Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (60) The code below uses R Snow to implement a
bucket sort similar to the OMP one in Sec. 1.4.2.6. See
the comments at the beginning of the code. Fill in the
blanks.

bucket sort with sampling; sort vector x
on cluster cls; data assumed to be fairly
uniformly distributed between a and b,

exclusive; return value is sorted x

bsort <— function(cls ,x,a,b) {
ncls <— length(cls)
intwidth <— (b — a) / ncls
ship needed objects to workers
clusterExport (cls, ________ // blank (a)
envir=environment ())
have all workers set their ID
clusterApply (cls,
,,,,,,,,) // blank (b)
have all workers set their intervals
clusterEvalQ(cls, _-_______) // blank (c)
sort locally at workers
sortedchunks <—
clusterEvalQ (cls ,
// blank (d)

setmyid <— function (i) {
myid <<— i
}

setmyinterval <— function () {
mylow <<— a + (myid—1) * intwidth
myhigh <<— a + myid * intwidth

}

sortmine <— function () {
myx <— ________ // blank (f)
sort (myx)

}

2. Fill in the blanks with terms from our course.

(a) (10) The term used for a parallel application that
presents no coding challenge, due to being easily
parallelizable, it is called _______________.

(b) (10) When we are worried whether a certain par-
allel algorithm will work well on very large hard-
ware (e.g. many cores), we ask whether it is

(c) (10) Associating each thread with a specific core is
called .

3. (10) Consider a ring network. Here the nodes are
arranged in a circle, with serial links connecting succes-
sive nodes. When a node receives a packet, it checks
whether this node is the intended destination. If so, it
accepts the packet, but if not, it forwards to the next

node. Packets can be transmitted simultaneously on the
various links. Packet motion is one direction, so coun-
terclockwise. There is a processing delay at each node.
Which is true of the following when an extra node is
added?

(i) Both latency and bandwidth will increase.

(ii) Latency will increase but bandwidth will decrease.

(iii) Latency will decrease but bandwidth will increase.
)

(iv) Both latency and bandwidth will decrease.

Solutions:
1.

bucket sort with sampling; sort vector x

on cluster cls; data assumed to be

fairly uniformly distributed between

a and b, exclusive; return value is sorted x

bsort <— function(cls ,x,a,b) {
ncls <— length(cls)
intwidth <— (b — a) / ncls
ship needed objects to workers
clusterExport (cls,
C(”XH ’Ha'” ,”b” 777 intwidth?” ,
7setmyid” ,” setmyinterval” ,” sortmine”),
envir=environment ())
have all workers set their ID
clusterApply (cls ,1:ncls ,setmyid)
have all workers set their intervals
clusterEvalQ (cls ,setmyinterval ())
sort locally at workers
sortedchunks <— clusterEvalQ (cls ,sortmine())
wrap up
Reduce(c,sortedchunks)

}

setmyid <— function (i) {
myid <<— i
}

setmyinterval <— function () {
mylow <<— a + (myid—1) * intwidth
myhigh <<— a + myid * intwidth

}

sortmine <— function () {
myx <— x[x > mylow & x <= myhigh]
sort (myx)
}
2a. embarrassingly parallel
2b. scalable
2c. processor affinity

3. (i)

