Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (35) In the 8-processor butterfly barrier on p.166 of
Wilkinson and Allen, suppose that P, goes down after
completion of the operation P, < Ps in the first stage.
Which of the processors, if any, will then wait for the
barrier forever?

2. (85) The following code has as its goal edge detection.
There are N rows and N columns in the image. Fill in
the missing code. The variable ED will control what we
might loosely describe as the “amount” of edge detection;
the larger ED is, the sharper the contrast of the edges.
For simplicity here, ignore the issue of how we deal with
complex numbers.

for (R = 0; R < N; R++)
for (C =0; C < N; C++) {
S =0.0;
for (J =0; J < N; J++)
for (K = 0; K < N; K++)
S += x[JI[K] =
exp (-TwoPil#* (J*R+K*C)/N) ;

S;

X[R][C]
}
// missing code here
for (R = 0; R < N; R++)
for (C =0; C < N; C++) {
S =0.0;
for (J =0; J < N; J++)
for (K = 0; K < N; K++)
S += X[J][K] =*
exp (TwoPiIx* (J*R+K*C) /N) ;
x[R][C] = S;

3. (30) Write a PerlDSM program which implements the
pipelined bubble sort on p.275 of Wilkinson and Allen, in
the paragraph which begins with “Bubble sort, as writ-
ten..." (If you wish, you may write in JIAJIA instead of
PerlDSM, but that would be more difficult.) Your pro-
gram must be of SPMD form, with P, handling casei =k
in the outer for loop in the sequential code shown on that
page. Your progam must be complete, except that you
may omit the code which reads in the array to be sorted
from disk. Keep your code short. Make sure to write
a draft of your code on scratch paper first, and
then copy the clean version to your exam sheet.

Solutions:
1. Py, Py, Ps

for (R = 0; R < ED; R++)
for (C = 0; C < ED; C++)
X[RI[C] = 0.0;

3. Outline (from newsgroup):

The pure pipelined version (not odd-even trans-
position) works like this: In the sequential code,
have processor k do the case i = k in the outer
for loop. That processor then waits until pro-
cessor k-1 has its value of j in the inner for loop
reach 2; then processor k can start j = 0. Also,
from then on, processor must make sure that its
value of j stays at least 2 behind processor k-1’s
value of j.

In the grading, the key points considered were (a) whether
the student set up j as a shared array (one element for
each processing node), and (b) whether the student set
up code for each node to wait for the previous one. The
code for (b) would look something like

while ($J[$MyNode-1] < $J[$MyNode]l + 2) <

B

}

