
262 CHAPTER 12. MATRIX OPERATIONS

For instance, here is an excerpt of the CUDA matrix-multiply code pre-
sented in a talk given by Prof. Richard Edgar:2

int a = aBegin , b = bBegin ; a <= aEnd ; a += aStep ,
b+= bStep) {

shared f loat As [BLOCK SIZE] [BLOCK SIZE] ;
shared f loat Bs [BLOCK SIZE] [BLOCK SIZE] ;

// Load matr i ce s from g l oba l memory in to shared memory
// Each thread loads one element o f each sub−matrix
As [ty] [tx] = A[a + (dc wA ∗ ty) + tx] ;
Bs [ty] [tx] = B[b + (dc wB ∗ ty) + tx] ;

Here A and B are in the GPU global memory, and we copy chunks of them
into shared-memory arrays As and Bs. Since the code has been designed
so that As and Bs are accessed frequently during a certain period of the
execution, it is worth incurring the copying delay to exploit the fast shared
memory.

Fortunately, the authors of the CUBLAS library have already done all the
worrying about such matters for you. They have written very finely hand-
tuned code for good performance, making good use of GPU shared memory
and so on.

12.4 BLAS Libraries

In any discussion of high-performance matrix operations, the first question
that arises is, “Which BLAS are you using?”

12.4.1 Overview

BLAS is an acronym for the Basic Linear Algebra Subprograms, a library
of functions that perform very low-level operations such as matrix addition
and multiplication. As will be discussed below, there are various BLAS
implementations, all of them tailored (to varying degrees) to having good
cache behavior and to otherwise have good performance.

R uses “vanilla” BLAS, CBLAS, which for instance comes standard with
Ubuntu Linux. However, one may build R from source to include one’s own

2The same or similar code is available in full on the NVIDIA CUDA Samples Web
site.

12.5. EXAMPLE: PERFORMANCE OF OPENBLAS 263

favorite BLAS, or to have the choice of BLAS done dynamically each time
one runs R.

Thus even in ordinary serial computation, e.g. R’s%*% operator, the speed
of matrix operations may vary according to the version of BLAS that your
implementation of R was built with.

In our context here of parallel computation, one version of BLAS of spe-
cial interest is OpenBLAS, a multithreaded version that can bring perfor-
mance gains on multicore machines, and also includes various efficiencies
that greatly improve performance even in the serial case. We’ll take a closer
look at it in Section 12.5.

As noted, there is also CUBLAS, a version of BLAS for NVIDIA GPUs,
highly tailored to that platform. A number of R packages, such as gputools
and gmatrix, make use of this library, and of course you can write your
own special-purpose R interfaces to it, say using Rcpp to interface it to R.

For message-passing systems (clusters or multicore), there is PBLAS, de-
signed to run on top of MPI. The MAGMA library, with the R interface
magma, aims to obtain good performance on hybrid platforms, meaning
multicore systems that also have GPUs.

BLAS libraries also form the basis of libraries that perform more advanced
matrix operations, such as matix inversion and eigenvalue computation.
LAPACK is a widely-used package for this. as is ScaLAPACK for PBLAS.

12.5 Example: Performance of OpenBLAS

OpenBLAS is relatively new, having taken over a discontinued project,
GotoBLAS. It is not yet clear what its long-term prospects are, but it
seems very promising indeed.

For the timing experiments below, I simply switched from the default BLAS
to OpenBLAS. This required setting some file permissions, and since I was
running on a machine on which I did not have root access, I installed my
own copy of R, in a directory /home/matloff/MyR311. (I had to build
R with the option –with-shared-blas.) I also downloaded and built Open-
BLAS, installing it in /home/matloff/MyOpenBLAS. I then needed to
replace the R standard BLAS library via a symbolic link, as follows.

I entered the directory /home/matloffMyR311/lib/R/lib and did the
operations

264 CHAPTER 12. MATRIX OPERATIONS

$ mv l ibRb la s . so l i bRb la s . so .SAVE
$ ln −s /home/mat l o f f/MyOpenBLAS/ l i b / l i b op enb l a s . so \\

l i bRb la s . so

So, now whenever I run R, it loads OpenBLAS instead of the default BLAS.

OpenBLAS is a threaded application. It doesn’t use OpenMP to man-
age threads, but it does allow one to set the number of threads using the
OpenMP environment variable, e.g. in the bash shell,

$ export OMP NUM THREADS=2

If the number of threads is not set, OpenBLAS will use all available cores.3

Note, though, that this may not be optimal, as we will see later.

It is important to note that that is all I had to do. From that point on, if I
wanted to compute the matrix product AB in parallel, I just used ordinary
R syntax:

> c <− a %∗% b

I ran a squaring operation of random matrices of size 5000× 5000 for 1, 2,
4, 6, 8, 10, 12, 14 and 16 cores on the 16-core machine described in this
book’s Preface. Let’s look at the timing, in Figure 12.1. Though there is
quite a bit of sampling variability and we would need to do multiple runs
for a smoother graph, the results are clear: We are achieving linear speedup
(e.g. doubling the number of cores cuts the run time approximately in half)
up to about six cores, after which the returns are diminishing, if positive.

Note that not all multicore systems are alike, in terms of how resources
are shared, say within groups of cores. More than one core may share a
cache, for instance. Thus it’s hard to predict at what point the “diminishing
returns” effect will occur for any given application and and given hardware
platform.

Performance of numerical algorithms is not just about speed; we must also
consider accuracy. OpenBLAS derives its speed not just from making use
of multiple cores, but also from various tweaks of the code, yielding a very
fine degree of optimization. One can thus envision a development team so
obsessed with speed that they might cut some corners regarding numerical
accuracy. Thus the latter is a subject of legitimate concern.

I conducted a brief experiment to investigate this. I generated p × p cor-
relation matrices, with all pairs of variables having correlation ρ, using the

3If the machine has hyperthreading (Section 1.4.5.2), the number of “cores” will be
the product of the number of cores and the degree of hyperthreading.

266 CHAPTER 12. MATRIX OPERATIONS

output:

options (d i g i t s = 20)

For plain R, the main eigenvalue was reported to be 2375.0500000000147338,
while OpenBLAS gave it as 2375.049999999991087. The proportional differ-
ence, about 10−14, seems pretty good for such an ill-conditioned matrix.4

And of course, we don’t know which reported eigenvalue is closer to the
“true” one.

Needless to say, if you are using OpenBLAS and you are already using
all the cores in your machine, it probably would not be profitable to use
OpenMP and the like at the same time.

12.6 Example: Graph Connectedness

Let n denote the number of vertices in the graph. As before, define the
graph’s adjacency matrix A to be the n× n matrix whose element (i, j) is
equal to 1 if there is an edge connecting vertices i and j (i.e. i and j are
“adjacent”), and 0 otherwise. Let R(k) denote the matrix consisting of 1s
and 0s, with a 1 in element (i, j) signifying that we can reach j from i in k

steps. (Note that k is a superscript, not an exponent.)

Also, our main goal will be to compute the corresponding reachability ma-

trix R, whose (i, j) element is 1 or 0, depending on whether one can reach j

in some multistep path from i. In particular, we are interested in determin-
ing whether the graph is connected, meaning that every vertex eventually
leads to every other vertex, which will be true if and only if R consists of
all 1s. Let us consider the relationship between the R(k) and R.

12.6.1 Analysis

First, note that

R = b(

n−1∑

k=1

R(k)) (12.15)

4The term means that slight changes in the matrix may result in large changes in
output, in this case in the principal eigenvalue. In such a setting, roundoff error could
be quite serious.

