
More CUDA Examples
Shengren Li

shrli@ucdavis.edu

CUDA on CSIF

CUDA 5.5
/usr/local/cuda-5.5
In .tcshrc, add

nvcc -V
cudaGetDeviceProperties

CUDA
setenv CUDA /usr/local/cuda-5.5
setenv PATH ${PATH}:${CUDA}/bin
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${CUDA}/lib64

CUDA on CSIF

● pc33
○ GeForce GTS 250 (Tesla)
○ Compute capability 1.1
○ Global memory 500MB
○ Shared memory 16KB
○ Max number of threads per block 512

● pc43
○ GeForce GTX 550 Ti (Fermi)
○ Compute capability 2.1
○ Global memory 1GB
○ Shared memory 48KB
○ Max number of threads per block 1024

saxpy: Single-precision A*X Plus Y

http://devblogs.nvidia.com/parallelforall/easy-
introduction-cuda-c-and-c/

http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/

http://www.sdsc.edu/us/training/assets/docs/NVIDIA-04-OptimizingCUDA.pdf

http://www.sdsc.edu/us/training/assets/docs/NVIDIA-04-OptimizingCUDA.pdf

Matrix transpose

http://devblogs.nvidia.com/parallelforall/efficient-matrix-
transpose-cuda-cc/
● Transpose a matrix of single precision values
● Out-of-place, i.e., input and output are separate arrays

in memory
● Square matrices whose dimensions are multiples of 32,

e.g., 1024 x 1024
● All kernels launch blocks of 32 x 8 threads
● Each thread block processes a tile of size 32 x 32
● Performance metric: effective bandwidth(GB/s)

= 2 * matrix-size(GB) / execution-time(s)
higher is better

http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/

Simple matrix copy
TILE_DIM = 32
BLOCK_ROWS = 8

32

32

j = 0

j = 8

j = 24

j = 16

● Both reads from idata and writes to odata
are coalesced

● Use copy performance as baseline, i.e.,
expect matrix transpose to achieve the
same performance

e.g., 3 x 3 tiles

Naive Matrix Transpose

32

32

j = 0

j = 8

j = 24

j = 16

32

32

● Reads from idata
are coalesced

● Writes to odata are
non-coalesced

● A stride of width
elements between
contiguous threads

Non-coalesced global memory
access hurts performance

Coalesced transpose via shared
memory

idata

odata

tile

● Both reads from idata and writes to odata are
coalesced again

Better but not good enough
● Overhead associated

with using shared
memory ?

● Synchronization
barrier ?

32

32 32

32

...

0 1 2 31

Shared memory has 32 banks

tile odata

Avoid shared memory bank conflicts

0 1 2

32 0 1

3

2

31

30

31 32 0

30 31 32

1

0

29

28

...

...

bank
0

bank
1

bank
3

bank
2

bank
31

Pad arrays to avoid shared memory bank conflicts

Histogram calculation in CUDA

● http://developer.download.nvidia.
com/compute/cuda/1.1-
Beta/x86_website/projects/histogram64/doc/
histogram.pdf

● November 2007

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf

Hardware 8 years ago

● G80, G8x, Tesla architecture
● Compute capability 1.0, 1.1
● No atomic shared memory operations
● Maximum amount of shared memory per

thread block is 16KB
● Number of shared memory banks is 16
● A single thread block should contain 128-

256 threads for efficient execution
● http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html#compute-
capabilities

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Histogram

Show the frequency of occurrence of each data
element (pixel intensity in image histogram)

http://www.mathworks.com/help/images/contrast-adjustment.
html

[0, 255] 256 bins

Sequential program

Parallel program

Naive strategy: all the threads updating a single
histogram in global memory using atomicAdd
Strategy:
1. Divide the input array between threads
2. Process the sub-arrays by each dedicated

thread and store the result into a certain
number of sub-histograms

3. Merge all the sub-histograms into a single
histogram

Two strategies

● histogram64
○ per-thread sub-histogram with 64 single-byte bin

counters
○ A single thread can process at most 255 bytes input
○ Bank conflicts in shared memory

● histogram256
○ per-warp sub-histogram with 256 4-byte (unsigned

int) bin counters
○ Software-implemented atomic additions in shared

memory

histogram64

BIN_COUNT = 64

THREAD_N: a multiple of 64

per-thread sub-histogram with 64 1-byte bin counters

4-way bank conflicts

...

...

...

bank 0 bank 1 bank 15

thread 4 increments s_Hist[4 + 12 * THREAD_N]
thread 5 increments s_Hist[5 + 3 * THREAD_N]
thread 6 increments s_Hist[6 + 60 * THREAD_N]
thread 7 increments s_Hist[7 + 12 * THREAD_N]

bin 3

bin 12

bin 60

If threadPos = threadIdx.x,

...
...

...

...
...

...

...
...

...

Bank number

bank number
=(threadPos + bin * THREAD_N) / 4 % 16
=(threadPos / 4) % 16

For threads within half-warp (16 threads), only
the last 4 bits of threadIdx.x are different

2 bits4 bits… 26 bits ...threadPos

4 bits… 28 bits ...threadIdx.x

Shuffle [5:4] and [3:0] bit ranges

4 bits… 26 bits ...threadPos 2 bits

4 bits… 26 bits ...threadIdx.x 2 bits

00 16 32 48 01 17 33 49 15 31 47 63...

00 01 02 03 04 05 06 07 60 61 62 63...

bank 0 bank 0 bank 15

before

after

bank-conflict-free access

Threads within half-warp will access 16
different banks, e.g., thread 4, 5, 6, 7

bank 6bank 4 bank 5 bank 7

bin 3

bin 12

bin 60

per-block sub-histogram
shift starting positions

● One thread per bin (row in s_Hist[])
● If the threads within half-warp all start from

the first per-thread sub-histogram, there will
be 16-way bank conflicts

● bank number
= (accumPos + threadIdx.x * THREAD_N) / 4 % 16

● accumPos = (threadIdx.x % 16) * 4
● Threads within half-warp start from 16

different banks

bank-conflict-free access

accumPos = (threadIdx.x % 16) * 4

Merge sub-histograms

value: bin index; one bin per
thread

d_Result[]: histogram in global memory

d_Result[]: per-block sub-histograms in global memory

histogram256

per-warp sub-histogram with 256 4-byte bin counters

s_WarpHist[]

s_WarpHist[]

Intra-warp shared memory collisions

Each group of 32 threads (warp) shares one
s_WarpHist[], thus two or more threads may
collide on the same bin counter

e.g., thread 0, 3, 12 read 3 different pixels with
the same intensity data (within 0 .. 255 range),
then they try to increment s_WarpHist[data]
at the same time

Software implementation of atomic
shared memory operations

threadIdx.x % 32 << 27 [0, 31] 5 bits

5 bits 27 bits

The hardware performs shared memory write combing, which accepts 'count'
from an arbitrary thread and rejects all the others.

The first 5 bits records the last writer.

Example: thread 0, 3, 12 increment
s_WarpHist[data]

thread 0

read (31 << 27) | 10

write (0 << 27) | 11

read (3 << 27) | 11

write (0 << 27) | 12

read (0 << 27) | 12

thread 3

read (31 << 27) | 10

write (3 << 27) | 11

read (3 << 27) | 11

thread 12

read (31 << 27) | 10

write (12 << 27) | 11

read (3 << 27) | 11

write (12 << 27) | 12

read (0 << 27) | 12

write (12 << 27) | 13

read (12 << 27) | 13

s_WarpHist[data] = (31 << 27) | 10

s_WarpHist[data] = (12 << 27) | 13

Merge sub-histograms

One bin (one column of s_Hist[]) per thread

sum: a bin counter of per-block sub-histogram

d_Result[]: histogram in global memory

d_Result[]: per-block sub-histograms in global memory

