
138 CHAPTER 5. SHARED-MEMORY: C

complexity, though, can be largely hidden from the programmer through
the use of the Rcpp package, and in fact the net result is that the Rcpp
route is actually easier than using .C().

Here is the Rcpp version of our previous code:

// AdjRcpp . cpp

#include <Rcpp . h>
#include <omp . h>

// the func t i on transgraph () does the work
// arguments :
// adjm : the adjacency matrix (NOT assumed
// symmetric) , 1 for edge , 0 otherw i s e ;
// note : matrix i s ove rwr i t t en
// by the func t i on
// return value : the converted matrix

// f i n d s the chunk o f rows t h i s thread w i l l p roc e s s
void f indmyrange (int n , int nth , int me, int ∗myrange)
{ int chunks ize = n / nth ;

myrange [0] = me ∗ chunks ize ;
i f (me < nth−1)

myrange [1] = (me+1) ∗ chunks ize − 1 ;
else myrange [1] = n − 1 ;

}

RcppExport SEXP transgraph (SEXP adjm)
{

int ∗num1s , // i−th element w i l l be the number
// o f 1 s in row i o f adjm

∗cumul1s , // cumulat ive sums in num1s
n ;

Rcpp : : NumericMatrix xadjm (adjm) ;
n = xadjm . nrow () ;
int n2 = n∗n ;
Rcpp : : NumericMatrix outm(n2 , 2) ;

#pragma omp p a r a l l e l
{ int i , j ,m;

int me = omp get thread num() ,
nth = omp get num threads () ;

int myrows [2] ;

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 139

int t o t 1 s ;
int outrow , num1si ;
#pragma omp s i n g l e
{

num1s = (int ∗) mal loc (n∗s izeof (int)) ;
cumul1s = (int ∗) mal loc ((n+1)∗s izeof (int)) ;

}
f indmyrange (n , nth ,me , myrows) ;
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// number o f 1 s found in t h i s row
to t1 s = 0 ;
for (j = 0 ; j < n ; j++)

i f (xadjm (i , j) == 1) {
xadjm (i , (t o t 1 s++)) = j ;

}
num1s [i] = to t1 s ;

}
#pragma omp ba r r i e r
#pragma omp s i n g l e
{

// cumul1s [i] w i l l be to t 1 s be f o r e row
// i o f xadjm
cumul1s [0] = 0 ;
// now c a l c u l a t e where the output o f each
// row in adjm should s t a r t in outm
for (m = 1 ; m <= n ; m++) {

cumul1s [m] = cumul1s [m−1] + num1s [m−1] ;
}

}
for (i = myrows [0] ; i <= myrows [1] ; i++) {

// cur r ent row with in outm
outrow = cumul1s [i] ;
num1si = num1s [i] ;
for (j = 0 ; j < num1si ; j++) {

outm(outrow+j , 0) = i + 1 ;
outm(outrow+j , 1) = xadjm(i , j) + 1 ;

}
}

}

Rcpp : : NumericMatrix outmshort =
outm(Rcpp : : Range (0 , cumul1s [n]−1) ,

Rcpp : : Range (0 , 1)) ;

140 CHAPTER 5. SHARED-MEMORY: C

return outmshort ;
}

5.5.5 Compiling and Running

We will still run R CMD SHLIB to compile, but we have more libraries
to specify in this case. In the bash shell, we can run

export R_LIBS_USER=/home/nm/R

export PKG_LIBS="-lgomp"

export PKG_CXXFLAGS="-fopenmp -I/home/nm/R/Rcpp/include"

That first command lets R know where our R packages are, in this case the
Rcpp package. The second states we need to link in the gomp library,
which is for OpenMP, and the third both warns the compiler to watch for
OpenMP pragmas and to include the Rcpp header files.

Note that that last export assumes our source code is in C++, as indicated
below by a .cpp suffix to the file name. Since C is a subset of C++, our
code can be pure C but we are presenting it as C++.

We then run

R CMD SHLIB AdjRcpp.cpp

This produces a .so file or equivalent as before. Here is a sample run:

> l ibrary (Rcpp) # don ’ t f o r g e t to do t h i s FIRST

> dyn . load (”AdjRcpp . so ”)
> m <− matrix (sample (0 : 1 , 1 6 , replace=T) , ncol=4)
> m

[, 1] [, 2] [, 3] [, 4]
[1 ,] 1 1 1 0
[2 ,] 1 1 0 1
[3 ,] 1 1 0 0
[4 ,] 1 0 0 1
> .Call (” transgraph ” ,m)

[, 1] [, 2]
[1 ,] 1 1
[2 ,] 1 2

5.5. EXAMPLE: ADJACENCY MATRIX, R-CALLABLE CODE 141

[3 ,] 1 3
[4 ,] 2 1
[5 ,] 2 2
[6 ,] 2 4
[7 ,] 3 1
[8 ,] 3 2
[9 ,] 4 1

[1 0 ,] 4 4

Sure enough, we do use .Call() instead of .C(). And note that we have
only one argument here, m, rather than five as before, and that the result is
actually in the return value, rather than being in one of the arguments. In
other words, even though .Call() is more complex than .C(), use of Rcpp
makes everything much simpler than under .C(). In addition, Rcpp allows
us to write our C/C++ code as if column-major order were used, consistent
with R. No wonder Rcpp has become so popular!

5.5.6 Code Analysis

The heart of using .Call(), including via Rcpp, is the concept of the SEXP
(“S-expression,” alluding to R’s roots in the s language). In R internals,
a SEXP is a pointer to a C struct containing the given R object and in-
formation about the object. For instance, the internal storage for an R
matrix will consist of a struct that holds the elements of the matrix and
and its numbers of rows and columns. It is this encapsulation of data and
metadata into a struct that enabled us to have only a single argument in
the new version of transgraph():

RcppExport SEXP transgraph (SEXP adjm)

The term RcppExport will be explained shortly. But first, note that both
the input argument, adjm, and the return value are of type SEXP. In other
words, the input is an R object and the output is an R object. In our run
example above,

> .Call (” transgraph ” ,m)

the input was the R matrix m, and the output was another R matrix.

The machinery in .Call() here is set up for C, and C++ users (including
us in the above example) need a line like

extern ”C” transgraph ;

142 CHAPTER 5. SHARED-MEMORY: C

in the C++ code. The RcppExport term is a convenience for the pro-
grammer, and is actually

#define RcppExport extern ”C”

Now, let’s see what other changes have been made. Consider these lines:

Rcpp : : NumericMatrix xadjm (adjm) ;
n = xadjm . nrow () ;
int n2 = n∗n ;
Rcpp : : NumericMatrix outm(n2 , 2) ;

Rcpp has its own vector and matrix types, serving as a bridge between
those types in R and corresponding arrays in C/C++. The first line above
creates an Rcpp matrix xadjm from our original R matrix adjm. (Ac-
tually, no new memory space is allocated; here xadjm is simply a pointer
to the data portion of the struct where adjm is stored.) The encapsula-
tion mentioned earlier is reflected in the fact that Rcpp matrices have the
built-in method nrow(), which we use here. Then we create a new n

2 × 2
Rcpp matrix, outm, which will serve as our output matrix. As before, we
are allowing for the worst case, in which the input matrix consists of all 1s.

Rcpp really shines for matrix code. Recall the discussion at the beginning
of Section 5.4.2. In our earlier versions of this adjacency matrix code, both
in the standalone C and R-callable versions, we were forced to use one-
dimensional subscripting in spite of working with two-dimensional arrays,
e.g.

i f (adjm [n∗ i+j] == 1) {

This was due to the fact that ordinary two-dimensional arrays in C/C++
must have their numbers of columns declared at compile time, whereas
in this application such information is unknown until run time. This is
not a problem with object-oriented structures, such as those in the C++
Standard Template Library (STL) and Rcpp.

So now with Rcpp we can use genuine two-dimensional indexing, albeit
with parentheses instead of brackets:4

i f (xadjm (i , j) == 1) {

Note, though, that Rcpp subscripts follow C/C++ style, starting at 0
rather than 1 for R. The “+1” in

4It is still possible to do one-dimensional indexing, using brackets, but recall that

Rcpp uses column-major order for compatibility with R.

5.6. SPEEDUP IN C 143

outm(outrow+j , 1) = xadjm(i , j) + 1 ;

in which we were inserting a certain column number from the adjacency
matrix, was needed to resolve this discrepancy.

Most of the remaining code is unchanged, except for the return value:

Rcpp : : NumericMatrix outmshort =
outm(Rcpp : : Range (0 , cumul1s [n]−1) ,Rcpp : : Range (0 , 1)) ;

return outmshort ;

As before, we allocated space for outm to allow for the worst case, in which
n
2 rows were needed. Typically, there are far fewer than n

2 1s in the matrix
adjm, so the last rows in outm are filled with 0s. Here we copy the nonzero
rows into a new Rcpp matrix outmshort, and then return that.

All in all, Rcpp made our code simpler and easier to write: We have
fewer arguments, arguments are in explicit R object form, we don’t need to
deal with row-major vs. column-major order, and our results come back in
exactly the desired R object, rather than as one component of a returned
R list.

5.5.7 Advanced Rcpp

Rcpp is at this writing becoming increasingly more versatile, offering sev-
eral ways to set up code, other than the very basic approach presented
here.

One advanced feature (many would consider it basic, not advanced) is Rcpp
attributes, which enables simpler code, though with an extra build step.
For instance, the argument adjm in transgraph() could be declared as of
type Rcpp::NumericMatrix rather than SEXP. This would be clearer,
and would save us the trouble of creating an extra variable, xadjm.

Another example is Rcpp syntactic sugar, which magically allows you to
add some R-style syntax to C++, very nice!

5.6 Speedup in C

So, let’s check whether running in C can indeed do much better than R in
a parallel context, as discussed back in Section 1.1.

> n <− 10000

