
64 CHAPTER 4. THE MESSAGE PASSING PARADIGM

One way of reducing the overhead arising from the network system soft-
ware is to use remote direct memory access (RDMA), which involves both
nonstandard hardware and software. The name derives from the Direct
Memory Acess devices that are common in even personal computers today.

When reading from a fast disk, for instance, DMA bypasses the “mid-
dleman,” the CPU, and writes directly to memory, a significant speedup.
(DMA devices in fact are special-purpose CPUs in their own right, designed
to copy data directly between an input-output device and memory.) Disk
writes are made faster the same way.

With RDMA, we bypass a different kind of middleman, in this case the
network protocol stack. When reading a message arriving from the network,
RDMA deposits the message directly into the memory used by our program.

4.2 Rmpi

As noted, Rmpi is an R interface to the famous MPI protocol, the lat-
ter normally being accessed via C, C++ or FORTRAN. MPI consists of
hundreds of functions callable from user programs.

Note that MPI also provides network services beyond simply sending and
receiving messages. An important point is that it enforces message order.
If say, messages A and B are sent from process 8 to process 3 in that
order, then the program at process 3 will receive them in that order. A
call at process 3 to receive from process 8 will receive A first, with B not
being processed until the second such call.1 This makes the logic in your
application code much easier to write.

In addition, MPI allows the programmer to define several different kinds of
messages. One might make a call, for instance, that says in essence, “read
the next message of type 2 from process 8,” or even “read the next message
of type 2 from any process.”

Rmpi provides the R programmer with access to such operations, and also
provides some new R-specific messaging operations.

With all that power comes complexity. Rmpi can be tricky to install—and
even to launch—with various platform dependencies to deal with, even in
terms of how the manager launches the workers. These issues, as well as
the plethora of functions available in Rmpi and the plethora of options in
those functions, are beyond the scope of this book. Instead, the hope here

1This assumes that the calls do not specify message type, discussed below.

4.3. EXAMPLE: PIPELINED PRIME NUMBER FINDER 65

is to present a good introduction to the message-passing paradigm, with
Rmpi as our vehicle.

4.3 Example: Pipelined Prime Number Finder

Prime numbers play a key role (pun intended) in cryptography, the core of
data security. R may not be the best vehicle for finding them, but this does
make for an easy-to-understand example of Rmpi and the message-passing
paradigm, and thus is used here.

Again in the interest of simplicity, the code is not intended to be optimal. In
fact, the nonoptimality will serve as a springboard for discussion of typical
performance issues that arise with message-passing systems.

4.3.1 The Code

1 # Rmpi code to f i nd prime numbers
2
3 # for i l l u s t r a t i o n purposes , not in tended to be opt imal
4
5 # re turns vec t o r o f a l l primes in 2 . . n ; the vec t o r ” d i v i s o r s ” i s used as
6 # a ba s i s f o r a S ieve o f Erathos thenes opera t ion ; must have n <=
7 # (max(d i v i s o r s)ˆ2) and n even
8
9 # the argument ”msgs ize ” c on t r o l s the chunk s i z e in communication from
10 # the manager to the f i r s t worker , node 1
11
12 primepipe <− function (n , d i v i s o r s , msgs ize) {
13 mpi . bcast . Robj2s lave (dowork)
14 mpi . bcast . Robj2s lave (dos i eve)
15 # s t a r t workers ; note nonb lock ing c a l l
16 mpi . bcast . cmd(dowork , n , d i v i s o r s , msgs ize)
17 # remove the evens r i g h t away
18 odds <− seq (from=3, to=n ,by=2)
19 nodd <− length (odds)
20 # send odds to node 1 , in chunks
21 startmsg <− seq (from=1, to=nodd ,by=msgs ize)
22 for (s in startmsg) {
23 rng <− s :min(s+msgsize −1,nodd)
24 mpi . send . Robj (odds [rng] , tag=0, des t=1)
25 }

66 CHAPTER 4. THE MESSAGE PASSING PARADIGM

26 # send end−data s e n t i n e l
27 mpi . send . Robj (NA, tag=0, des t=1)
28 # rec e i v e r e s u l t s from l a s t node
29 la s tnode <− mpi .comm. s i z e ()−1
30 # return t e r e s u l t ; don ’ t f o r g e t the 2
31 c (2 ,mpi . recv . Robj (tag=0,source=las tnode))
32 }
33
34 # worker code
35 dowork <− function (n , d i v i s o r s , msgs ize) {
36 # which are my d i v i s o r s ?
37 me <− mpi .comm. rank ()
38 l a s tnode <− mpi .comm. s i z e ()−1
39 ld <− length (d i v i s o r s)
40 tmp <− f loor (ld / l a s tnode)
41 mystart <− (me−1) ∗ tmp + 1
42 myend <− mystart + tmp − 1
43 i f (me == las tnode) myend <− ld
44 mydivs <− d i v i s o r s [mystart :myend]
45 i f (me == las tnode) out <− NULL
46 repeat {
47 msg <− mpi . recv . Robj (tag=0,source=me−1)
48 i f (me < l a s tnode) {
49 i f (! i s .na(msg [1])) {
50 s i e v eou t <− dos i eve (msg , mydivs)
51 mpi . send . Robj (s i eveout , tag=0, des t=me+1)
52 } else { # no more coming in , so send s e n t i n e l
53 mpi . send . Robj (NA, tag=0, des t=me+1)
54 return ()
55 }
56 } else {
57 i f (! i s .na(msg [1])) {
58 s i e v eou t <− dos i eve (msg , mydivs)
59 out <− c (out , s i e v eou t)
60 } else { # no more coming in , so send r e s u l t s to manager
61 mpi . send . Robj (out , tag=0, des t=0)
62 return ()
63 }
64 }
65 }
66 }
67
68 # check d i v i s i b i l i t y o f the curren t chunk x

4.3. EXAMPLE: PIPELINED PRIME NUMBER FINDER 67

69 dos i eve <− function (x , d iv s) {
70 for (d in d iv s) {
71 x <− x [x %% d != 0 | x == d]
72 }
73 x
74 }
75
76 # s e r i a l prime f i n d e r ; can be used to genera te d i v i s o r l i s t o f primepipe
77 serpr ime <− function (n) {
78 nums <− 1 : n
79 x <− rep (1 , n)
80 maxdiv <− cei l ing (sqrt (n))
81 for (d in 2 : maxdiv) {
82 i f (x [d])
83 x [x !=0 & nums > d & nums %% d == 0] <− 0
84 }
85 nums [x != 0 & nums >= 2]
86 }

4.3.2 Usage

The function primepipe has three arguments:

• n: the function returns the vector of all primes between 2 and n,
inclusive

• divisors: the function checks each potential prime for divisibility by
the numbers in this vector

• msgsize: the size of messages from the manager to the first worker

Here are the details:

This is the classical Sieve of Eratosthenes. We make a list of the numbers
from 2 to n, then “cross out” all multiples of 2, all multiples of 3 and so
on. After the crossing-out by 2s and 3s, for instance, our list will look like
this:

2 3 4 5 6 7 8 9 10 11 12 ...

In the end, the numbers that haven’t gotten crossed out are the primes.

The vector divisors “primes the pump,” as it were. We find a small set of
primes using nonparallel means, and then use those in the larger parallel
problem. But what range do we need for them? Reason as follows.

68 CHAPTER 4. THE MESSAGE PASSING PARADIGM

If a number i has a divisor k larger than
√
n, it must then have one (specif-

ically, the number i/k) smaller than that value. Thus in crossing out all
multiples of k, we need only consider values of k up to

√
n. So, in order

to achieve our goal of finding all the primes up through n, we take our
divisors vector to be all the primes up through

√
n.

The function serprime() in the code above will do that. For example, say
n is 1000. Then we first find all the primes less than or equal to

√
1000,

using our nonparallel function:

> dvs <- serprime(ceiling(sqrt(1000)))
> dvs
[1] 2 3 5 7 11 13 17 19 23 29 31

We then use these numbers in our parallel function to find the primes up
through 1000:

> primepipe(1000,dvs,100)
[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

59 61
[19] 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151
[37] 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251
[55] 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359
[73] 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
[91] 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593

[109] 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701
[127] 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827
[145] 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953
[163] 967 971 977 983 991 997

Now, to understand the argument msgsize, consider the case n = 1000
above. Each worker will be responsible for its particular chunk of divisors.
If we have two workers, then Process 0 (the manager) will “cross out”
multiples of 2; process 1 (the first worker) will handle multiples of 3, 5, 7,
11 and 13; process 2 will handle k = 17, 19, 23, 29 and 31. So, process
0 will cross out the multiples of 2, and send the remaining numbers, the
odds, to process 1. The argument msgsize specifies the size of chunks of
odds that process 0 sends to process 1. More on this point later.

4.3.3 Timing Example

Let’s try the case n = 10000000. The serial code took time 424.592 seconds.

Let’s try it in parallel on a network of PCs, for first two, then three and
then four workers. with various values for msgsize. The results are shown
in Table 4.1.

4.3. EXAMPLE: PIPELINED PRIME NUMBER FINDER 69

msgsize 2 workers 3 workers 4 workers
1000 59.487 58.175 47.248
5000 22.855 17.541 15.454
10000 19.230 14.734 12.522
15000 19.198 14.874 12.689
25000 22.516 18.057 15.591
50000 23.029 18.573 16.114

Table 4.1: Timings, Prime Number Finding

The parallel version was indeed faster than the serial one. This was partly
due to parallelism and partly to the fact that the parallel version is more
efficient, since the serial algorithm does more total crossouts. A fairer
comparison might be a recursive version of serprime(), which would reduce
the number of crossouts. But there are other important facets of the timing
numbers.

First, as expected, using more workers produced more speed, at least in
the range tried here. Note, though, that the speedup was not linear. The
best time for three workers was only 30% better than that for two workers,
compared to a “perfect” speedup of 50%. Using four workers instead of two
yields only a 53% gain. We’ll return to this point shortly.

4.3.4 Latency, Bandwdith and Parallelism

Another salient aspect here is that msgsize matters. Recall Section 2.2.6,
especially Equation (2.1). Let’s see how they affect things here.

In our timings above, setting the msgsize parameter to the lower value,
1000, results in have more chunks, thus more times that we incur the net-
work latency l. On the other hand, a value of 50000 less parallelism, and
impedes are ability to engage in latency hiding (Section 2.2.6), in which we
try to overlap computation and communication; this reduces parallelism
and thus reduces speed.

