = (model$\textit{weights} \cdot x_i) + model$\textit{intercept}$
 \end{enumerate}
leave1out01() Pima results

[1] "Testing leave1out01() on Pima dataset"
[1] "PAC value:"
[1] 0.77474
leave1out01() results with prsm()

[1] ‘‘Testing leave1out01 as PAC for prsm() on Pima’’
full outcome = 0.77474
deleted Thick
new outcome = 0.77474
deleted NPreg
new outcome = 0.77344
deleted Insul
new outcome = 0.77083
deleted BP
new outcome = 0.77604
deleted Age
new outcome = 0.76953
[1] 2 6 7