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1 The Local Alignment problem

1.1 Introduction

Given two strings S1 = pqaxabcstrqrtp and S2 = xyaxbacsl, the substrings
axabcs in S1 and axbacs in S2 are very similar. The problem of finding similar
substrings is the local alignment problem.

Local alignment is extensively used in computational biology to find regions
of similarity in different biological sequences. Similar genetic sequences are
identified by computing the local alignment of a given sequence against a number
of other genetic sequences. Protein molecules fold into unique 3-dimensional
shapes. Different regions fold into various shapes – helices, sheets etc. These
shapes determine the function of the proteins. Local alignment helps identify
the various regions of structural similarity. BLAST and FASTA are two of the
programs that compute the local alignment of a sequence against a database of
other genetic sequences.

Formally, given a scoring scheme that includes a cost for matching a pair of
characters and inserting a character in one sequence (equivalently, introducing
a gap in the other sequence), a local alignment of strings S1 and S2 is a pair
of substrings s1 of S1 and s2 of S2 whose score is maximum over all possible
substrings of S1 and S2 for the scoring scheme.

Unlike the global alignment problem where the entire strings are to be
matched, the local alignment problem identifies highly similar substrings. Also,
unlike the edit distance problem, where the goal is to minimize the cost of trans-
forming one sequence to another, the local alignment problem identifies highly
similar substrings.

1.2 The Smith Waterman Algorithm

For strings of length m and n an O(mn)-time dynamic programming (DP)
algorithm was designed by Smith and Waterman [1]. The DP has the following
recurrence:
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v(i, j) = max


0,
v(i− 1, j − 1) + cost(S1(i), S2(j)),
v(i− 1, j) + cost(S1(i),−),
v(i, j − 1) + cost(−, S2(j))

with v(0, 0) = 0 and v(0, j) = 0 for j = 1, . . . , n and v(i, 0) = 0 for i =
1, . . . ,m. Here v(i, j) denotes the optimal cost for substrings S1[1, . . . , i] and
S2[1, . . . , j] and cost(S1(i), S2(j)) is the cost of (mis)-matching characters S1(i)
and S2(j) and cost(S1(i),−), and cost(−, S2(j)) are costs for creating a gap
against characters S1(i) and S2(j) respectively. The largest v(i, j) value in the
table represents the local alignment,

The DP table has (m + 1) × (n + 1) v(i, j) entries. The table can be filled
either row-wise or column-wise and each entry can be filled in constant time.
Thus the total time for the DP algorithm is O(mn).

An exact match receives the highest positive score and substitution of sim-
ilar characters also receives a positive score while highly dissimilar characters
are penalized with negative scores. BLOSUM and PAM are two popular substi-
tution matrices with costs for comparing amino acids. In practice, an affine cost
function is used for weighting gaps, with a cost Ginit for starting a gap and Gext

for extending the gap. The Smith Waterman algorithm can be easily modified
to fit the affine cost function, but we will not consider it in this exposition for
simplicity.

See Gusfield [2] for the correctness of the algorithm and a discussion of
various cost functions for gaps.

2 Parallelizing in CUDA

2.1 The general idea

Filling a v(i, j) entry depends on three preceding cells – v(i−1, j−1), v(i−1, j),
and v(i, j − 1). Each of these entries depend on their preceding entries. Due to
these dependencies, a naive approach of breaking the table into parts that are
computed by different threads independently is not feasible.

The dependencies for filling various cells are shown in figure 1. Notice that
v(1, 3), v(2, 2) and v(3, 1) depend on the completion of v(1, 1), v(2, 1), and v(1, 2)
but are independent of each other. Therefore these three values can be computed
simultaneously in parallel. In general, all the elements of the anti-diagonal
depend on the previous anti-diagonal but are independent of each other and
can be computed in parallel.

Instead of filling a row (or a column) of the table in every iteration as dis-
cussed above, here we will fill an anti-diagonal in every iteration. And the cells
of the anti-diagonal are filled in parallel. The scheme for parallel programming
is shown in figure 2.1.

There are n + m− 1 iterations, one for each diagonal. The longest diagonals
are length m, and there are n −m + 1 such diagonals. Therefore using p = m

2



v(3, 0) v(3, 1) v(3, 2) v(3, 3)

v(2, 0) v(2, 1) v(2, 2) v(2, 3)

v(1, 0) v(1, 1) v(1, 2) v(1, 3)

v(0, 0) v(0, 1) v(0, 2) v(0, 3)

Figure 1: The arrows represent the dependencies for various cells.
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Figure 2: Pictorial representation of the computation done by threads in every
iteration. Vertical dotted lines represent synchronization.
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threads will achieve the most throughput. However, there are p(p− 1) stalls as
threads will be idle in the computation.

2.2 Engineering optimizations in CUDA

• Since a query sequence is compared with multiple sequences in the database,
the individual sequence comparisons is easily parallelized. The sequences
in the database are partitioned to load-balance, i.e., every process has an
equal length of sequence to compute.

• In the parallel computing scheme shown above, every thread computes
one value and waits for synchronization. Since memory accesses to read
and write variables and synchronization between iterations take longer
than the computation, assigning multiple rows per thread, minimizes the
overhead.

• Instead of storing individual integer values of the database table four val-
ues can be read and written at once using short vectors. The advantage
is more pronounced when using the affine cost function.

• Query Profile: Accessing the various cost(·, ·) values in the substitution
matrix on successive iterations will be slower due to the random access
pattern. This can be speeded up by creating a query-specific profile for
the entire database.

Every possible character in the domain is matched with successive char-
acters of the query sequence and the result is stored as a profile. That
is, in the profile the ith row has the ith character of the query sequence
matched against all possible characters. Consecutive rows of this profile
are accessed in successive iterations, thus replacing the random access of
the substitution matrix with sequential access of the profile.

• The query profile is constant and computed once for the entire computa-
tion, This is stored in texture memory to exploit caching in GPU. Sim-
ilarly, the query and database sequences can be stored in either texture
memory or constant memory for fast access.

• Pipelining loads and computations. Loading individual database strings
and launching the kernel can be pipelined. That is, the first string is
loaded to memory and while the kernel is executing further strings can be
loaded into memory. Thus the performance does not drop by idle GPUs.

The discussion above is from various papers [3, 4, 5, 6] on GPU implemen-
tations of the Smith Waterman algorithm. The papers used affine cost function
for gaps. They report significant speedup (up to 10x in a few cases) compared
to various serial implementations.
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