1. (100) This problem implements the Mandelbrot computation on p.28 of our book. The idea is to generate the rectangular grid of points, then for each grid point, determine whether the sequence generated in Equation (2.1) in our text remains bounded after a specified number of iterations. Our definition of “bounded” will be that all the points in the sequence are within the disk of radius 2.0 with center (0,0).

The function `mandelbrot()` will do the main computation, returning an R list that is been designed to feed in to the R `image()` function. We will break the computation into chunks, and use R Snow to parallelize.

Say our X-axis interval is (3,4), while for Y it is (2,2.4), with an increment 0.2 between tick marks on the axes. The marks on X will be 3,3.2,...,4 and on Y they will be at 2,2.2,2.4. That’s 6 marks on X and 3 on Y, for a total of 18 grid points.

Note:

```r
> seq(1.2, 2.2, 0.3)
[1] 1.2 1.5 1.8 2.1
```

Fill in the blanks:

arguments:

- `xl`: left limit
- `xr`: right limit
- `yt`: top limit
- `yb`: bottom limit
- `inc`: distance between ticks on X, Y axes
- `maxiters`: maximum number of iterations

return value:

- we aim to return an R list which will be used as input to R’s `image()` function:
 - a matrix of 1s and 0s, 1 meaning sequence remains bounded, absolute value <= 2.
 - plus the tick marks vectors for the X and Y axes

```r
mandelbrot <-
  function(xl, xr, yb, yt, inc, maxiters) {
    # determine where the tick marks go on
    # the X and Y axes
    xticks <- seq(xl, xr, inc)
    yticks <- seq(yb, yt, inc)
    nxticks <- length(xticks)
    nyticks <- length(yticks)
    m <- matrix(0, nrow=nxticks, ncol=nyticks)
    for (i in 1:nxticks) {
      xti <- xticks[i]
      for (j in 1:nyticks) {
        yti <- yticks[j]
        # this is c in (2.1), but don’t # confuse with R’s c() ftn
        cpt <- complex(real=xti, imaginary=yti)
        z <- cpt
        for (k in 1:maxiters) {
          blank (a)
          if ( blank (b) ) break
          blank (c)
        }
        list(x=xticks, y=yticks, z=m)
      }
    }
  }
```

R Snow wrapper, divide grid into strips, # then call mandelbrot() on each one; we won’t # mind if there are a few duplicate pixels in the # end

```r
mandelsnow <-
  function(cl, xl, xr, yb, yt, inc, maxiters) {
    clusterExport(cl, c("mandelbrot", "ncl\$"),
                 envir=environment())
    ncl <- length(cl)
    clusterExport(cl, c("getmyxinterval"),
                  envir=environment())
    getmyxinterval <- function(i) {
      width <- (xr - xl) / ncl
      myxl <- blank (d)
      myxr <- blank (e)
    }
    blank (f)
    tmp <- clusterEvalQ(cl, blank (g))
    fullmat <- NULL
    for (i in 1:ncl) {
      fullmat <- blank (h)
      g <- list()
      g$x <- seq(xl, xr, inc)
      g$y <- seq(yb, yt, inc)
      g$z <- fullmat
      # make up for possible overlap
      nrx <- length(g$x)
      nrz <- nrow(g$z)
      if (nrz < nrx) {
        g$z <- g$z[-1:(nrz-nrx),]
      } else if (nrz < nrx) {
        g$x <- g$x[-1:(nrz-nrx)]
      }
      image(g)
    }
  }
```
Solutions:

computes Mandelbrot fractal matrix

adapted from code by uctgamdo@ucl.ac.uk

arguments:
xl: left limit
xr: right limit
yt: top limit
yb: bottom limit
inc: distance between ticks on X, Y axes
maxiters: maximum number of iterations

return value:
we aim to return an R list which will be used as input to R's
image() function: a matrix of 1s and 0s, 1 meaning sequence remains
bounded, absolute value <= 1, plus the tick marks vectors for the X
and Y axes

mandelbrot <- function(xl, xr, yb, yt, inc, maxiters) {
 # determine where the tick marks go on the X and Y axes
 xticks <- seq(xl, xr, inc)
yticks <- seq(yb, yt, inc)
xnexticks <- length(xticks)
ynexticks <- length(yticks)
 # eventual return value
 m <- matrix(0, nrow=nxticks, ncol=nxticks)
 # iterate through the entire grid, setting c to each grid point and
 # then seeing where z goes as a result
 for (i in 1:nxticks) {
 xti <- xticks[i]
 for (j in 1:nxticks) {
 yti <- yticks[j]
 # this is c, but don't confuse with R's c() fn
 cpt <- complex(real=xti, imaginary=ytj)
z <- ctp
 for (k in 1:maxiters) {
 z <- z^2 + cpt
 if (abs(z) > 2.0) break
 if (k == maxiters) m[i, j] <- 1
 }
 }
 }
 # return
 list(x=xticks, y=yticks, z=m)
}

R Snow wrapper, divide grid into vertical strips, then call
mandelbrot(); we won't mind if there are a few duplicate pixels in the
end

mandelsnow <-
 function(clss, xl, xr, yb, yt, inc, maxiters)
 {
 clusterExport(clss, c("x1","x2","y1","y2","inc","maxiters"),
 envir=environment())
 nclss <- length(clss)
 clusterExport(clss, c("mandelbrot","nclss"),
 envir=environment())
 getmyxinterval <- function(i) {
 width <- (nr - xl) / nclss
 myxl <- xl + (i-1) * width
 myxr <- myxl + width
 }
 clusterApply(clss, 1:nclss, getmyxinterval)
tmp <-
 clusterEvalQ(cls, mandelbrot(myxl, myxr, yb, yt, inc, maxiters))
fullmat <- NULL
for (i in 1:ncls)
 fullmat <- rbind(fullmat, tmp[[i]]$z)
g <- list()
g$x <- seq(xl, xr, inc)
g$y <- seq(yb, yt, inc)
g$z <- fullmat
make up for possible overlap
nrx <- length(g$x)
nrz <- nrow(g$z)
browser()
if (nrx < nrz) {
 g$z <- g$z[-(1:(nrz-nrx))]
} else if (nrz < nrx)
 g$x <- g$x[-(1:(nxr-nrz))]
image(g)
}