Name:

Directions: Work only on this sheet (on
both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your
answers, as long as you organize yourself BEFORE start-
ing writing.

Unless otherwise stated, give nu-
merical answers as expressions, e.g.

% x 6—1.8. Do NOT use calculators.

1. (40) Suppose we were to write an OpenMP version
of the dice simulation example of the Python multipro-
cessing module. Say we store our grand total in a global
variable tot, with count storing the thread’s individual
count. Show how to efficiently write the OpenMP version
of

totlock.acquire()
tot.value += count
totlock.release()

2. (30) Consider the Python multiprocessing example
of Quicksort, using the Queue class. Suppose the original
array to be sorted was (12,5,13,6,8,10,2,21,20,15). When
the work item (i,j,2) is placed into the queue, what will
be the values of i and j? Note: The code in separate()
is not quite right, but assume it works correctly, which
is to rearrange the given range within xc so that all the
elements smaller than xc[low] are moved to the left of
that element, and all the ones larger than that element
are moved to its right, with the return value last being
the final resting place of xc[low].

3. (30) The function allgt(x,y,n) below, to run in an
OpenMP context, returns 1 (i.e. True) if all elements of
x are greater than their counterparts in y. Each of the
arrays x and y is of length n. (In this implementation, no
effort is made to do no further checking after encountering
a False case.) The function is to be called from within an
OpenMP parallel block. Fill in the blanks.

int allgt(x,y,n)

{ int all,i;
#pragma omp
for (i = 0; i < n; i++)
return all;

Solutions:
1.

#pragma omp atomic
tot += count;

2. The first call to separate() will rearrange the array to
(5,6,8,10,2,12,13,21,20,15) and return 5, and (6,9,1) will
be put in the queue. The next thread will work on that,
and put (7,9,2) in the queue.

3.

int allgt(x,y,n)

{

}

int all,i;

#pragma omp for reduction(&&:all)

for (i = 0; i < nj; i++) all &&= (x[i] > y[il);
return all;



