
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is
actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. (20) Suppose we are writing MPI code for the hyperquicksort pseudocode on p.5 of our PLN on sorting. In this problem,
implement only the two lines that begin with “low-numbered” and “with high-numbered.”

Assume you have already set these variables:d, the dimension of the cube;me, this node’s ID number;mydata, the data at this
node, an array ofints); nmydata is the number of elements inmydata; andpivot, the pivot element.

Take “smaller” in the pseudocode to me “smaller than or equal to.”

You must useMPI Sendrecv(). To see how its arguments work, see the functionOddEvenSort() in the TA’s handouts.

Make sure your handwriting is legible. Write your code on scratch paper first, then copy to this sheet.

2. (20) Write an MPI function to do low-pass filtering via cosine transform, with prototype

void lowpass(int *x, int n, int *c, float prop)

Here we have a one-dimensional data setx of lengthn. The arrayc is for temporary storage of the spectrum ofx. We calculate
all but ther = floor(prop*n) highest-frequency components, then transform back to the time domain, overwritingx. The time-
domain data are originally inx at node 0, and will again be placed inx at node 0 when we finish. Assume thatn-r is evenly
divisible byp, the number of nodes; call the quotients.

Do notuse parallel matrix methods. Instead, each node will calculate a chunk of sizes in c, and then each node will calculate a
chunk of sizes in the newx. Make sure to make good use of MPI’s collective operations.

Here are the formulas for the one-dimensional cosine transform and its inverse:

ck =
n−1∑
j=0

xj cos
[π

n
(j + 0.5)k

]
(1)

xk = 0.5c0 +
n−1∑
j=1

cj cos
[π

n
j(k + 0.5)

]
(2)

Make sure your handwriting is legible. Write your code on scratch paper first, then copy to this sheet.

3. This problem concerns the functionSampleSort()in the TA’s handouts.

(a) (10) In our PLN presentation on this type of parallel sorting, we spoke in terms of deciles, i.e. the 10r percentiles, r =
1,...,10. The code here deals with cr percentiles. State the value of c in terms of variables in the program.

(b) (15) Fill in the blanks: After the call toMPI Gather(), the cr percentile found by node j will be stored inallpicks[]
at node .

4. This problem concerns the Apriori algorithm for data mining.

In the notation of our PLN,F[i] , the list of frequent subsets of sizei, is a two-dimensional array whose jth row lists the members
of the jth subset of size i. The number of rows in that array isNF[i] . For instance, if the third member ofF3 is {5,12,13}, then
we haveF[3][2][0] = 5, F[3][2][1] = 12 andF[3][2][2] = 13.

Suppose also that our code which calculated theFi placed additional information at the end of the itemset’s row. First, it tacked
on the count of that itemset, at position i, so that if for instance{5,12,13} has count 292, thenF[3][2][3] would be 292. Second,
starting with position i+1, it placed pointers to the rows of the frequent itemsets which are subsets of this one, and their sizes.
For example, there could be a pointer to the row inF for {5,12,13,16,22}, followed by 5. After the last pointer/size pair, it
placed a 0.

(a) (25) Write OpenMP code which uses theFi (which are already computed using the algorithm in the PLN) to find the
number of association rulesI → J that meet or exceed both the support and confidence thresholds.1 The confidence
threshold proportion is in the variableconfthresh.

Keep your code simple, not worrying too much about maximizing performance.Make sure your handwriting is legible.
Write your code on scratch paper first, then copy to this sheet.

1Normally we would record the itemsets themselves, but for simplicity’s sake we will just output the count.

1

(b) (10) Suppose we are doing an OpenMP parallel version of the Apriori algorithm. SinceF1 never changes after it is first
set, we may wish to copy it to a separateprivate variable,LocalF1 so as to reduce interconnect traffic. Why is this not
really necessary?

Solutions:

1. Basic idea:

• node 0 broadcastsx to all nodes

• each node calculates a chunk of the nonzero portion ofc

• everyone does an all-gather operation so that all nodes have all of the nonzero portion ofc

• each node calculates its chunk ofx (don’t throw out any)

• then gather to node 0

s = (n-r)/p; // chunk size for calculating c
MPI_Comm_rank(MPI_COMM_WORLD,&me);
MPI_Bcast(x,n,MPI_FLOAT,0,MPI_COMM_WORLD);
for (k = me*s; k < (me+1)*s; k++) {

tot = 0.0;
for (j = 0; j < n; j++) // note n

tot += x[j]*cos((pi/n)*(j+0.5)*k);
myc[k-me*s] = tot;

MPI_Allgather(myc,s,MPI_FLOAT,c,s,MPI_FLOAT,MPI_COMM_WORLD);
q = n/p; // chunk size for calculating x
for (k = me*q; k < (me+1)*q; k++) {

tot = 0.5 * c[0];
for (j = 1; j < n-r; j++) // note n-r

tot += c[j]*cos((pi/n)*(k+0.5)*j);
myx[k-me*q] = tot;

}
MPI_Gather(myx,q,MPI_FLOAT,x,q,MPI_FLOAT,0,MPI_COMM_WORLD);

2.a 100
p · r

2.b allpicks[(p-1)*j+r] , 0

3.aBasic idea:

nconf = 0
for each itemset size i

// start parallel for
for each potential I (as in an association I => J) of size i

count = 0
for each possible J which may be associated with this I

if confidence higher than threshold
count++

atomic increment of nconf by count

nconf = 0;
#pragma omp parallel private(count)
for (i = 0; i < t-1; i+1) { // note t

#pragma omp for
for (j = 0; j < NF[i]; j++) { // note NF[i]

k = i+1;
count = 0;
while (F[i][j][k] != 0) {

Jsetsize = F[i][j][k+1];
Jsupport = F[i][j][k][Jsetsize];
if (float(Jsupport)/F[i][j][i] > confthresh

count++;
k += 2;

}
#pragma omp atomic
nconf += count;

}
}

3.bF1 would be almost immediately cached, and since it never changes, the cached copy remains intact and useable efficiently.

2

