
Name: ____________________________

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (10) Fill in the blank with a three- or four-letter abbre-
viation for a general software category, or else the name
of a speci�c software package: If we have a hypercube ma-
chine and wish to use the shared-memory programming
paradigm, we should use ____________.

2. (15) In the PVM program on p.52 of our text,
which PVM library function is analogous to MPI's
MPI_Comm_rank()?

3. (15) Suppose the sorting algorithm described in Sec-
tion 5.3.2 of our text is implemented in MPI. Show how
to code the �rst recv() at the top of p.148 in MPI. As-
sume the numbers are integers and the message type is
stated in a #de�ne as NUMBER_TYPE. Make sure to
write not only the call to MPI_Recv() itself but also the
code which determines the value of i.

4. (15) Consider our example MPI program which solves
systems of linear equations. Rewrite the line

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

using MPI_Send() and/or MPI_Recv().

5. (15) Look at the sample MulSim program in our
printed lecture notes. Suppose we had forgotten to in-
clude calls to LOCK() and UNLOCK(). Let wrong_cc
denote the �nal value of CompositeCount under this cir-
cumstance, and let true_cc denote the correct value.
Which of the following statements is correct? (a)
wrong_cc ≤ true_cc, (b) wrong_cc ≥ true_cc, (c)
wrong_cc could be either larger than, smaller than or
equal to true_cc.

6. (15) Write UCTuplets code for a use-once barrier.
Make your code as e�cient as possible.

7. (15) In the text and in class, it was mentioned that
the butter�y barrier in Section 6.1.4 could be used to
implement an all-gather operation. Show the complete
MPI code for implementing MPI_AllGather() for in this
manner for the case of P2 on p.166, using MPI_Send()
and MPI_Recv(). Show only the code executed by P2

not the code executed by the other Pi.

Solutions:

1. SDSM or DSM.

2. pvm_mytid().

3.

MPI_Comm_rank(MPI_COMM_WORLD,&Me);

...

MPI_Recv(&Number,1,MPI_INT,Me-1,MPI_ANY_TAG,MPI_COMM_WORLD,

&Status);

4.

if (my_rank == 0)

for (m=1; m < p; m++)

MPI_Send(&n,1,MPI_INT,m,N_MSG,MPI_COMM_WORLD);

else MPI_Recv(&n,1,MPI_INT,0,N_MSG,MPI_COMM_WORLD,

&Status);

5. (a)

6. Note that in the code below, we do not use a while
loop, and the �rst �eld in our call to rd() is �si�, not �sp�.

// initialize

if (UCTNodeNum == 0)

out("si","barrier",0);

...

// barrier action starts here

in("sp","barrier",&Count);

out("si"."barrier",++Count);

if (Count < UCTNWorkNodes)

rd("si","barrier",UCTNWorkNodes);

7. Suppose each node will contribute K ints, held in
LocalArray, with the result of the gather going into to
the 8K-element FullArray.

In the �rst stage, P2 must send its K numbers to P3 and
receive K numbers from the latter, putting them in the
proper place, which is starting at FullArray[3*K]:

MPI_Send(LocalArray,K,MPI_INT,3,AG_MSG,MPI_COMM_WORLD);

MPI_Recv(FullArray+3*K,K,MPI_INT,3,AG_MSG,MPI_COMM_WORLD,

&Status)

In the second stage, P2 will send 2K numbers to P0, P2's
own K numbers, plus P3's K numbers, which P2 had re-
ceived during the �rst stage:

MPI_Send(LocalArray,K,MPI_INT,0,AG_MSG,MPI_COMM_WORLD);

MPI_Send(FullArray+3*K,K,MPI_INT,0,AG_MSG,MPI_COMM_WORLD);

Then P2 must receive 2K numbers from P0, P0's own K
numbers, plus P1's K numbers, which P0 had received
during the �rst stage. We will not show the rest of the
code here, but it would continue along these lines.

Note that we would need to write the code so that sends
and receives do not produce deadlock, say by having
lower-numbered partners send �rst during stages 1 and 3,

1



and higher-numbered partners sending �rst during stage
2. We would also have to have the code coordinate cor-
rectly; the code for P0 during stage 2, for instance, would
consist of two receives, the �rst being to FullArray+2*K
and the second to FullArray+3*K.

2


