
Mixture and Hidden Markov Models: a Unified Introduction

Norman Matloff
Department of Computer Science

University of California, Davis

December 7, 2022

The notion of mixture models (MMs) is a classical probabilistic concept, arising frequently in appli-
cations. The field of Hidden Markov Models (HMMs) is also a quite well established probabilistic
model, but has received much more attention with the rise of interest in machine learning. HMMs
too have very interesting applications, such as in bioinformatics and language processing.

As there is a natural connection of mixture models (MMs) to HMMs, we present both here. We
also present examples of using R packages to apply these models to data.

We will cover enough mathematical detail to specify the models and indicate the statistical issues,
but subject to the goal of keeping things simple.

1 Overview

Here we will present some motivating examples, and then give a high-level view of the structures
and issues in MMs and HMMs. In both models, we have an observed variable Y , and a hidden or
latent state S.

1.1 Motivating Examples

1.1.1 Example: Box of Batteries

Say we have a large box of batteries. They are known to be of two different types, but the two
types are visually indistinguishable. From past experience, suppose we know that a good model
for lifetimes of batteries is exponential. We have three unknown parameters: q, the proportion of
batteries of the first type; µ1, the mean lifetime of the first type, and µ2, the mean for the second
type.

1

We take a random sample of n batteries and measure the lifetimes of each, resulting in our data
Y1, ..., Yn, independent and identically distributed (iid) random variables. Unseen are the types of
these batteries, S1, ..., Sn, the hidden state of each battery.

Our objective is the estimate q and the means µi = 1/λi, based on the Yj .

1.1.2 Example: Network Noise

Suppose we have a network line that is known to occasionally be noisy, and that during noisy
periods bits will be corrupted in such a way that the probability of a 0, which is 0.5 in the original
transmitted data, is 0.20 during noisy periods. Suppose that on average 10% of the bits arrive
during noise periods.

We focus on the situation in which the status of the line, working vs. noisy, is unknown. It thus is
a hidden state. We have data Yj on the received bits, and want to estimate Oj , the originally sent
bits.

1.1.3 Example: Old Faithful Geyser

The data here consist of durations of eruptions of the famous Old Faithful geyser in the US’
Yellowstone National Park. The dataset is faithful, a built-in dataset in R.

A histogram, obtained via

> hist(faithful$eruptions ,breaks =18,freq=FALSE)

and shown in Figure 1, seems to suggest that the eruption duration distribution is a mixture of two
normally distributed random variables. This seems even more plausible if we use R’s density()
function, as in Figure 2.1

This has led to many physical theories over the years. Rather elaborate physical models have been
developed, such as that in O’Hara and Esawi, “Model for the eruption of the Old Faithful geyser,
Yellowstone National Park,” GSA Today, June 2013. This paper is full of physical detail (“... the
dynamics of vapor bubble formation (and collapse) during boiling in the conduit...”), but in simple
terms, it posits two processes, which gave rise to long and short durations before an eruption,
consistent with the bimodal density form suggested by the above graphs.

1A histogram is a probability density estimate (as long as one keeps the total area under the curve to be 1.0, as we
have done here by setting freq to FALSEi). More advanced density estimators, such as produced by R’s density()
function, produce smoother and potentially more accurate plots. Such methods have parameters analogous to the
number of breaks/bins in a histogram; for R’s density() function, the argument is the bandwidth bw, which we
have taken to be the default here.

2

Figure 1: Old Faithful eruption durations

Assuming there really are two types of eruptions, our hidden state Sj for the jth eruption in our
dataset is the type of eruption. Yj is the duration of that eruption. Again, the Sj are unobserved.

Our objective is to use the Yj data to estimate q, the proportion of type 1 eruptions, and µ1, µ2, σ1 and σ2,
the means and standard deviations of the assumed normal distributions for duration in the two
eruption types.

1.1.4 Example: Financial Time Series

The sp500 dataset, included with some software we will use below, consists of 772 days of the
Standard and Poor US stock market average. In the book associated with the software,2 the
authors postulate 2 hidden states, “bull” and “bear” sentiments among the traders, and fit an
HMM accordingly.

1.2 Number of States

In many applications, a major part of the modeling process is deciding on the number of states.
In our battery, network and geyser examples above, it is natural to take this number to be 2, but

2Mixture and Hidden Markov Models with R, by Ingmar Visser and Maarten Speekenbrink, Springer.

3

Figure 2: Old Faithful eruption times, smoothed

generally there is no obvious such number. In the financial data example, for instance, why have
just 2 levels of investor sentiment? Whyt not 3, or 8, and so on?

In such cases, we have a classic model-fitting choice, a famous principle in model fitting. Here is
the issue (iilustrated in a non-MM/HMM context):

The Bias-Variance Tradeoff.

Say we wish to predict human weight from height. We wish to estimate the func-
tion w(t) = E(W |H = t), the relation between weight and height in our population.
We might try a linear model for w(t), but a quadratic model would give use greater
flexibility. A cubic model be even more general, and so on.

From the notion of a Taylor series in calculus3, one might think that the higher the
degree of the fitted polynomial, the better. But that is merely saying that higher-degree
models have smaller model bias, and counteracting that is the problem of sampling
error. The higher the degree, the more the sampling error (called the standard error in
statistics). So, we need larger datasets for higher-degree models.

A graph of prediction accuracy versus model complexity, say polynomial degree, is
typically U-shaped. If we are on the “wrong” side of the tradeoff, i.e. to the right of the

3Or for those with a background in real analysis, the Stone-Weierstrass Theorem.

4

bottom of the U, the model is said to be overfit.4

So, the more hidden states in our model, the smaller the model bias but the larger the sampling
error; setting the number of hidden states at too large a level will result in overfitting.

For instance, consider financial time series data as in Section 1.1.4. The authors postulate 2 hidden
states, “bull” and “bear” sentiments among the traders, and fit an HMM accordingly. With 3
states, 4 states and so on, we might achieve more accuracy for the first few models, but eventually
the Bias-Variance Tradeoff will result in overfitting.

And though the choice of 2 states in that example does not seem large relative to 772, we will see
below that we are maximizing a certain quantity over an enormous number of choices, again raising
the possibility of overfitting.

1.3 Time (and “Time”)

In spite of sharing the property of having hidden states, and the Y |S structure, there is a funda-
mental difference between the battery example above and the others. In the battery case, the pairs
(Sj , Yj) are iid, while in the network, geyser and financial examples they are sequential in time;
there is a time dependency between each pair and the next.

In some cases “time” may correspond to position. say in HMM genomics models, but again, the
sequential nature is key. That is what distinguishes HMMs from MMs.

1.4 Conditional Probabilities of Observed Values

Let S denote the hidden state, and let Y denote the corresponding observed value. A major
ingredient in the analysis will be expressions of the form

P (Y = w|S = v) (1)

If Y is continuous rather than discrete, the above expression would be something like

fY |S(w, v) (2)

4See https://github.com/matloff/qeML/blob/master/inst/Overfitting.md for further discussion in the general con-
text.

5

where fY |S is the conditional density of Y given S:

fY |S(w, v) =
d

dw
FY |S(w, v) =

d

dw
P (Y ≤ w | S = v) (3)

These conditional distribution quantities are then used to estimate model parameters, as we will
see below.

1.5 We Work Only with Sample Data

The word estimate is vital above. As with any statistical method, our results are just estimates
of population values, and the larger our sample, the more likely our estimate is close to the true
value. This also means that the larger our sample, the further to the right at which the bottom of
the U curve occurs; in other words, with larger samples, we can afford to fit more complex models.

1.6 Mean and Variance of Random Variables in Latent-State Models

A useful expression for EY follows from the Law of Total Expectation:

EY = E[E(Y |S)] (4)

Also, we have the Law of Total Variance,

V ar(Y) = E[V ar(Y |S)] + V ar[E(Y |S)] (5)

2 Mixture Models

Actually, MMs are typically not presented in the conditional distribution form we saw above. Let’s
see how to reconcile the standard description with what we saw above.

2.1 Definition

Say Y is discrete. Then

P (Y = w) =
∑
v

P (S = v) P (Y = w|S = v) (6)

6

So in terms of cumulative distribution functions (cdfs),5

FY (w) = P (Y ≤ w) =
∑
v

P (Y ≤ w|S = v) P (S = v) =
∑
v

qvFY |S(w, v) (7)

where

qv = P (S = v) (8)

Speaking just in terms of cdfs, we say that FY is a mixture of the cdfs FY |S , which simply means
that FY is a linear combination of the FY |S , where the coefficients are nonnegative numbers whose
sum is 1.6

We may have mixtures of more than two distributions. Consider random variables X1, ..., Xk, with
cdfs FXi (not necessarily independent),7 and let di, i = 1, ..., k be nonnegative numbers whose sum
is 1. Define the random variable W to take on the value Xi with probability qi, i = 1, ..., k. Then
we say that W is a mixture of the Xi.

Note that

FW (t) =

k∑
i=1

qiFXi(t) (9)

Similar relations hold for probability mass functions (Xi discrete) and density functions (Xi con-
tinuous).

In MM analysis, the usual quantities of interest are the FXi and the qi. In the Old Faithful
example, this means using the data to somehow estimate the means and standard deviations of the
two normal distributions, and the proportions of eruptions of the two types.

Denote the mean and variance of Xi here by µi and σ2i (whether or not the Xi have a normal
distribution). Then (4) becomes

EY =
k∑
i=1

qiµi (10)

5Standard notation for the cdf of a random variable X is FX . For the conditional cdf of X given Z, we write
FX,Z .

6In math parlance, we say that FY is a convex combination of the F(Y |S)..
7I use “X” for my variable name rather than “Y,” to emphasize the mainly implicit nature of states.

7

What about (5)? In the present context,

E(Y |S) = µS (11)

Note that this is a random variable! It takes on the values µ1, ..., µk with probabilities 11, ..., qk, so
its variance is

k∑
i=1

qi(µi − µ̂)2 (12)

We then have

V ar(Y) =
k∑
i=1

qiσ
2
i +

k∑
i=1

qi(µi − µ̂)2 (13)

where

µ̂ = EY (14)

2.2 The EM Algorithm

Probably the most common approach to estimating such quantities is the EM algorithm. The
details can become complex, but let’s at least look at an overview here.

Say the distribution of some probabilistic quantity depends on a vector of parameters ω. In many
cases, finding a way to estimate ω is very difficult, but the estimation become mathematically
tractable if we split ω into two subsets, θ and γ.

In our case here, we choose θ to be the parameters that describe distribution of Y |S, and choose γ
to be the parameters describing the distribution of S, that is, consisting of the mixing proportions
qi. (We only need qi, q2, ..., qk−1, since the proportions must sum to 1.)

In the battery example, θ is the vector (λ1, λ2), and γ is the proportion q of type 1 batteries. In
the geyser example, θ is consists of the two means µi and two standard deviations σi of the two
normal distributions, and γ is the proportion q of the the type 1 eruptions.

The algorithm works like this: We set initial guesses, θ0 and γ0 for the two parameter sets, then
update alternately, first finding a new guess for θ based on our latest guess for γ, then vice versa.
Of course, we also make use of our dataset at every step. So, the core of the algorithm is to iterate
the following for i = 1, 2, 3, ... until convergence:

8

1. Form a new guess for θ, denoted θi+1, based on γi.

2. Form a new guess for γ, denoted γi+1, based on θi+1.

How does this work in the battery example?

Step 1. The ‘M’ in “EM” stands for “maximization,” alluding to the famous statistical estimation
tool, Maximum Likelihood Estimation (MLE), familiar to many readers of this tutorial. The
intuitive view is that we find the value of θ that “would have made our data most likely to occur,”
i.e. the value that maximizes

Πn
i=1fY (Yi; θ) (15)

(One typically maximizes the log of the above quantity, as sums are easier to deal with than
products.)

Note that the likelihood is calculated using the marginal (i.e. unconditional) density of Y , which is

fY (t) = qλ1e
−λ1t + (1− q)λ2e−λ2t (16)

Remember, in every Step 1, q is considered known. We maximize with respect to the λj , not with
respect to both the λj and q.

Step 2. Since k = 2, (10) becomes

EY = q/λ1 + (1− q)/λ2 (17)

Remember, in every Step 2, the θj are considered known, in this case the λi. And, we can estimate
EY in the left side (17) by the mean Y value in our dataset. So, we then simply solve for q to
obtain the latest iterate for q.8

The geyser example is similar, except that fY is assumed to be a mixture of normals:

fY (t) = q

[
1√

2πσ1
exp

(
t− µ1
σ1

)2
]

+ (1− q)

[
1√

2πσ2
exp

(
t− µ2
σ2

)2
]

(18)

8For readers who know the Method of Moments estimation tool, the EM algorithm can be modified so that we
use that tool in the Step 2s, the ‘E’ (“Expectation”) steps. For cases with general k, which have more than one qi,
we need to estimate k − 1 moments.

9

2.3 The mixtools Package

This is a large package with many functions for analysis of MMs. The EM algorithm is used
extensively. Here we will illustate the function normalmixEM(), which as the name implies, fits
an MM of normal distributions. Again, for the sake of simplicity, we will cover only a few of the
many features of this function.

The algorithm is iterative, and thus requires initial guesses for the means/standard deviations of
the two normal distributions, and the proportions of the two eruption types. I took the former
(arguments mu and sigma) from the appearance of the histogram, and used equal weights for the
latter (argument lambda9).

> mixout <- normalmixEM(faithful$eruptions ,

lambda =0.5,mu=c(55,80), sigma=10,k=2)

number of iterations= 7

> str(mixout)

List of 9

$ x : num [1:272] 3.6 1.8 3.33 2.28 4.53 ...

$ lambda : num [1:2] 0.36 0.64

$ mu : num [1:2] 2.05 4.3

$ sigma : num [1:2] 0.364 0.364

...

The lambda component of the return value indicates that about 36% of the eruptions are of type
1. The estimated mean eruption durations for the two eruption types are 2.05 and 4.3. (My initial
guess for the standard deviations, 1.0, was about 3 times too high.)

2.4 Vector-Valued X

The most common mixture modeling is in cluster analysis, often referred to as unsupervised learning.
We have multivariate data, say in a marketing application, and wish to find meaningful subgroups,
say different types of customers. Again, we don’t know what types are there, if there are any in
some sense, but if we can find some, this may be very useful.

The faithful data is bivariate, with columns for both eruption duration and waiting time between
eruptions. A plot, seen in Figure 3, does seem to show two groups. Of course, if there really are
two groups, we can’t tell for sure here which point belongs to which group, but again, in say, a
marketing context, we just want to identify rough groups.

9Not to be confused with the λi in the battery example, just a coincidence in naming!

10

Figure 3: Old Faithful bivariate plot

In the univariate case, we assumed normal distributions for the components. The mixtools function
mvnormalmixEM() fits a multivariate normal model. I tried running it completely on the basis
of the argument defaults:

> mvnout <- mvnormalmixEM(fMaithful)

number of iterations= 12

> str(mvnout)

List of 9

$ x : num [1:272 , 1:2] 3.6 1.8 3.33 2.28 4.53 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:272] "1" "2" "3" "4" ...

.. ..$: chr [1:2] "eruptions" "waiting"

$ lambda : num [1:2] 0.356 0.644

$ mu :List of 2

..$: num [1:2] 2.04 54.48

..$: num [1:2] 4.29 79.97

$ sigma :List of 2

..$: num [1:2, 1:2] 0.0692 0.4352 0.4352 33.6973

..$: num [1:2, 1:2] 0.17 0.941 0.941 36.046

...

Since our data is bivariate, the estimated mean for each cluster is a vector of length 2, with a 2 ×

11

2 covariance matrix. The estimates are displayed in the above output. The lambda output again
shows the estimated mixing proportions, similar to the ones we found in the univariate case.

One of the key issues is the number of groups to postulate, again deterimined informally, and again
something we should do with an eye toward avoiding overfitting.

Cluster analysis is a vast topic, a major field in machine learning/data science. Estimation via the
EM algorithm is only one of many methods to choose from. See https://cran.r-project.org/web/views/Cluster.html
for an extensive choice of R libraries for clustering.

2.5 Overdispersion Models

Recall the following about the Poisson distribution family:

(a) This family is often used to model counts.

(b) For any Poisson distribution, the variance equals the mean.

In some applications in which we are modeling count data, condition (b) is too constraining.
We want a “Poisson-ish” distribution in which the variance is greater than the mean, called an
overdispersion model.

One may then try to fit a mixture of several Poisson distributions, instead of a single one. This
does induce overdispersion, as we will now see.

The states here will be totally fictitious, just a vehicle to achieve an overdispersed model. Say the
distribution of Y given S = i is Poisson with parameter λi, i = 1, 2, ..., k. Then Y has a mixture
distribution. Our goal here will be to show that Y is indeed overdispersed, i.e. has a large variance
than mean.

By the Law of Total Variance (10)

V ar(Y) = E[V ar(Y |S)] + V ar[E(Y |S)] (19)

= E(λS) + V ar(λS) (20)

Note again that in the above, the expression λS is a random variable, since its subscript S is random.
The random variable λS takes on the values λ1, ..., λk with probabilities q1, ..., qk.

Note too that due to the fact that Y |S has a Poisson distribution (it was constructed as such), its
mean is λS . So (20) becomes

12

V ar(Y) = E(λS) + V ar(λS) (21)

= E[E(Y |S)] + V ar(λS) (22)

= EY + V ar(λS) (23)

(24)

Thus

V ar(Y) = EY + V ar(λS) ≥ EY (25)

That last inequality comes from the fact that variances are nonnegative. In fact, as long as the λi
are not all identical, their variance will be strictly positive. In other words,

V ar(Y) > EY (26)

so yes indeed, the given mixture model has the overdispersion property, as desired.

So, if one has count data in which the variance is greater than the mean, one might try using this
model. Overdispersion is also of interest in some applications where Y is a continuous random
variable.

In mixing the Poissons, there is no need to restrict to discrete S. In fact, it is not hard to derive
the fact that if X has a gamma distribution with parameters r and p/(1-p) for some 0 < p < 1,
and Y given X has a Poisson distribution with mean X, then the resulting Y neatly turns out to
have a negative binomial distribution.10 In other words, the negative binomial family also has the
overdispersion property.

3 Hidden Markov Models

As in MMs, we have an observable variable Y , and a state S, but now the state evolves in time. Thus
the Yj are no longer iid. Instead, the time pattern is assumed to be Markovian, or “memoryless,”
a property we assume about the states Sj :

11

P (Sk+1 = vk+1 | S1 = v1, S2 = v2, ...Sk = vk) = P (Sk+1 = vk+1 | Sk = vk) (27)

10Recall that this distribution family arises as the number of trials, e.g. number of coin flips, needed to accumulate
m succeses, e.g. m heads.

11Technically, the Markovian nature of the Sj does not imply the same for the Yj . For that, we need to assume,
say, that conditionally on the Sj , the random variables Y1, Y2, ... are independent.

13

In English,

The probability of a future event, given the present and the past, depends only on the
present.

Again the states Si are unobserved, i.e. “hidden.” Note that they may be real, as in our noisy
network example, or just postulated, as in the geyser example. In our stock market example, for
instance, one might postulate “bull” and “bear” moods among the traders.

3.1 The EM Algorithm

The situation here is largely analogous to that of MMs:

• We again need a model for the distribution of Y |S. In the geyser example, for instance, that
could be Gaussian with the µi and σi as parameters.

• The analog of the parameter q is now the transition matrix of S, whose row i, column j
element is P (Sm+1 = j | Sm = i), which as noted does not depend on m.

One difference, though, is that now we also need to estimate the state sequence S1, ..., Sn itself. This
of course is of interest, as it is needed for predicting new states Sn+1, Sn+2, ... and thus predicting
Yn+1, Yn+2, But also, the estimated S1, ..., Sn are needed as intermediate results in estimating θ
and γ, as follows. The analogs of Steps 1 and 2 in Section 2.2 are:

Step 1: Use MLE to find estimates of the θ vector, as before. But now the maximization is much
more complex, as it takes into account all possible the state sequences S1, ..., Sn. In the geyser
example, for instance, we find the sequence and the θ value that “makes our Y data most likely.”

Step 2: As mentioned, in this step we estimate the distribution of S, in the form of the transition
matrix. This can be done directly, since we have an estimated state sequence. Our estimate for the
matrix entry in row 2, column 5, for instance, will be the proportion of indices i for which Si+ = 5,
among those for which Si = 2.

One major problem is that the number of possible state sequences can be enormous, sn for a system
with s states. But there are recursive algorithms that have been developed to better organize the
computation, called the forward and backward algorithms, and to more efficiently perform the
maximization, the Viterbi algorithm. Interested readers will find many detailed presentations of
these algorithm on the Web.

14

3.2 The hmmr Package

There are various R packages for fitting HMMs. The one we present here is hmmr.

> z <- hmmr::hmm(faithful$eruptions ,2)

> summary(z)

Initial state probabilities model

pr1 pr2

1 0

Transition matrix

toS1 toS2

fromS1 0.479 0.521

fromS2 0.938 0.062

Response parameters

Resp 1 : gaussian

Re1.(Intercept) Re1.sd

St1 4.289 0.413

St2 2.036 0.263

z is an S4 class , one of whose components , posterior , is a data frame

> z@posterior$state

[1] 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 2 1 2 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2

[38] 1 2 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 1 2 1 1 2 1 1

[75] 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 1 2 1 1 1

[112] 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 2

[149] 1 2 1 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 2

[186] 1 1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1

[223] 2 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 2

[260] 1 1 1 2 1 2 2 1 1 2 1 2 1

Our call to hmm() specifies our data Yi, and requests a 2-state model. We have taken the default
value, NULL, for the family argument, which specifies the distribution of Y |S. The value NULL
is taken by hmm() to mean the Gaussian family.

We see that under this model, if the current state is, say 2, i.e. there was just a type 2 eruption, then
almost certainly the next eruption will be of type 1. On the other hand, after a type 1 eruption,
there are approximately equal chances that the next eruption will be of type 1 or 2.

The mean of Y |S = 1 is about 4.3, while the corresponding value for state 1 is abou 2.0. These are

15

close to what we obtained above with the mixture model. The estimated proportions of the two
types, 0.36 and 0.64, are also similar to the earlier result.

The hmmr package makes heavy use of an earlier package by the same authors, depmixS4. The
“S4” part of that latter name alludes to the fact the main function of of the package, depmix()
returns objects of R class S4. One of the components in this object type, posterior, contains
information about the final estimated state sequence. The software has found, for instance, that
the most likely scenario was that S1 = 1, S2 = 2, S3 = 1,12

12Readers who know Bayesian statistics should not interpret this wording to me that this is “Bayesian” analysis
in the sense of subjective prior distributions, which is not the case. Of course, since we are working with various
conditional and unconditional distribution, Bayes’ Rule of probability is used, but not in the subjective sense.

16

	Overview
	Motivating Examples
	Example: Box of Batteries
	Example: Network Noise
	Example: Old Faithful Geyser
	Example: Financial Time Series

	Number of States
	Time (and ``Time'')
	Conditional Probabilities of Observed Values
	We Work Only with Sample Data
	Mean and Variance of Random Variables in Latent-State Models

	Mixture Models
	Definition
	The EM Algorithm
	The mixtools Package
	Vector-Valued X
	Overdispersion Models

	Hidden Markov Models
	The EM Algorithm
	The hmmr Package

