Mixture and Hidden Markov Models: a Unified Introduction

Norman Matloff
Department of Computer Science
University of California, Davis

December 7, 2022

The notion of mixture models (MMs) is a classical probabilistic concept, arising frequently in applications. The field of Hidden Markov Models (HMMs) is also a quite well established probabilistic model, but has received much more attention with the rise of interest in machine learning. HMMs too have very interesting applications, such as in bioinformatics and language processing.

As there is a natural connection of mixture models (MMs) to HMMs, we present both here. We also present examples of using R packages to apply these models to data.
We will cover enough mathematical detail to specify the models and indicate the statistical issues, but subject to the goal of keeping things simple.

1 Overview

Here we will present some motivating examples, and then give a high-level view of the structures and issues in MMs and HMMs. In both models, we have an observed variable Y, and a hidden or latent state S.

1.1 Motivating Examples

1.1.1 Example: Box of Batteries

Say we have a large box of batteries. They are known to be of two different types, but the two types are visually indistinguishable. From past experience, suppose we know that a good model for lifetimes of batteries is exponential. We have three unknown parameters: q, the proportion of batteries of the first type; μ_{1}, the mean lifetime of the first type, and μ_{2}, the mean for the second type.

We take a random sample of n batteries and measure the lifetimes of each, resulting in our data Y_{1}, \ldots, Y_{n}, independent and identically distributed (iid) random variables. Unseen are the types of these batteries, S_{1}, \ldots, S_{n}, the hidden state of each battery.

Our objective is the estimate q and the means $\mu_{i}=1 / \lambda_{i}$, based on the Y_{j}.

1.1.2 Example: Network Noise

Suppose we have a network line that is known to occasionally be noisy, and that during noisy periods bits will be corrupted in such a way that the probability of a 0 , which is 0.5 in the original transmitted data, is 0.20 during noisy periods. Suppose that on average 10% of the bits arrive during noise periods.

We focus on the situation in which the status of the line, working vs. noisy, is unknown. It thus is a hidden state. We have data Y_{j} on the received bits, and want to estimate O_{j}, the originally sent bits.

1.1.3 Example: Old Faithful Geyser

The data here consist of durations of eruptions of the famous Old Faithful geyser in the US' Yellowstone National Park. The dataset is faithful, a built-in dataset in R.

A histogram, obtained via
> hist(faithful\$eruptions, breaks=18,freq=FALSE)
and shown in Figure 1, seems to suggest that the eruption duration distribution is a mixture of two normally distributed random variables. This seems even more plausible if we use R's density() function, as in Figure 2^{11}

This has led to many physical theories over the years. Rather elaborate physical models have been developed, such as that in O'Hara and Esawi, "Model for the eruption of the Old Faithful geyser, Yellowstone National Park," GSA Today, June 2013. This paper is full of physical detail ("... the dynamics of vapor bubble formation (and collapse) during boiling in the conduit..."), but in simple terms, it posits two processes, which gave rise to long and short durations before an eruption, consistent with the bimodal density form suggested by the above graphs.

[^0]

Figure 1: Old Faithful eruption durations

Assuming there really are two types of eruptions, our hidden state S_{j} for the $j^{\text {th }}$ eruption in our dataset is the type of eruption. Y_{j} is the duration of that eruption. Again, the S_{j} are unobserved.

Our objective is to use the Y_{j} data to estimate q, the proportion of type 1 eruptions, and $\mu_{1}, \mu_{2}, \sigma_{1}$ and σ_{2}, the means and standard deviations of the assumed normal distributions for duration in the two eruption types.

1.1.4 Example: Financial Time Series

The sp500 dataset, included with some software we will use below, consists of 772 days of the Standard and Poor US stock market average. In the book associated with the software ${ }^{2}$ the authors postulate 2 hidden states, "bull" and "bear" sentiments among the traders, and fit an HMM accordingly.

1.2 Number of States

In many applications, a major part of the modeling process is deciding on the number of states. In our battery, network and geyser examples above, it is natural to take this number to be 2, but

[^1]

Figure 2: Old Faithful eruption times, smoothed
generally there is no obvious such number. In the financial data example, for instance, why have just 2 levels of investor sentiment? Whyt not 3 , or 8 , and so on?

In such cases, we have a classic model-fitting choice, a famous principle in model fitting. Here is the issue (iilustrated in a non-MM/HMM context):

The Bias-Variance Tradeoff.

Say we wish to predict human weight from height. We wish to estimate the function $w(t)=E(W \mid H=t)$, the relation between weight and height in our population. We might try a linear model for $w(t)$, but a quadratic model would give use greater flexibility. A cubic model be even more general, and so on.
From the notion of a Taylor series in calculus ${ }^{3}$, one might think that the higher the degree of the fitted polynomial, the better. But that is merely saying that higher-degree models have smaller model bias, and counteracting that is the problem of sampling error. The higher the degree, the more the sampling error (called the standard error in statistics). So, we need larger datasets for higher-degree models.
A graph of prediction accuracy versus model complexity, say polynomial degree, is typically U-shaped. If we are on the "wrong" side of the tradeoff, i.e. to the right of the

[^2]bottom of the U , the model is said to be overfit \square_{\square}^{4}

So, the more hidden states in our model, the smaller the model bias but the larger the sampling error; setting the number of hidden states at too large a level will result in overfitting.

For instance, consider financial time series data as in Section 1.1.4. The authors postulate 2 hidden states, "bull" and "bear" sentiments among the traders, and fit an HMM accordingly. With 3 states, 4 states and so on, we might achieve more accuracy for the first few models, but eventually the Bias-Variance Tradeoff will result in overfitting.

And though the choice of 2 states in that example does not seem large relative to 772 , we will see below that we are maximizing a certain quantity over an enormous number of choices, again raising the possibility of overfitting.

1.3 Time (and"Time")

In spite of sharing the property of having hidden states, and the $Y \mid S$ structure, there is a fundamental difference between the battery example above and the others. In the battery case, the pairs $\left(S_{j}, Y_{j}\right)$ are iid, while in the network, geyser and financial examples they are sequential in time; there is a time dependency between each pair and the next.

In some cases "time" may correspond to position. say in HMM genomics models, but again, the sequential nature is key. That is what distinguishes HMMs from MMs.

1.4 Conditional Probabilities of Observed Values

Let S denote the hidden state, and let Y denote the corresponding observed value. A major ingredient in the analysis will be expressions of the form

$$
\begin{equation*}
P(Y=w \mid S=v) \tag{1}
\end{equation*}
$$

If Y is continuous rather than discrete, the above expression would be something like

$$
\begin{equation*}
f_{Y \mid S}(w, v) \tag{2}
\end{equation*}
$$

[^3]where $f_{Y \mid S}$ is the conditional density of Y given S :
\[

$$
\begin{equation*}
f_{Y \mid S}(w, v)=\frac{d}{d w} F_{Y \mid S}(w, v)=\frac{d}{d w} P(Y \leq w \mid S=v) \tag{3}
\end{equation*}
$$

\]

These conditional distribution quantities are then used to estimate model parameters, as we will see below.

1.5 We Work Only with Sample Data

The word estimate is vital above. As with any statistical method, our results are just estimates of population values, and the larger our sample, the more likely our estimate is close to the true value. This also means that the larger our sample, the further to the right at which the bottom of the U curve occurs; in other words, with larger samples, we can afford to fit more complex models.

1.6 Mean and Variance of Random Variables in Latent-State Models

A useful expression for $E Y$ follows from the Law of Total Expectation:

$$
\begin{equation*}
E Y=E[E(Y \mid S)] \tag{4}
\end{equation*}
$$

Also, we have the Law of Total Variance,

$$
\begin{equation*}
\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid S)]+\operatorname{Var}[E(Y \mid S)] \tag{5}
\end{equation*}
$$

2 Mixture Models

Actually, MMs are typically not presented in the conditional distribution form we saw above. Let's see how to reconcile the standard description with what we saw above.

2.1 Definition

Say Y is discrete. Then

$$
\begin{equation*}
P(Y=w)=\sum_{v} P(S=v) P(Y=w \mid S=v) \tag{6}
\end{equation*}
$$

So in terms of cumulative distribution functions (cdfs) 5

$$
\begin{equation*}
F_{Y}(w)=P(Y \leq w)=\sum_{v} P(Y \leq w \mid S=v) P(S=v)=\sum_{v} q_{v} F_{Y \mid S}(w, v) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{v}=P(S=v) \tag{8}
\end{equation*}
$$

Speaking just in terms of cdfs, we say that F_{Y} is a mixture of the cdfs $F_{Y \mid S}$, which simply means that F_{Y} is a linear combination of the $F_{Y \mid S}$, where the coefficients are nonnegative numbers whose sum is 1.6

We may have mixtures of more than two distributions. Consider random variables X_{1}, \ldots, X_{k}, with cdfs $F_{X_{i}}$ (not necessarily independent) $\left.{ }^{7}\right]$ and let $d_{i}, i=1, \ldots, k$ be nonnegative numbers whose sum is 1 . Define the random variable W to take on the value X_{i} with probability $q_{i}, i=1, \ldots, k$. Then we say that W is a mixture of the X_{i}.

Note that

$$
\begin{equation*}
F_{W}(t)=\sum_{i=1}^{k} q_{i} F_{X_{i}}(t) \tag{9}
\end{equation*}
$$

Similar relations hold for probability mass functions (X_{i} discrete) and density functions (X_{i} continuous).

In MM analysis, the usual quantities of interest are the $F_{X_{i}}$ and the q_{i}. In the Old Faithful example, this means using the data to somehow estimate the means and standard deviations of the two normal distributions, and the proportions of eruptions of the two types.

Denote the mean and variance of X_{i} here by μ_{i} and σ_{i}^{2} (whether or not the X_{i} have a normal distribution). Then (4) becomes

$$
\begin{equation*}
E Y=\sum_{i=1}^{k} q_{i} \mu_{i} \tag{10}
\end{equation*}
$$

[^4]What about (5)? In the present context,

$$
\begin{equation*}
E(Y \mid S)=\mu_{S} \tag{11}
\end{equation*}
$$

Note that this is a random variable! It takes on the values μ_{1}, \ldots, μ_{k} with probabilities $1_{1}, \ldots, q_{k}$, so its variance is

$$
\begin{equation*}
\sum_{i=1}^{k} q_{i}\left(\mu_{i}-\hat{\mu}\right)^{2} \tag{12}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\operatorname{Var}(Y)=\sum_{i=1}^{k} q_{i} \sigma_{i}^{2}+\sum_{i=1}^{k} q_{i}\left(\mu_{i}-\hat{\mu}\right)^{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mu}=E Y \tag{14}
\end{equation*}
$$

2.2 The EM Algorithm

Probably the most common approach to estimating such quantities is the EM algorithm. The details can become complex, but let's at least look at an overview here.

Say the distribution of some probabilistic quantity depends on a vector of parameters ω. In many cases, finding a way to estimate ω is very difficult, but the estimation become mathematically tractable if we split ω into two subsets, θ and γ.

In our case here, we choose θ to be the parameters that describe distribution of $Y \mid S$, and choose γ to be the parameters describing the distribution of S, that is, consisting of the mixing proportions q_{i}. (We only need $q_{i}, q_{2}, \ldots, q_{k-1}$, since the proportions must sum to 1.)

In the battery example, θ is the vector $\left(\lambda_{1}, \lambda_{2}\right)$, and γ is the proportion q of type 1 batteries. In the geyser example, θ is consists of the two means μ_{i} and two standard deviations σ_{i} of the two normal distributions, and γ is the proportion q of the the type 1 eruptions.

The algorithm works like this: We set initial guesses, θ_{0} and γ_{0} for the two parameter sets, then update alternately, first finding a new guess for θ based on our latest guess for γ, then vice versa. Of course, we also make use of our dataset at every step. So, the core of the algorithm is to iterate the following for $i=1,2,3, \ldots$ until convergence:

1. Form a new guess for θ, denoted θ_{i+1}, based on γ_{i}.
2. Form a new guess for γ, denoted γ_{i+1}, based on θ_{i+1}.

How does this work in the battery example?
Step 1. The 'M' in "EM" stands for "maximization," alluding to the famous statistical estimation tool, Maximum Likelihood Estimation (MLE), familiar to many readers of this tutorial. The intuitive view is that we find the value of θ that "would have made our data most likely to occur," i.e. the value that maximizes

$$
\begin{equation*}
\Pi_{i=1}^{n} f_{Y}\left(Y_{i} ; \theta\right) \tag{15}
\end{equation*}
$$

(One typically maximizes the \log of the above quantity, as sums are easier to deal with than products.)
Note that the likelihood is calculated using the marginal (i.e. unconditional) density of Y, which is

$$
\begin{equation*}
f_{Y}(t)=q \lambda_{1} e^{-\lambda_{1} t}+(1-q) \lambda_{2} e^{-\lambda_{2} t} \tag{16}
\end{equation*}
$$

Remember, in every Step $1, q$ is considered known. We maximize with respect to the λ_{j}, not with respect to both the λ_{j} and q.
Step 2. Since $k=2$, 10 becomes

$$
\begin{equation*}
E Y=q / \lambda_{1}+(1-q) / \lambda_{2} \tag{17}
\end{equation*}
$$

Remember, in every Step 2, the θ_{j} are considered known, in this case the λ_{i}. And, we can estimate $E Y$ in the left side (17) by the mean Y value in our dataset. So, we then simply solve for q to obtain the latest iterate for $q \|^{8}$
The geyser example is similar, except that f_{Y} is assumed to be a mixture of normals:

$$
\begin{equation*}
f_{Y}(t)=q\left[\frac{1}{\sqrt{2 \pi} \sigma_{1}} \exp \left(\frac{t-\mu_{1}}{\sigma_{1}}\right)^{2}\right]+(1-q)\left[\frac{1}{\sqrt{2 \pi} \sigma_{2}} \exp \left(\frac{t-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \tag{18}
\end{equation*}
$$

[^5]
2.3 The mixtools Package

This is a large package with many functions for analysis of MMs. The EM algorithm is used extensively. Here we will illustate the function normalmixEM(), which as the name implies, fits an MM of normal distributions. Again, for the sake of simplicity, we will cover only a few of the many features of this function.

The algorithm is iterative, and thus requires initial guesses for the means/standard deviations of the two normal distributions, and the proportions of the two eruption types. I took the former (arguments mu and sigma) from the appearance of the histogram, and used equal weights for the latter (argument lambda ${ }^{9}$).

```
> mixout <- normalmixEM(faithful$eruptions,
    lambda=0.5,mu=c (55,80), sigma=10,k=2)
number of iterations= 7
> str(mixout)
List of 9
    $ x : num [1:272] 3.6 1.8 3.33 2.28 4.53 ...
    $ lambda : num [1:2] 0.36 0.64
    $ mu : num [1:2] 2.05 4.3
    $ sigma : num [1:2] 0.364 0.364
```

The lambda component of the return value indicates that about 36% of the eruptions are of type 1. The estimated mean eruption durations for the two eruption types are 2.05 and 4.3. (My initial guess for the standard deviations, 1.0, was about 3 times too high.)

2.4 Vector-Valued X

The most common mixture modeling is in cluster analysis, often referred to as unsupervised learning. We have multivariate data, say in a marketing application, and wish to find meaningful subgroups, say different types of customers. Again, we don't know what types are there, if there are any in some sense, but if we can find some, this may be very useful.

The faithful data is bivariate, with columns for both eruption duration and waiting time between eruptions. A plot, seen in Figure 3, does seem to show two groups. Of course, if there really are two groups, we can't tell for sure here which point belongs to which group, but again, in say, a marketing context, we just want to identify rough groups.

[^6]

Figure 3: Old Faithful bivariate plot

In the univariate case, we assumed normal distributions for the components. The mixtools function mvnormalmixEM() fits a multivariate normal model. I tried running it completely on the basis of the argument defaults:

```
> mvnout <- mvnormalmixEM(fMaithful)
number of iterations= 12
> str(mvnout)
List of 9
    $ x : num [1:272, 1:2] 3.6 1.8 3.33 2.28 4.53 ...
    ..- attr(*, "dimnames")=List of 2
    .. ..$ : chr [1:272] "1" "2" "3" "4" ...
    .. ..$ : chr [1:2] "eruptions" "waiting"
    $ lambda : num [1:2] 0.356 0.644
    $ mu :List of 2
    ..$ : num [1:2] 2.04 54.48
    ..$ : num [1:2] 4.29 79.97
$ sigma :List of 2
    ..$ : num [1:2, 1:2] 0.0692 0.4352 0.4352 33.6973
    ..$ : num [1:2, 1:2] 0.17 0.941 0.941 36.046
```

Since our data is bivariate, the estimated mean for each cluster is a vector of length 2 , with a $2 \times$

2 covariance matrix. The estimates are displayed in the above output. The lambda output again shows the estimated mixing proportions, similar to the ones we found in the univariate case.

One of the key issues is the number of groups to postulate, again deterimined informally, and again something we should do with an eye toward avoiding overfitting.
Cluster analysis is a vast topic, a major field in machine learning/data science. Estimation via the EM algorithm is only one of many methods to choose from. See https://cran.r-project.org/web/views/Cluster.html for an extensive choice of R libraries for clustering.

2.5 Overdispersion Models

Recall the following about the Poisson distribution family:
(a) This family is often used to model counts.
(b) For any Poisson distribution, the variance equals the mean.

In some applications in which we are modeling count data, condition (b) is too constraining. We want a "Poisson-ish" distribution in which the variance is greater than the mean, called an overdispersion model.

One may then try to fit a mixture of several Poisson distributions, instead of a single one. This does induce overdispersion, as we will now see.

The states here will be totally fictitious, just a vehicle to achieve an overdispersed model. Say the distribution of Y given $S=i$ is Poisson with parameter $\lambda_{i}, i=1,2, \ldots, k$. Then Y has a mixture distribution. Our goal here will be to show that Y is indeed overdispersed, i.e. has a large variance than mean.

By the Law of Total Variance 10

$$
\begin{align*}
\operatorname{Var}(Y) & =E[\operatorname{Var}(Y \mid S)]+\operatorname{Var}[E(Y \mid S)] \tag{19}\\
& =E\left(\lambda_{S}\right)+\operatorname{Var}\left(\lambda_{S}\right) \tag{20}
\end{align*}
$$

Note again that in the above, the expression λ_{S} is a random variable, since its subscript S is random. The random variable λ_{S} takes on the values $\lambda_{1}, \ldots, \lambda_{k}$ with probabilities q_{1}, \ldots, q_{k}.

Note too that due to the fact that $Y \mid S$ has a Poisson distribution (it was constructed as such), its mean is λ_{S}. So (20) becomes

$$
\begin{align*}
\operatorname{Var}(Y) & =E\left(\lambda_{S}\right)+\operatorname{Var}\left(\lambda_{S}\right) \tag{21}\\
& =E[E(Y \mid S)]+\operatorname{Var}\left(\lambda_{S}\right) \tag{22}\\
& =E Y+\operatorname{Var}\left(\lambda_{S}\right) \tag{23}
\end{align*}
$$

Thus

$$
\begin{equation*}
\operatorname{Var}(Y)=E Y+\operatorname{Var}\left(\lambda_{S}\right) \geq E Y \tag{25}
\end{equation*}
$$

That last inequality comes from the fact that variances are nonnegative. In fact, as long as the λ_{i} are not all identical, their variance will be strictly positive. In other words,

$$
\begin{equation*}
\operatorname{Var}(Y)>E Y \tag{26}
\end{equation*}
$$

so yes indeed, the given mixture model has the overdispersion property, as desired.
So, if one has count data in which the variance is greater than the mean, one might try using this model. Overdispersion is also of interest in some applications where Y is a continuous random variable.

In mixing the Poissons, there is no need to restrict to discrete S . In fact, it is not hard to derive the fact that if X has a gamma distribution with parameters r and $\mathrm{p} /(1-\mathrm{p})$ for some $0<p<1$, and Y given X has a Poisson distribution with mean X , then the resulting Y neatly turns out to have a negative binomial distribution ${ }^{10}$ In other words, the negative binomial family also has the overdispersion property.

3 Hidden Markov Models

As in MMs, we have an observable variable Y, and a state S, but now the state evolves in time. Thus the Y_{j} are no longer iid. Instead, the time pattern is assumed to be Markovian, or "memoryless," a property we assume about the states $S_{j}{ }^{11}$

$$
\begin{equation*}
P\left(S_{k+1}=v_{k+1} \mid S_{1}=v_{1}, S_{2}=v_{2}, \ldots S_{k}=v_{k}\right)=P\left(S_{k+1}=v_{k+1} \mid S_{k}=v_{k}\right) \tag{27}
\end{equation*}
$$

[^7]In English,

The probability of a future event, given the present and the past, depends only on the present.

Again the states S_{i} are unobserved, i.e. "hidden." Note that they may be real, as in our noisy network example, or just postulated, as in the geyser example. In our stock market example, for instance, one might postulate "bull" and "bear" moods among the traders.

3.1 The EM Algorithm

The situation here is largely analogous to that of MMs:

- We again need a model for the distribution of $Y \mid S$. In the geyser example, for instance, that could be Gaussian with the μ_{i} and σ_{i} as parameters.
- The analog of the parameter q is now the transition matrix of S, whose row i, column j element is $P\left(S_{m+1}=j \mid S_{m}=i\right)$, which as noted does not depend on m.

One difference, though, is that now we also need to estimate the state sequence S_{1}, \ldots, S_{n} itself. This of course is of interest, as it is needed for predicting new states S_{n+1}, S_{n+2}, \ldots and thus predicting Y_{n+1}, Y_{n+2}, \ldots But also, the estimated S_{1}, \ldots, S_{n} are needed as intermediate results in estimating θ and γ, as follows. The analogs of Steps 1 and 2 in Section 2.2 are:

Step 1: Use MLE to find estimates of the θ vector, as before. But now the maximization is much more complex, as it takes into account all possible the state sequences S_{1}, \ldots, S_{n}. In the geyser example, for instance, we find the sequence and the θ value that "makes our Y data most likely."

Step 2: As mentioned, in this step we estimate the distribution of S, in the form of the transition matrix. This can be done directly, since we have an estimated state sequence. Our estimate for the matrix entry in row 2 , column 5 , for instance, will be the proportion of indices i for which $S_{i+}=5$, among those for which $S_{i}=2$.

One major problem is that the number of possible state sequences can be enormous, s^{n} for a system with s states. But there are recursive algorithms that have been developed to better organize the computation, called the forward and backward algorithms, and to more efficiently perform the maximization, the Viterbi algorithm. Interested readers will find many detailed presentations of these algorithm on the Web.

3.2 The hmmr Package

There are various R packages for fitting HMMs. The one we present here is $\mathbf{h m m r}$.

```
> z <- hmmr::hmm(faithful$eruptions, 2)
> summary(z)
Initial state probabilities model
pr1 pr2
    1 0
Transition matrix
            toS1 toS2
fromS1 0.479 0.521
fromS2 0.938 0.062
Response parameters
Resp 1 : gaussian
            Re1.(Intercept) Re1.sd
St1 4.289 0.413
St2 2.036 0.263
# z is an S4 class, one of whose components, posterior, is a data frame
> z@posterior$state
```



```
    [75] 2
[112] 2
```



```
[223] 2
```


Our call to $\mathbf{h m m}()$ specifies our data Y_{i}, and requests a 2 -state model. We have taken the default value, NULL, for the family argument, which specifies the distribution of $Y \mid S$. The value NULL is taken by $\mathbf{h m m}()$ to mean the Gaussian family.

We see that under this model, if the current state is, say 2 , i.e. there was just a type 2 eruption, then almost certainly the next eruption will be of type 1 . On the other hand, after a type 1 eruption, there are approximately equal chances that the next eruption will be of type 1 or 2 .
The mean of $Y \mid S=1$ is about 4.3, while the corresponding value for state 1 is abou 2.0. These are
close to what we obtained above with the mixture model. The estimated proportions of the two types, 0.36 and 0.64 , are also similar to the earlier result.

The $\mathbf{h m m r}$ package makes heavy use of an earlier package by the same authors, depmixS4. The "S4" part of that latter name alludes to the fact the main function of of the package, depmix () returns objects of R class S 4 . One of the components in this object type, posterior, contains information about the final estimated state sequence. The software has found, for instance, that the most likely scenario was that $S_{1}=1, S_{2}=2, S_{3}=1, \ldots{ }^{12}$

[^8]
[^0]: ${ }^{1}$ A histogram is a probability density estimate (as long as one keeps the total area under the curve to be 1.0, as we have done here by setting freq to FALSEi). More advanced density estimators, such as produced by R's density() function, produce smoother and potentially more accurate plots. Such methods have parameters analogous to the number of breaks/bins in a histogram; for R's density () function, the argument is the bandwidth bw, which we have taken to be the default here.

[^1]: ${ }^{2}$ Mixture and Hidden Markov Models with R, by Ingmar Visser and Maarten Speekenbrink, Springer.

[^2]: ${ }^{3}$ Or for those with a background in real analysis, the Stone-Weierstrass Theorem.

[^3]: ${ }^{4}$ See https://github.com/matloff/qeML/blob/master/inst/Overfitting.md for further discussion in the general context.

[^4]: ${ }^{5}$ Standard notation for the cdf of a random variable X is F_{X}. For the conditional cdf of X given Z, we write $F_{X, Z}$.
 ${ }^{6}$ In math parlance, we say that F_{Y} is a convex combination of the $F_{(Y \mid S)}$..
 ${ }^{7}$ I use "X" for my variable name rather than "Y," to emphasize the mainly implicit nature of states.

[^5]: ${ }^{8}$ For readers who know the Method of Moments estimation tool, the EM algorithm can be modified so that we use that tool in the Step 2s, the 'E' ("Expectation") steps. For cases with general k, which have more than one q_{i}, we need to estimate $k-1$ moments.

[^6]: ${ }^{9}$ Not to be confused with the λ_{i} in the battery example, just a coincidence in naming!

[^7]: ${ }^{10}$ Recall that this distribution family arises as the number of trials, e.g. number of coin flips, needed to accumulate m succeses, e.g. m heads.
 ${ }^{11}$ Technically, the Markovian nature of the S_{j} does not imply the same for the Y_{j}. For that, we need to assume, say, that conditionally on the S_{j}, the random variables Y_{1}, Y_{2}, \ldots are independent.

[^8]: ${ }^{12}$ Readers who know Bayesian statistics should not interpret this wording to me that this is "Bayesian" analysis in the sense of subjective prior distributions, which is not the case. Of course, since we are working with various conditional and unconditional distribution, Bayes' Rule of probability is used, but not in the subjective sense.

