Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

Directions:

1. (15) Look at the discussion of shearsort in pages 277ff
of Wilkinson and Allen. The text suggests performing
a transpose operation, using a single call to an all-to-all
routine. Assume that we have n processors and n data
points, as in the discussion in the text. Data point (i,j),
named x, will be at processor k*i+j, where k = y/n. Give
the MPI code to do the all-to-all operation, followed by
a call to printf() to print out the value received. (Don’t
forget the printf().)

2. (15) Give the complete C code implementation of the
pseudode

for all possible moves of square I do {
Q = malloc(sizeof (struct BoardPos));
fill in *Q according to this move;

in the handout on the 8-Squares Puzzle problem.

3. (15) Look at the cyclic-striped partitioning on p.317
of Wilkinson and Allen. Suppose our matrix is 16x16 and
that we are using 4 processors. Consider what happens
when P; is performing the last of its four calls to the
broadcast function. Note that it is actually a multicast,
going only to a subset of the four processors. State which
processor(s) Pywill be sending to in this fourth call

4. This problem concerns the pthreads examples,
Workpile.c and Quicksort.c.

a. (10) The code in Workpile.c is meant to be generally
applicable to task-farm problems, not just Quick-
sort.c. State which argument in which function de-
clared in Workpile.c ties that general machinery to a
specific problem such as quicksort.

b. (10) Show which line in Workpile.c checks the termi-
nation condition for the workpile operation.

5. Suppose we wish to do noise reduction on a certain
image. (To simplify things, assume we are going to do
this on just one row of pixels.)

a. (10) Look at the equations for Xj and zj at the
bottom of p.349 of Wilkinson and Allen. State how
one the two equations would be altered.

b. (10) Of the master-slave and pipelined paralleliza-
tions discussed on pp.353-354 (applied in this case

to the inverse transform), state why one of the two
methods would be more appropriate in our setting
here.

6. (15) Consider the pipelined parallelization of bubble
sort, described in Figure 9.9 of Wilkinson and Allen. Sup-
pose we are implementing this in MulSim, sorting an n-
item global data array ’a’ using n processors. In the code
on p.275, P; will handle case i in the outer loop. There
will be a global array my j, with my j[i] stating which
j in the inner loop P; is currently working on. Write the
MulSim code for this algorithm, omitting declarations,
header-file includes and so on, but showing full detail of
the algorithm itself. (Note: You should not need to use
any lock variables.)

Solutions:

1.

MPI_Alltoall(&x,1,MPI_Int,y,1,MPI_Int,MPI_COMM_WORLD);

printf("%d\n",y[k*j+i]l);

Q = (struct BoardPos *) malloc(sizeof (struct BoardPos));

memcpy (Q,P,sizeof (struct BoardPos));
RowI = Q->Row[I]; Coll = Q->Coll[I];
RowBlank = Q->Row[8]; ColBlank = Q->Coll[8];
if (abs(RowI-RowBlank) == 1)

Swap (&Q->Row [I],&Q->Row[8]);
else if (abs(ColI-ColBlank) == 1)

Swap (&Q->Col[I],&Q->Col[8]);

4.a. Argument worker proc in work init().

4.b.
while(wp->n_pile != 0 || wp->n_working != 0)

5.a. We want to remove the high-frequency components,
i.e. the “noisy” ones. So, in the sum for z, we sum only
from j=0 to j=M for some M < N-1.

5.b. In this setting, the master-slave approach would
be bad, since it would compute some values of X} that
would never be used. (Must get part (a) correct to receive
credit for part (b).)

6.

me = CPU_NUM;
for (j = 0; j < me; j++) {

// must wait until the '"upstream" node has past this j

while (my_j[me-1] <= me+l) ;
k = j+1;

if (aljl > alk]l) {

temp = alj];
aljl = alk]l;
alk] = temp;

}

// signal "downstream" node
my_j [me] = j;

