
Chapter 6

Debugging In A
Multiple-Activities Context

Debugging is difficult to begin with, and it becomes even more challenging when
the misbehaving application is trying to coordinate multiple, simultaneous activi-
ties: client/server network programming, programming with threads, and parallel
processing are examples of this paradigm. This chapter presents an overview of the
most commonly used multiprogramming techniques and offers some tips on how
to deal with bugs in these kinds of programs, focusing on the use of GDB/DDD in
the debugging process.

6.1 Debugging Client/Server Network Programs

Computer networks are extremely complex systems, and rigorous debugging of
networked software applications can sometimes require the use of hardware moni-
tors to collect detailed information about the network traffic. An entire book could
be written on this debugging topic alone. Our goal here is simply to introduce the
subject.

Our example consists of the following client/server pair. The client application
allows a user to check the load on the machine on which the server application
runs, even if the user does not have an account on the latter machine. The client
sends a request for information to the server—here, a query about the load on the
server’s system, via the Unix w command—over a network connection. The server
then processes the request and returns the results, capturing the output of w and
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sending it back over the connection. In general, a server can accept requests from
multiple remote clients; to keep things simple in our example, we assume there is
only instance of the client.

The code for the server is shown below:

1 // srvr.c
2

3 // a server to remotely run the w command
4 // user can check load on machine without login privileges
5 // usage: svr
6

7 #include <stdio.h>
8 #include <sys/types.h>
9 #include <sys/socket.h>

10 #include <netinet/in.h>
11 #include <netdb.h>
12 #include <fcntl.h>
13 #include <string.h>
14 #include <unistd.h>
15 #include <stdlib.h>
16

17 #define WPORT 2000
18 #define BUFSIZE 1000 // assumed sufficient here
19

20 int clntdesc, // socket descriptor for individual client
21 svrdesc; // general socket descriptor for server
22

23 char outbuf[BUFSIZE]; // messages to client
24

25 void respond()
26 { int fd,nb;
27

28 memset(outbuf,0,sizeof(outbuf)); // clear buffer
29 system("w > tmp.client"); // run ’w’ and save results
30 fd = open("tmp.client",O_RDONLY);
31 nb = read(fd,outbuf,BUFSIZE); // read the entire file
32 write(clntdesc,outbuf,nb); // write it to the client
33 unlink("tmp.client"); // remove the file
34 close(clntdesc);
35 }
36

37 int main()
38 { struct sockaddr_in bindinfo;
39

40 // create socket to be used to accept connections
41 svrdesc = socket(AF_INET,SOCK_STREAM,0);
42 bindinfo.sin_family = AF_INET;
43 bindinfo.sin_port = WPORT;
44 bindinfo.sin_addr.s_addr = INADDR_ANY;
45 bind(svrdesc,(struct sockaddr *) &bindinfo,sizeof(bindinfo));
46

47 // OK, listen in loop for client calls
48 listen(svrdesc,5);
49
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50 while (1) {
51 // wait for a call
52 clntdesc = accept(svrdesc,0,0);
53 // process the command
54 respond();
55 }
56 }

Here is the code for the client:

1 // clnt.c
2

3 // usage: clnt server_machine
4

5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/socket.h>
8 #include <netinet/in.h>
9 #include <netdb.h>

10 #include <string.h>
11 #include <unistd.h>
12

13 #define WPORT 2000 // server port number
14 #define BUFSIZE 1000
15

16 int main(int argc, char **argv)
17 { int sd,msgsize;
18

19 struct sockaddr_in addr;
20 struct hostent *hostptr;
21 char buf[BUFSIZE];
22

23 // create socket
24 sd = socket(AF_INET,SOCK_STREAM,0);
25 addr.sin_family = AF_INET;
26 addr.sin_port = WPORT;
27 hostptr = gethostbyname(argv[1]);
28 memcpy(&addr.sin_addr.s_addr,hostptr->h_addr_list[0],hostptr->h_length);
29

30 // OK, now connect
31 connect(sd,(struct sockaddr *) &addr,sizeof(addr));
32

33 // read and display response
34 msgsize = read(sd,buf,BUFSIZE);
35 if (msgsize > 0)
36 write(1,buf,msgsize);
37 printf("\n");
38 return 0;
39 }

For those unfamiliar with client/server programming, here is an overview of how
the programs work:
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On line 41 of the server code, we create a socket, which is an abstraction similar
to a file descriptor; just as one uses a file descriptor to perform I/O operations on a
filesystem object, one reads from and writes to a network connection via a socket.
On line 45, the socket is bound to a specific port number, arbitrarily chosen to be
2000. (User-level applications such as this one are restricted to port numbers of
1024 and higher.) This number identifies a “mailbox” on the server’s system to
which clients send requests to be processed for this particular application.

The server “opens for business” by calling listen() on line 48. It then waits
for a client request to come in, by calling accept() on line 52. That call blocks
until a request arrives. It then returns a new socket for communicating with the
client. (When there are multiple clients, the original socket continues to accept
new requests even while an existing request is being serviced, hence the need for
separate sockets. This would require the server to be implemented in a threaded
fashion.) The server processes the client request with the respond() function
and sends the machine load information to the client by locally invoking the w
command and writing the results to the socket in line 32.

The client creates a socket on line 24, and then uses it on line 31 to connect to the
server’s port 2000. On line 34, it reads the load information sent by the server, and
then prints it out.

Here is what the output of the client should look like:

$ clnt laura.cs.ucdavis.edu
13:00:15 up 13 days, 39 min, 7 users, load average: 0.25, 0.13, 0.09

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
matloff :0 - 14Jun07 ?xdm? 25:38 0.15s -/bin/tcsh -c /
matloff pts/1 :0.0 14Jun07 17:34 0.46s 0.46s -csh
matloff pts/2 :0.0 14Jun07 18:12 0.39s 0.39s -csh
matloff pts/3 :0.0 14Jun07 58.00s 2.18s 2.01s /usr/bin/mutt
matloff pts/4 :0.0 14Jun07 0.00s 1.85s 0.00s clnt laura.cs.u
matloff pts/5 :0.0 14Jun07 20.00s 1.88s 0.02s script
matloff pts/7 :0.0 19Jun07 4days 22:17 0.16s -csh

Now suppose the programmer had forgotten line 26 in the client code, which spec-
ifies the port on the server’s system to connect to:

addr.sin_port = WPORT;

Let’s pretend that we don’t know what the bug is, and see how we might track it
down.

The client’s output would now be

Debugging In A Multiple-Activities Context 4



$ clnt laura.cs.ucdavis.edu

$

It appears that the client received nothing at all back from the server. This of course
could be due to a variety of causes, in either the server or the client, or both.

Let’s take a look around, using GDB. First, let’s check to see that the client actu-
ally did succeed in connecting to the server. We’ll set a breakpoint at the call to
connect(), and run the program:

(gdb) b 31
Breakpoint 1 at 0x8048502: file clnt.c, line 31.
(gdb) r laura.cs.ucdavis.edu
Starting program: /fandrhome/matloff/public_html/matloff/public_html/Debug/Book/DDD/clnt laura.cs.ucdavis.edu

Breakpoint 1, main (argc=2, argv=0xbf81a344) at clnt.c:31
31 connect(sd,(struct sockaddr *) &addr,sizeof(addr));

We use GDB to execute the connect() and check the return value for an error
condition:

(gdb) p connect(sd,&addr,sizeof(addr))
$1 = -1

It is indeed −1, the code for failure. That is a big hint. (Of course, as a matter of
defensive programming, when we wrote the client code, we would have checked
the return value of connect() and handled the case of failure to connect.)

By the way, note that in manually executing the call to connect(), we had to
remove the cast. With the cast retained, we get an error:

(gdb) p connect(sd,(struct sockaddr *) &addr,sizeof(addr))
No struct type named sockaddr.

This is due to a quirk in GDB, and arises because we haven’t used the struct else-
where in our program.

Also note that if the connect() attempt had succeeded in our GDB session, we
could NOT have then gone ahead and executed line 31. Attempting to open an
already-open socket is an error.

We would have had to skip over line 31, and go directly to line 34. We could do this
using GDB’s jump command, issuingjump 34, but in general one should use this
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command with caution, as it might result in skipping some machine instructions
which are needed further down in the code. So, if the connection attempt had
succeeded, we probably would want to rerun the program.

Let’s try to track down the cause of the failure, by checking the argument addr in
the call to connect():

(gdb) p addr
...
connect(3, {sa_family=AF_INET, sin_port=htons(1032), sin_addr=inet_addr("127.0.0.1")}, 16) = -1 ECONNREFUSED (Connection refused)
...

Aha! Port 2052, indeed! Not the 2000 we expect. This suggests that we either
misspecified the port, or forgot to specify it altogether. We check, and quickly
discover that the latter was the case.

Again, it would have been prudent to include a bit of machinery in our source code
to help the debugging process, such as checking the return values of system calls.
Another helpful step is inclusion of the line

#include <errno.h>

which, on our system, creates a global variable errno, whose value can be printed
out from within our code, or from within GDB:

(gdb) p errno
$1 = 111

From the file /usr/include/linux/errno.h, we find that this error num-
ber codes a connection refused error.

However, the implementation of the errno library may differ from platform to
platform. For example, the header file may have a different name, or errno may
be implemented as a macro call instead of a variable.

Another approach would be to use strace, which traces all system calls made by
a program:

$ strace clnt laura.cs
...
connect(3, {sa_family=AF_INET, sin_port=htons(1032), sin_addr=inet_addr("127.0.0.1")}, 16) = -1 ECONNREFUSED (Connection refused)
...
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This gives us two important pieces of information for the price of one. First, we see
right away that we had a ECONNREFUSED error. Second, we also see that the port
was htons(1032), which has the value 2052. We can check this latter value by
issuing a command like

(gdb) p htons(1032)

from within GDB, which shows the value to be 2052, which obviously is not 2000,
as expected.

strace is a handy tool in many contexts (networked and otherwise) for checking
the results of system calls.

As another example, suppose that we accidentally omit the write to the client in the
server code (line 32):

write(clntdesc,outbuf,nb); // write it to the client

In this case, the client program would hang, waiting for a reply that is not forthcom-
ing. Of course, in this simpleminded example we’d immediately suspect a problem
with the call to write() in the server, and quickly find that we had forgotten it.
But in more complex programs the cause may not be so obvious. In such cases, we
would probably set up two simultaneous GDB sessions, one for the client and one
for the server, stepping through both of the programs in tandem. We would find
that at some point in their joint operation the client hangs, waiting to hear from the
server, and thus obtain a clue to the likely location of the bug within the server.
We’d then focus our attention on the server GDB session, trying to figure out why
it did not send to the client at that point.

In really complex network debugging cases, the open source ethereal program
can be used to track individual TCP/IP packets.

6.2 Debugging Threaded Code

Threaded programming has become quite popular. For Unix, the most widespread
threads package is the POSIX standard, Pthreads, so we will use it for our example
in this section. The principles are similar for other thread packages.
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6.2.1 Review of Processes and Threads

Modern operating systems use timesharing to manage multiple running programs
in such a way that they appear to the user to execute simultaneously. Of course,
if the machine has more than one CPU, more than one program actually can run
simultaneously, but for simplicity we will assume just one processor, in which case
the simultaneity is only apparent.

Each instance of a running program is represented by the OS as a process (in Unix
terminology) or a task (in Windows). Thus, multiple invocations of a single pro-
gram that execute at the same time (e.g., simultaneous sessions of the vi text
editor) are distinct processes. Processes have to “take turns” on a machine with
one CPU. For concreteness, let’s assume that the “turns,” called timeslices, are of
length 30 milliseconds.

After a process has run for 30 milliseconds, a hardware timer emits an interrupt,
which causes the OS to run. We say that the process has been pre-empted. The
OS saves the current state of the interrupted process so it can be resumed later,
then selects the next process to give a timeslice to. This is known as a context
switch, because the CPU’s execution environment has switched from one process
to another. This cycle repeats indefinitely.

A turn may end early. For example, when a process needs to perform input/output,
it ultimately calls a function in the OS that carries out low-level hardware opera-
tions; for instance, a call to the C library function scanf() results in a call to the
Unix OS read() system call, which interfaces with the keyboard driver. In this
manner the process relinquishes its turn to the OS, and the turn ends early.

One implication of this is that scheduling of timeslices for a given process is rather
random. The time it takes for the user to think and then hit a key is random, so
the time its next timeslice starts is unpredictable. Moreover, if we are debugging a
threaded program, we do not know the order in which the threads will be scheduled;
this may make our debugging more difficult.

Here is a bit more detail: The OS maintains a process table that lists information
about all current processes. Roughly speaking, each process is marked in the table
as being in either the Run state or the Sleep state. Let’s consider an example in
which a running program reaches a point at which it needs to read input from the
keyboard. As just noted, this will end the process’s turn. Because the process
is now waiting for the I/O to complete, the OS marks it as being in the Sleep
state, making it ineligible for timeslices. Thus, being in Sleep state means that the
process is blocked, waiting for some event to occur. When this event finally occurs

Debugging In A Multiple-Activities Context 8



later on, the OS will then change its state in the process table back to Run.

Non-I/O events can trigger a transition to Sleep state as well. For instance, if a
parent process creates a child process and calls wait(), the parent will block
until the child finishes its work and terminates. Again, exactly when this happens
is usually unpredictable.

Furthermore, being in the Run state does not mean that the process is actually exe-
cuting on the CPU; rather, it merely means that it is ready to run—that is, eligible
for a processor timeslice. Upon a context switch, the OS chooses the process that
is next given a turn on the CPU from among those currently in the Run state, ac-
cording to the process table. The scheduling procedure used by the OS to select
the new context guarantees that any given process will keep getting timeslices, and
so eventually finish, but there is no promise of which timeslices it will receive.
Thus, exactly when a sleeping process actually “awakens” once the event that it
awaits has occurred is random, as is the exact rate of the process’s progress toward
completion.

A thread is much like a process, except that they are designed to occupy less mem-
ory and to take less time to create and switch between than processes do. Indeed,
threads are sometimes called “lightweight” processes and, depending on the thread
system and run-time environment, may even be implemented as operating system
processes. Like programs that spawn processes to get work done, a multithreaded
application will generally execute a main() procedure that creates one or more
child threads. The parent, main(), is also a thread.

A major difference between processes and threads is that although each thread has
its own local variables, just as is the case for a process, the global variables of the
parent program in a threaded environment are shared by all threads, and serve as
the main method of communication between the threads. (It is possible to share
globals among Unix processes, but inconvenient to do so.)

On a Linux system, you can view all the processes and threads currently on the
system by running the command ps axH.

There are nonpreemptive thread systems, but Pthreads uses a preemptive thread
management policy, and a thread in a program can be interrupted at any time by
another thread. Thus, the element of randomness described above for processes in
a timeshared system also arises in the behavior of a threaded program. As a result,
some bugs in applications developed using Pthreads are not readily reproducible.
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6.2.2 Basic Example

We’ll keep things simple and use the following code for finding prime numbers
as our example. The program uses the classic Sieve of Eratosthenes. To find all
the primes from 2 through n, we first list all the numbers, then cross out all the
multiples of 2, then all the multiples of 3, and so on. Whatever numbers remain at
the end are prime numbers.

1 // finds the primes between 2 and n; uses the Sieve of Eratosthenes,
2 // deleting all multiples of 2, all multiples of 3, all multiples of 5,
3 // etc.; not efficient, e.g. each thread should do deleting for a whole
4 // block of values of base before going to nextbase for more
5

6 // usage: sieve nthreads n
7 // where nthreads is the number of worker threads
8

9 #include <stdio.h>
10 #include <math.h>
11 #include <pthread.h>
12

13 #define MAX_N 100000000
14 #define MAX_THREADS 100
15

16 // shared variables
17 int nthreads, // number of threads (not counting main())
18 n, // upper bound of range in which to find primes
19 prime[MAX_N+1], // in the end, prime[i] = 1 if i prime, else 0
20 nextbase; // next sieve multiplier to be used
21

22 int work[MAX_THREADS]; // to measure how much work each thread does,
23 // in terms of number of sieve multipliers checked
24

25 // lock index for the shared variable nextbase
26 pthread_mutex_t nextbaselock = PTHREAD_MUTEX_INITIALIZER;
27

28 // ID structs for the threads
29 pthread_t id[MAX_THREADS];
30

31 // "crosses out" all multiples of k, from k*k on
32 void crossout(int k)
33 { int i;
34

35 for (i = k; i*k <= n; i++) {
36 prime[i*k] = 0;
37 }
38 }
39

40 // worker thread routine
41 void *worker(int tn) // tn is the thread number (0,1,...)
42 { int lim,base;
43

44 // no need to check multipliers bigger than sqrt(n)
45 lim = sqrt(n);
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46

47 do {
48 // get next sieve multiplier, avoiding duplication across threads
49 pthread_mutex_lock(&nextbaselock);
50 base = nextbase += 2;
51 pthread_mutex_unlock(&nextbaselock);
52 if (base <= lim) {
53 work[tn]++; // log work done by this thread
54 // don’t bother with crossing out if base is known to be
55 // composite
56 if (prime[base])
57 crossout(base);
58 }
59 else return;
60 } while (1);
61 }
62

63 main(int argc, char **argv)
64 { int nprimes, // number of primes found
65 totwork, // number of base values checked
66 i;
67 void *p;
68

69 n = atoi(argv[1]);
70 nthreads = atoi(argv[2]);
71 for (i = 2; i <= n; i++)
72 prime[i] = 1;
73 crossout(2);
74 nextbase = 1;
75 // get threads started
76 for (i = 0; i < nthreads; i++) {
77 pthread_create(&id[i],NULL,(void *) worker,(void *) i);
78 }
79

80 // wait for all done
81 totwork = 0;
82 for (i = 0; i < nthreads; i++) {
83 pthread_join(id[i],&p);
84 printf("%d values of base done\n",work[i]);
85 totwork += work[i];
86 }
87 printf("%d total values of base done\n",totwork);
88

89 // report results
90 nprimes = 0;
91 for (i = 2; i <= n; i++)
92 if (prime[i]) nprimes++;
93 printf("the number of primes found was %d\n",nprimes);
94

95 }

There are two command-line arguments in this program, the upper bound n of the
range to be checked for primes, and nthreads, the number of worker threads we
wish to create.
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main() creates the worker threads, each of which is an invocation of the function
worker(). The workers share three data items: the upper bound variable, n; the
variable specifying the next number whose multiples are to be eliminated from the
range 2..n, nextbase; and the array prime[] that records, for each number in
the range 2..n, whether or not it has been eliminated. Each invocation repeatedly
fetches a yet-to-be-processed elimination multiplicand, base, and then eliminates
all multiples of base from the range 2..n. After spawning the workers, main()
uses pthread join() to wait for all these threads to finish their work before
resuming itself, at which point it counts the primes that are left and issues its report.
The report includes not only the prime count, but also information on how much
work each worker thread did. This assessment is useful for load balancing and
performance optimization purposes on a multiprocessor system.

Each instance of worker() fetches the next value of base by executing the
following code (lines 49–51):

pthread_mutex_lock(&nextbaselock);
base = nextbase += 2;
pthread_mutex_unlock(&nextbaselock);

Here, the global variable nextbase is updated and used to initialize the value
of the worker() instance’s local variable base; the worker then crosses out
multiples of base in the array prime[]. (Note that we started by eliminating all
multiples of 2 at the beginning of main(), and thereafter only need to consider
odd values for base.)

Once the worker knows the value of base to use, it can safely cross out the mul-
tiples of base from the shared array prime[], because no other worker will use
that value of base. However, we have to place guard statements around the update
operation to the shared variable nextbase that base depends upon (line 26). Re-
call that any worker thread can be preempted, at an unpredictable time, by another
worker thread, which will be at an unpredictable place in the code for worker().
In particular, it might just happen that the current worker is interrupted in the midst
of the statement

base = nextbase += 2;

and the next timeslice is given to another thread that is also executing the same
statement. In this case, there are two workers trying to modify the shared variable
nextbase at once, which can lead to insidious and hard to reproduce bugs.
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Bracketing the code that manipulates the shared variable—known as a critical
section—with the guard statements prevents this from happening. The calls to
pthread mutex lock() and pthread mutex unlock() ensure that there
is at most only ever one thread executing the enclosed program fragment. They tell
the OS to allow a thread to enter the critical section only if there is no other thread
currently executing it, and to not preempt that thread until it completes the en-
tire section. (The lock variable nextbaselock is used internally by the thread
system to ensure this “mutual exclusion.”)

Unfortunately, it’s all too easy to fail to recognize and/or properly protect critical
sections in threaded code. Let’s see how GDB can be used to debug this sort
of error in a Pthreads program. Suppose we had forgotten to include the unlock
statement,

pthread_mutex_unlock(&nextbaselock);

This of course causes the program to hang once the critical section is first entered
by a worker thread, as the other worker threads will wait forever for the lock to be
relinquished. But let’s pretend we don’t already know this. How do we track down
the culprit using GDB?

We compile the progam, making sure to include the flags -lpthread -lm in
order to link in the Pthreads and math libraries (the latter is needed for our call to
sqrt()). Then we run the code in GDB, with n = 100 and nthreads = 2:

(gdb) r 100 2
Starting program: /debug/primes 100 2
[New Thread 16384 (LWP 28653)]
[New Thread 32769 (LWP 28676)]
[New Thread 16386 (LWP 28677)]
[New Thread 32771 (LWP 28678)]

Each time a new thread is created, GDB announces it, as seen here. We’ll look into
which thread is which in a moment.

The program hangs, and we interrupt it by pressing CTRL-C. Our GDB session
now looks like this:

(gdb) r 100 2
Starting program: /debug/primes 100 2
[New Thread 16384 (LWP 28653)]
[New Thread 32769 (LWP 28676)]
[New Thread 16386 (LWP 28677)]
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[New Thread 32771 (LWP 28678)]

Program received signal SIGINT, Interrupt.
[Switching to Thread 32771 (LWP 28678)]
0x4005ba35 in __pthread_sigsuspend () from /lib/i686/libpthread.so.0

At a point like this it’s crucial to know what each threads is doing, which we can
determine via GDB’s info threads command:

(gdb) info threads

* 4 Thread 32771 (LWP 28678) 0x4005ba35 in __pthread_sigsuspend ()
from /lib/i686/libpthread.so.0

3 Thread 16386 (LWP 28677) 0x4005ba35 in __pthread_sigsuspend ()
from /lib/i686/libpthread.so.0

2 Thread 32769 (LWP 28676) 0x420db1a7 in poll () from
/lib/i686/libc.so.6

1 Thread 16384 (LWP 28653) 0x4005ba35 in __pthread_sigsuspend ()
from /lib/i686/libpthread.so.0

The asterisk means that we are currently in thread 4. Let’s see what’s going on
with that thread:

(gdb) bt
#0 0x4005ba35 in __pthread_sigsuspend () from /lib/i686/libpthread.so.0
#1 0x4005adb8 in __pthread_wait_for_restart_signal ()

from /lib/i686/libpthread.so.0
#2 0x4005d190 in __pthread_alt_lock () from /lib/i686/libpthread.so.0
#3 0x40059d77 in pthread_mutex_lock () from /lib/i686/libpthread.so.0
#4 0x0804855f in worker (tn=1) at Primes.c:49
#5 0x40059881 in pthread_start_thread () from /lib/i686/libpthread.so.0
#6 0x40059985 in pthread_start_thread_event () from
/lib/i686/libpthread.so.0

(This works under the LinuxThreads implementation of Pthreads but may not be
possible on some other platforms.)

Aha—we see in frames 3 and 4 that this thread is on line 49 of the source code and
is trying to acquire the lock and enter the critical section:

pthread_mutex_lock(&nextbaselock);

Note also from frame 0 above that the thread is apparently suspended pending the
lock’s being relinquished by another thread. It will not get any timeslices until this
happens and the thread manager arranges for it to acquire the lock.

What are the other threads doing? We can inspect any thread’s stack by switching
to that thread and then issuing the bt command:
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(gdb) thread 3
[Switching to thread 3 (Thread 16386 (LWP 28677))]#0 0x4005ba35 in
__pthread_sigsuspend () from /lib/i686/libpthread.so.0
(gdb) bt
#0 0x4005ba35 in __pthread_sigsuspend () from /lib/i686/libpthread.so.0
#1 0x4005adb8 in __pthread_wait_for_restart_signal ()

from /lib/i686/libpthread.so.0
#2 0x4005d190 in __pthread_alt_lock () from /lib/i686/libpthread.so.0
#3 0x40059d77 in pthread_mutex_lock () from /lib/i686/libpthread.so.0
#4 0x0804855f in worker (tn=0) at Primes.c:49
#5 0x40059881 in pthread_start_thread () from /lib/i686/libpthread.so.0
#6 0x40059985 in pthread_start_thread_event () from
/lib/i686/libpthread.so.0

Recall that we created two worker threads. We saw above that thread 4 was one of
them (frame 4 from its bt output), and now we see from frame 4 of the output here
that thread 3 is the other one. We also see that thread 3 is trying to acquire the lock
as well (frame 3).

There shouldn’t be any other worker threads, but one of the fundamental principles
of debugging is that nothing is taken on faith, and everything must be checked. We
do this now by inspecting the status of the remaining threads. We find that the other
two threads are nonworker threads, as follows:

(gdb) thread 2
[Switching to thread 2 (Thread 32769 (LWP 28676))]#0 0x420db1a7 in poll
()

from /lib/i686/libc.so.6
(gdb) bt
#0 0x420db1a7 in poll () from /lib/i686/libc.so.6
#1 0x400589de in __pthread_manager () from /lib/i686/libpthread.so.0
#2 0x4005962b in __pthread_manager_event () from
/lib/i686/libpthread.so.0

So thread 2 is the threads manager. This is internal to the Pthreads package. It is
certainly not a worker thread, partially confirming our expectation that there are
only two worker threads. Checking thread 1,

(gdb) thread 1
[Switching to thread 1 (Thread 16384 (LWP 28653))]#0 0x4005ba35 in
__pthread_sigsuspend () from /lib/i686/libpthread.so.0
(gdb) bt
#0 0x4005ba35 in __pthread_sigsuspend () from /lib/i686/libpthread.so.0
#1 0x4005adb8 in __pthread_wait_for_restart_signal ()

from /lib/i686/libpthread.so.0
#2 0x40058551 in pthread_join () from /lib/i686/libpthread.so.0
#3 0x080486aa in main (argc=3, argv=0xbfffe7b4) at Primes.c:83
#4 0x420158f7 in __libc_start_main () from /lib/i686/libc.so.6
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we find it executes main(), and thus confirm that there are only two worker
threads.

However, both of the workers are stalled, each waiting for the lock to be relin-
quished. No wonder the program is hanging! This is enough to pinpoint the lo-
cation and nature of the bug, and we quickly realize that we forgot the call to the
unlocking function.

6.2.3 A Variation

What if we hadn’t realized the necessity of guarding the update of the shared vari-
able nextbase in the first place? What would have happened in our previous
example if we’d left out both the unlock and the lock operations?

A naive look at this question might lead to the guess that there would have been no
harm in terms of correct operation of the program (i.e. getting an accurate count of
the number of primes), albeit possibly with a slowdown due to duplicate work (i.e.
using the same value of base more than once). It would seem that some threads
may duplicate the work of others, namely when two workers happen to grab the
same value of nextbase to initialize their local copies of base. Some composite
numbers might then end up being crossed out twice, but the results (i.e., the count
of the number of primes) would still be correct.

But let’s take a closer look. The statement

base = nextbase += 2;

compiles to at least two machine language instructions. For instance, using the
GCC compiler on a Pentium machine running Linux, the C statement above trans-
lates to the following assembly language instructions (obtained by running GCC
with the -S option, and then viewing the resulting .s file):

addl $2, nextbase
movl nextbase, %eax
movl %eax, -8(%ebp)

This code increments nextbase by 2, then copies the value of nextbase to
the register EAX, and finally, copies the value of EAX to the place in the worker’s
stack where its local variable base is stored.
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Suppose we have only two worker threads and the value of nextbase is, say,
9, and the currently running worker() invocation’s timeslice ends just after it
executes the machine instruction

addl $2, nextbase

setting the shared global variable nextbase to 11. Suppose the next timeslice
goes to another invocation of worker(), which happens to be executing those
same instructions. The second worker now increments nextbase to 13, uses this
to set its local variable base, and starts to eliminate all multiples of 13. Eventually,
the first invocation of worker() will get another timeslice, and it will then pick
up where it left off, executing the machine instructions

movl nextbase, %eax
movl %eax, -8(%ebp)

Of course, the value of nextbase is now 13. The first worker thus sets the value
of its local variable base to 13 and proceeds to eliminate multiples of this value,
not the value 11 that it fetched during its last timeslice. Neither worker does any-
thing with the multiples of 11. We end up not only duplicating work unnecessarily,
but also skipping necessary work!

How might we discover such an error using GDB? Presumably the “symptom”
that surfaced was that the number of primes reported was too large. Thus we might
suspect that values of base are somehow sometimes skipped. To check this hy-
pothesis, we could place a breakpoint right after the line

base = nextbase += 2;

By repeatedly issuing the GDB continue (“c”) command and displaying the
value of base,

(gdb) disp base

we might eventually verify that a value of base is indeed skipped.

The key word here is might. Recall our earlier discussion that threaded programs
run in a somewhat random manner. In our context here, it may be the case that on
some runs of the program the bug surfaces, i.e. too many primes are reported, but
on other runs we may get correct answers!

There is, unfortunately, no good solution to this problem. Debugging threaded
code often requires extra patience and creativity.
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6.2.4 GDB Threads Command Summary

Here is a summary of the usage of GDB’s thread-related commands:

• info threads (gives information on all current threads)

• thread 3 (change to thread 3)

• break 88 thread 3 (stop execution when thread 3 reaches source line 88)

• break 88 thread 3 if x==y (stop execution when thread 3 reaches
source line 88 and the variables x and y are equal)

6.2.5 Threads Commands in DDD

In DDD, select Status | Threads, and a window will pop up, displaying all threads,
in the manner of GDB’s info threads, as seen in Figure 6.1. You can click on
a thread to switch the debugger’s focus to it.

You will probably want to keep this pop-up window around, rather than using it
once and then closing it. This way you don’t have to keep reopening it every time
you want to see which thread is currently running or want to switch to a different
thread.

There appears to be no way to make a breakpoint thread-specific in DDD, e.g.
with our GDB command break 88 thread 3 above. Instead, we issue such
a command to GDB via the DDD Console.

6.2.6 Threads Commands in Eclipse

Note first that the default makefile created by Eclipse will not include the
-lpthread command-line argument for GCC (nor will it include the arguments
for any other special libraries you need). You can alter the makefile directly if you
wish, but it is easier to tell Eclipse to do it for you. While in the C/C++ perspective,
right-click on your project name, and select Properties; point the triangle next to
C/C++ Build downward; select Settings | Tool Settings; point the triangle next to
GCC C Linker downward and select Libraries | Add (the latter is the green + icon);
and fill in your library flags minus the -l, e.g. filling in m for -lm. Then build
your project.
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Figure 6.1: Threads window
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Recall from Chapter ?? that Eclipse constantly displays your thread list, as opposed
to having to request it in the case of DDD. Moreover, we do not need to ask for a
backtrace kind of operation as in DDD; the call stack is shown in the thread list.
This is depicted in Figure 6.2. As above, we ran the program for a while, then
interrupted it by clicking the Suspend icon to the right of Resume. The thread list
is in the Debug view, which normally is in the upper-left portion of the screen, but
appears here in expanded form due to our having clicked Maximize in the Debug
tab. (We can click Restore to return to the standard layout.)

We see that thread 3 had been running at the time of the interruption; it had received
a SIGINT signal, which is the interruption (“CTRL-C”) signal. We see also that the
associated system call had been invoked by pthread join(), which in turn had
been called by main(). From what we’ve seen about this program earlier, we see
that this indeed is the main thread.

To view the information for another thread, we merely click the triangle next to the
thread, to point it downward. To change to another thread, we click on its entry in
the list.

We may wish to set a breakpoint that applies only to a specific thread. To do so,
we must first wait until the thread is created. Then when execution pauses via a
previous setting of a breakpoint, or an interruption as above we right-click on the
breakpoint symbol in the same manner as we use to make a breakpoint conditional,
but this time select Filtering. A pop-up window like the one in Figure 6.3 will
appear. We see that currently this breakpoint applies to all three threads. If we
wish it to apply only to thread 2, for instance, we would uncheck the boxes next to
the entries for the other two threads.

6.3 Debugging Parallel Applications

There are two main types of parallel programming architectures—shared memory
and message passing.

The term “shared memory” means exactly that: multiple CPUs all have access
to some common physical memory. Code running on one CPU communicates
with code running on the others by reading from and writing to this shared mem-
ory, much as threads in a multithreaded application communicate with one another
through a shared address space. (Indeed, threaded programming has become the
standard way to write application code for shared memory systems.)
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Figure 6.2: Threads Display in Eclipse
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Figure 6.3: Setting a Thread-Specific Breakpoint in Eclipse
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By contrast, in a message passing environment, code running on each CPU can
only access that CPU’s local memory, and communicates with the others by send-
ing strings of bytes called messages over a communication medium. Typically this
some kind of network, running either a general-purpose protocol like TCP/IP or a
specialized software infrastructure that is tailored to message-passing applications.

6.3.1 Message-Passing Systems

We will discuss message passing first, using the popular Message Passing Interface
(MPI) package as our example. We use the MPICH implementation here, but the
same principles apply to LAM and other MPI implementations.

Let us again consider a prime-number finding program:

1 #include <mpi.h>
2

3 // MPI sample program; not intended to be efficient; finds and reports
4 // the number of primes less than or equal to n
5

6 // Uses a pipeline approach: node 0 looks at all the odd numbers (i.e.,
7 // we assume multiples of 2 are already filtered out) and filters out
8 // those that are multiples of 3, passing the rest to node 1; node 1
9 // filters out the multiples of 5, passing the rest to node 2; node 2

10 // filters out the rest of the composites and then reports the number
11 // of primes
12

13 // the command-line arguments are n and debugwait
14

15 #define PIPE_MSG 0 // type of message containing a number to
16 // be checked
17 #define END_MSG 1 // type of message indicating no more data will
18 // be coming
19

20 int nnodes, // number of nodes in computation
21 n, // find all primes from 2 to n
22 me; // my node number
23

24 init(int argc,char **argv)
25 { int debugwait; // if 1, then loop around until the
26 // debugger has been attached
27

28 MPI_Init(&argc,&argv);
29 n = atoi(argv[1]);
30 debugwait = atoi(argv[2]);
31

32 MPI_Comm_size(MPI_COMM_WORLD,&nnodes);
33 MPI_Comm_rank(MPI_COMM_WORLD,&me);
34

35 while (debugwait) ;
36 }
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37

38 void node0()
39 { int i,dummy,
40 tocheck; // current number to check for passing on to next node
41 for (i = 1; i <= n/2; i++) {
42 tocheck = 2 * i + 1;
43 if (tocheck > n) break;
44 if (tocheck % 3 > 0)
45 MPI_Send(&tocheck,1,MPI_INT,1,PIPE_MSG,MPI_COMM_WORLD);
46 }
47 MPI_Send(&dummy,1,MPI_INT,1,END_MSG,MPI_COMM_WORLD);
48 }
49

50 void node1()
51 { int tocheck, // current number to check from node 0
52 dummy;
53 MPI_Status status; // see below
54

55 while (1) {
56 MPI_Recv(&tocheck,1,MPI_INT,0,MPI_ANY_TAG,
57 MPI_COMM_WORLD,&status);
58 if (status.MPI_TAG == END_MSG) break;
59 if (tocheck % 5 > 0)
60 MPI_Send(&tocheck,1,MPI_INT,2,PIPE_MSG,MPI_COMM_WORLD);
61 }
62 // now send our end-of-data signal, which is conveyed in the
63 // message type, not the message itself
64 MPI_Send(&dummy,1,MPI_INT,2,END_MSG,MPI_COMM_WORLD);
65 }
66

67 void node2()
68 { int tocheck, // current number to check from node 1
69 primecount,i,iscomposite;
70 MPI_Status status;
71

72 primecount = 3; // must account for the primes 2, 3 and 5, which
73 // won’t be detected below
74 while (1) {
75 MPI_Recv(&tocheck,1,MPI_INT,1,MPI_ANY_TAG,
76 MPI_COMM_WORLD,&status);
77 if (status.MPI_TAG == END_MSG) break;
78 iscomposite = 0;
79 for (i = 7; i*i <= tocheck; i += 2)
80 if (tocheck % i == 0) {
81 iscomposite = 1;
82 break;
83 }
84 if (!iscomposite) primecount++;
85 }
86 printf("number of primes = %d\n",primecount);
87 }
88

89 main(int argc,char **argv)
90 { init(argc,argv);
91 switch (me) {
92 case 0: node0();
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93 break;
94 case 1: node1();
95 break;
96 case 2: node2();
97 };
98 MPI_Finalize();
99 }

As explained in the comments at the beginning of the program, here our Sieve of
Eratosthenes runs on three nodes of a parallel system and works in a pipelined
manner. The first node starts with odd numbers and removes all multiples of 3,
passing on the remaining values; the second node takes the output of the first and
removes all multiples of 5; and the third node takes the output of the second and
removes the rest of the nonprimes and reports the number of primes that are left.

Here the pipelining is achieved by having each node pass one number at a time to
the next. (Much greater efficiency could be attained by passing groups of numbers
in each MPI message, thus reducing communications overhead.) When sending a
number on to the next node, a node sends a message of type PIPE MSG. When a
node has no more numbers to send, it indicates this by sending a message of type
END MSG.

As our debugging example here, suppose we forget to include the latter notification
at the first node, that is, we forget line 46 in the code for node0():

MPI_Send(&dummy,1,MPI_INT,1,END_MSG,MPI_COMM_WORLD);

The program will hang at the “downstream” nodes. Let’s see how we can track
down this bug. (Keep in mind that some line numbers in our GDB session below
will differ by 1 from those in the above listing.)

We run an MPICH application program by invoking a script named mpirun on
one node of the system. The script then starts the application program at each node,
via SSH. Here we did this on a network of three machines, which we’ll call Node 0,
Node 1, and Node 2, with n equal to 100. Our bug causes the program to hang at the
latter two nodes. The program also hangs at the first node, because no instance of
an MPI program will exit until all have executed the MPI FINALIZE() function.

We would like to use GDB, but because we used mpirun to invoke the application
at each of the three nodes, rather than running them directly on the nodes, we
cannot run GDB directly. However, GDB allows one to dynamically attach the
debugger to an already-running process, using the process number. So let’s run ps
on Node 1, to determine the number of the process that is executing our application
there:
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$ ps ax
...
2755 ? S 0:00 tcsh -c /home/matloff/primepipe node 1 3
2776 ? S 0:00 /home/matloff/primepipe node1 32812 4
2777 ? S 0:00 /home/matloff/primepipe node1 32812 4

Our MPI program is running as process 2776, so we attach GDB to the program at
Node 1:

$ gdb primepipe 2776
...
0xffffe002 in ?? ()

This is not very informative! So, let’s check to see where we are:

(gdb) bt
#0 0xffffe002 in ?? ()
#1 0x08074a76 in recv_message ()
#2 0x080748ad in p4_recv ()
#3 0x0807ab46 in MPID_CH_Check_incoming ()
#4 0x08076ae9 in MPID_RecvComplete ()
#5 0x0806765f in MPID_RecvDatatype ()
#6 0x0804a29f in PMPI_Recv ()
#7 0x08049ce8 in node1 () at PrimePipe.c:56
#8 0x08049e19 in main (argc=8, argv=0xbffffb24) at PrimePipe.c:94
#9 0x420156a4 in __libc_start_main () from /lib/tls/libc.so.6

We see from frame 7 that the program is hanging at line 56, waiting to receive from
Node 0.

Next, it would be useful to know how much work has been done by the func-
tion running at Node 1, node1(). Has it just started, or is it almost done? We
can gauge the progress by determining the last value processed for the variable
tocheck:

(gdb) frame 7
#7 0x08049ce8 in node1 () at PrimePipe.c:56
56 MPI_Recv(&tocheck,1,MPI_INT,0,MPI_ANY_TAG,
(gdb) p tocheck
$1 = 97

(Note that we needed to move to the stack frame for node1() first, using GDB’s
frame command.)

This indicates that Node 1 is at the end of execution, as 97 should be the last number
that Node 0 passes to it for prime checking. So, currently we would be expecting
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a message from node 0 of type END MSG. The fact that the program is hanging
would suggest to us that Node 0 might not have sent such a message, which would
in turn lead us to check whether it had. In this manner, we hopefully would zero in
quickly on the bug, which was the accidental omission of line 46.

By the way, keep in mind that when GDB is invoked with the command

$ gdb primepipe 2776

as we did above, GDB’s command-line processing first checks for a core file named
2776. In the unlikely event that such a file exists, GDB will load it instead of
attaching to the intended process. Alternatively, GDB also has an attach com-
mand.

In this example, the bug caused our program to hang. The approach to debug-
ging a parallel program like this one is somewhat different when the symptom is
incorrect output. Suppose, for example, that in line 71 we incorrectly initialized
primecount to 2 instead of 3. If we try to follow the same debugging procedure,
the programs running on each node would finish execution and exit too quickly for
us to attach GDB. (True, we could use a very large value of n, but it is usually
better to debug with simple cases at first.) We need some device that can be used
to make the programs wait and give us a chance to attach GDB. This is the purpose
of line 34 in the init() function.

As can be seen in the source code, the value of debugwait is taken from the
command line supplied by the user, with 1 meaning wait and 0 meaning no wait.
If we specify 1 for the value of debugwait, then when each invocation of the
program reaches line 34, it remains there. This gives us time to attach GDB. We
can then break out of the infinite loop and proceed to debug. Here is what we do at
Node 0:

node1:˜$ gdb primepipe 3124
...
0x08049c53 in init (argc=3, argv=0xbfffe2f4) at PrimePipe.c:34
34 while (debugwait) ;
(gdb) set debugwait = 0
(gdb) c
Continuing.

Ordinarily we dread infinite loops, but here we deliberately set one up in order to
facilitate debugging. We do the same thing at Node 1 and Node 2, and at the latter
we also take the opportunity to set a breakpoint at line 77 before continuing:
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[matloff@node3 ˜]$ gdb primepipe 2944
34 while (debugwait) ;
(gdb) b 77
Breakpoint 1 at 0x8049d7d: file PrimePipe.c, line 77.
(gdb) set debugwait = 0
(gdb) c
Continuing.

Breakpoint 1, node2 () at PrimePipe.c:77
77 if (status.MPI_TAG == END_MSG) break;
(gdb) p tocheck
$1 = 7
(gdb) n
78 iscomposite = 0;
(gdb) n
79 for (i = 7; i*i <= tocheck; i += 2)
(gdb) n
84 if (!iscomposite) primecount++;
(gdb) n
75 MPI_Recv(&tocheck,1,MPI_INT,1,MPI_ANY_TAG,
(gdb) p primecount
$2 = 3

At this point, we notice that primecount should be 4, not 3—the primes through
7 are 2, 3, 5 and 7—and thus have found the location of the bug.

6.3.2 Shared-Memory Systems

Now, what about the shared-memory type of parallel programming? Here we have
separate cases for true shared-memory machines and software distributed shared-
memory settings.

True Shared Memory

As mentioned earlier, in a true shared-memory environment, application programs
are often developed using threads. Our material in Section 6.2 on debugging with
GDB/DDD then applies.

OpenMP has become a popular programming environment on such machines.
OpenMP supplies the programmer with high-level parallel programming con-
structs, which in turn make use of threads. The programmer still has thread-level
access if needed, but for the most part the threaded implementation of the OpenMP
directives are largely transparent to the programmer.
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We present an extended example in Section 6.4 of debugging an OpenMP applica-
tion.

Software Distributed Shared-Memory Systems

Prices of machines with dual-core CPUs are now within reach of ordinary con-
sumers, but large-scale shared-memory systems with many processors still cost
hundreds of thousands of dollars. A popular, inexpensive alternative is a network
of workstations (NOW). NOW architectures use an underlying library that gives
the illusion of shared memory. The library, which is largely transparent to the ap-
plication programmer, engages in network transactions that maintain consistency
of copies of shared variables across the different nodes.

This approach is called software distributed shared memory (SDSM). The most
widely used SDSM library is Treadmarks, developed and maintained by Rice
University. Another excellent package is JIAJIA, available from the Chi-
nese Academy of Sciences (http://www-users.cs.umn.edu/˜tianhe/
paper/dist.htm).

SDSM applications exhibit certain kinds of behavior that may baffle the unwary
programmer. These are highly dependent on the particular system, so a general
treatment cannot be given here, but we will briefly discuss a couple of issues com-
mon to many of them.

Many SDSMs are page-based, meaning that they rely on the underlying virtual
memory hardware at the nodes. The actions are complex, but we can give a quick
overview. Consider a variable X that is to be shared among the NOW nodes. The
programmer indicates this intention by making a certain call to the SDSM library,
which in turn makes a certain Unix system call requesting the OS to replace its own
seg fault handler with a function in the SDSM library, for page faults involving the
page containing X. The SDSM sets things up in such a way that only NOW nodes
with valid copies of X have the corresponding memory pages marked as resident.
When X is accessed at some other node, a page fault results, and the underlying
SDSM software fetches the correct value from a node that has it.

Again, it’s not essential to know the precise workings of the SDSM system; rather,
the important thing is simply to understand that there is an underlying VM-based
mechanism that’s being used to maintain consistency of local copies of shared
data across the NOW nodes. If you don’t, you will be mystified when you try to
debug SDSM application code. The debugger will seem to mysteriously stop for
nonexistent seg faults, because the SDSM infrastructure deliberately generates seg
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faults, and when an SDSM application program is run under a debugging tool, the
tool senses them. Once you realize this, there is no problem at all—in GDB, you’d
merely issue a continue command to resume execution when one of these odd
pauses occurs.

You may be tempted to order GDB not to stop or issue warning messages whenever
any seg faults occur, using the GDB command

handle SIGSEGV nostop noprint

You should use this approach with caution, as it may result in your missing any
genuine seg faults caused by bugs in the application program.

Yet another, related difficulty with debugging applications that run on page-based
SDSMs arises as follows. If a node on the network changes the value of a shared
variable, then any other node that needs the value of that variable must obtain
the updated value through a network transaction. Once again, the details of how
this happens depends on the SDSM system, but this means that if we are single-
stepping through the code executing on one node, we may find that GDB myste-
riously hangs, because the node is now waiting for an update to its local copy of
a variable that was recently modified by another node. If we also happen to be
running a separate GDB session to step through the code on that other node as
well, the update will not occur on the first node until the debugging session on the
second node progresses far enough. In other words, if the programmer is not alert
and careful during the debugging of an SDSM application, he can cause his own
deadlock situation through the debugging process itself.

The SDSM situation is similar to that of the message-passing case in one sense—
the need to have a variable like debugwait in our MPI example above, which
allowed us to have the program pause at all nodes, giving us a chance to attach
GDB at each node and step through the program from the beginning.

6.4 Extended Example

This section presents an example of debugging a shared-memory application de-
veloped using OpenMP. The necessary knowledge of OpenMP will be explained
below. All that is needed is a basic understanding of threads.
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6.4.1 OpenMP Overview

OpenMP is essentially a higher-level parallel programming interface to thread-
management operations. The number of threads is set via the environment variable
OMP NUM THREADS. In the C shell, for instance, we type

% setenv OMP_NUM_THREADS 4

at the shell prompt to arrange to have four threads.

Application code consists of C interspersed with OpenMP directives. Each direc-
tive applies to the block that follows it, delimited by left and right braces. The most
basic directive is

#pragma omp parallel

This sets up OMP NUM THREADS threads, each of which concurrently executes
the block of code following the pragma. There will typically be other directives
embedded within this block.

Another very common OpenMP directive is

#pragma omp barrier

This specifies a “meeting point” for all the threads. When any thread reaches this
point, it will block until all the other threads have arrived there.

Often we wish to have just one thread execute a certain block, with the other threads
skipping it. This is accomplished by writing

#pragma omp single

There is an implied barrier immediately following such a block.

There are many other OpenMP directives, but the only other one we use in our
example here is

#pragma omp critical

As the name implies, this creates a critical section, in which only one thread is
allowed at any given time.
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6.4.2 OpenMP Example Program

We implement the famous Dijkstra algorithm for determining minimum distances
between pairs of vertices in a weighted graph. We are given distances between
adjacent vertices (if two vertices are not adjacent, the distance between them is set
to infinity). The goal is to find the minimum distances between vertex 0 and all
other vertices.

Following is our source file, dijkstra.c. It generates random edge lengths among a
specified number of vertices and then finds the minimum distances from vertex 0
to each of the other vertices.

1 // dijkstra.c
2

3 // OpenMP example program: Dijkstra shortest-path finder in a
4 // bidirectional graph; finds the shortest path from vertex 0 to all
5 // others
6

7 // usage: dijkstra nv print
8

9 // where nv is the size of the graph, and print is 1 if graph and min
10 // distances are to be printed out, 0 otherwise
11

12 #include <omp.h> // required
13 #include <values.h>
14

15 // including stdlib.h and stdio.h seems to cause a conflict with the
16 // Omni compiler, so declare directly
17 extern void *malloc();
18 extern int printf(char *,...);
19

20 // global variables, shared by all threads
21 int nv, // number of vertices
22 *notdone, // vertices not checked yet
23 nth, // number of threads
24 chunk, // number of vertices handled by each thread
25 md, // current min over all threads
26 mv; // vertex which achieves that min
27

28 int *ohd, // 1-hop distances between vertices; "ohd[i][j]" is
29 // ohd[i*nv+j]
30 *mind; // min distances found so far
31

32 void init(int ac, char **av)
33 { int i,j,tmp;
34 nv = atoi(av[1]);
35 ohd = malloc(nv*nv*sizeof(int));
36 mind = malloc(nv*sizeof(int));
37 notdone = malloc(nv*sizeof(int));
38 // random graph
39 for (i = 0; i < nv; i++)
40 for (j = i; j < nv; j++) {
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41 if (j == i) ohd[i*nv+i] = 0;
42 else {
43 ohd[nv*i+j] = rand() % 20;
44 ohd[nv*j+i] = ohd[nv*i+j];
45 }
46 }
47 for (i = 1; i < nv; i++) {
48 notdone[i] = 1;
49 mind[i] = ohd[i];
50 }
51 }
52

53 // finds closest to 0 among notdone, among s through e; returns min
54 // distance in *d, closest vertex in *v
55 void findmymin(int s, int e, int *d, int *v)
56 { int i;
57 *d = MAXINT;
58 for (i = s; i <= e; i++)
59 if (notdone[i] && mind[i] < *d) {
60 *d = mind[i];
61 *v = i;
62 }
63 }
64

65 // for each i in {s,...,e}, ask whether a shorter path to i exists, through
66 // mv
67 void updatemind(int s, int e)
68 { int i;
69 for (i = s; i <= e; i++)
70 if (notdone[i])
71 if (mind[mv] + ohd[mv*nv+i] < mind[i])
72 mind[i] = mind[mv] + ohd[mv*nv+i];
73 }
74

75 void dowork()
76 {
77 #pragma omp parallel
78 { int startv,endv, // start, end vertices for this thread
79 step, // whole procedure goes nv steps
80 mymv, // vertex which attains that value
81 me = omp_get_thread_num(),
82 mymd; // min value found by this thread
83 #pragma omp single
84 { nth = omp_get_num_threads(); chunk = nv/nth;
85 printf("there are %d threads\n",nth); }
86 startv = me * chunk;
87 endv = startv + chunk - 1;
88 // the algorithm goes through nv iterations
89 for (step = 0; step < nv; step++) {
90 // find closest vertex to 0 among notdone; each thread finds
91 // closest in its group, then we find overall closest
92 #pragma omp single
93 { md = MAXINT;
94 mv = 0;
95 }
96 findmymin(startv,endv,&mymd,&mymv);
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97 // update overall min if mine is smaller
98 #pragma omp critical
99 { if (mymd < md)

100 { md = mymd; }
101 }
102 #pragma omp barrier
103 // mark new vertex as done
104 #pragma omp single
105 { notdone[mv] = 0; }
106 // now update my section of ohd
107 updatemind(startv,endv);
108 }
109 }
110 }
111

112 int main(int argc, char **argv)
113 { int i,j,print;
114 init(argc,argv);
115 // start parallel
116 dowork();
117 // back to single thread
118 print = atoi(argv[2]);
119 if (print) {
120 printf("graph weights:\n");
121 for (i = 0; i < nv; i++) {
122 for (j = 0; j < nv; j++)
123 printf("%u ",ohd[nv*i+j]);
124 printf("\n");
125 }
126 printf("minimum distances:\n");
127 for (i = 1; i < nv; i++)
128 printf("%u\n",mind[i]);
129 }
130 }

Let’s review how the algorithm works. We start with all vertices except vertex 0,
which in this case are vertices 1–5, in a “not done” set. In each iteration of the
algorithm, we do the following:

• We find the “not done” vertex v that is closest to vertex 0, along paths known so
far. This checking is shared by all the threads, with each thread checking an equal
number of vertices. The function that does this work is findmymin().

• We move v to the “done” set.

• Then for all remaining vertices i in the “not done” set, we check whether going
first from 0 to v along the best known path so far, and then from v to i in one hop, is
shorter than our current shortest distance from 0 to i. If so, we update that distance
accordingly. This function that performs these actions is updatemind().
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The iteration continues until the “not done” set is empty.

Since OpenMP directives require preprocessing, there is always the potential prob-
lem that we will lose our original line numbers and variable and function names.
To see how to address this, we will discuss two different compilers. First we’ll
look at the Omni compiler (http://www.hpcc.jp/Omni/), and then at GCC
(version 4.2 or later is required).

We compile our code under Omni as follows:

$ omcc -g -o dij dijkstra.c

After compiling the program and running it with four threads, we find that it fails
to work properly:

$ dij 6 1
there are 4 threads
graph weights:
0 3 6 17 15 13
3 0 15 6 12 9
6 15 0 1 2 7
17 6 1 0 10 19
15 12 2 10 0 3
13 9 7 19 3 0
minimum distances:
3
6
17
15
13

Analyzing the graph by hand shows that the correct minimum distances should be
3, 6, 7, 8 and 11.

Next, we run the program in GDB. Here it is very important to understand the con-
sequences of the fact that OpenMP works via directives. Although line numbers,
function names, and so on are mostly retained by the two compilers we discuss
here, there are some discrepancies between them. Look what happens when we try
to set a breakpoint in our executable, dij, at the outset of our GDB session:

(gdb) tb main
Breakpoint 1 at 0x80492af
(gdb) r 6 1
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1208490304 (LWP 11580)]
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[Switching to Thread -1208490304 (LWP 11580)]
0x080492af in main ()
(gdb) l
1 /tmp/omni_C_11486.c: No such file or directory.

in /tmp/omni_C_11486.c

We discover that the breakpoint is not in our source file. Instead, it is in
Omni’s OpenMP infrastructure code. In other words, main() here is Omni’s
main(), not our own. The Omni compiler mangled the name of our main() to
ompc main().

So, to set a breakpoint at our main(), we type

(gdb) tb _ompc_main
Breakpoint 2 at 0x80491b3: file dijkstra.c, line 114.

and check it by continuing:

(gdb) c
Continuing.
[New Thread -1208493152 (LWP 11614)]
[New Thread -1218983008 (LWP 11615)]
[New Thread -1229472864 (LWP 11616)]
_ompc_main (argc=3, argv=0xbfab6314) at dijkstra.c:114
114 init(argc,argv);

OK, there’s our familiar init() line. Of course, we also could have issued the
command

(gdb) b dijkstra.c:114

Note the creation of the three new threads, making four in all.

However we choose to set our breakpoints, we must go to a bit more work here
than normal, so it’s extra important to stay within a single GDB session between
runs of our program, even when we change our source code and recompile, so that
we retain the breakpoints, conditions, and so on. That way we only have to go to
the trouble of setting these things up once.

Now, how do we track down the bug(s)? It is natural to approach the debugging of
this program by checking the results at the end of each iteration. The main results
are in the “not done” set, i.e. in the array notdone[], and in the current list of
best known distances from 0 to the other vertices, that is, the array mind[]. For
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example, after the first iteration, the “not done” set should consist of vertices 2, 3,
4, and 5, vertex 1 having been selected in that iteration.

Armed with this information, let’s apply our Principle of Confirmation and check
notdone[] and mind[] after each iteration of the for loop in dowork().

We have to be careful as to exactly where we set our breakpoints. Although a
natural spot for this seems to be line 108, at the very end of the algorithm’s main
loop, this may not be so good, as GDB will stop there for each thread. Instead, we
opt for placing a breakpoint inside an OpenMP single block, so that we’ll stop
for only one thread.

So, instead we’ll check the results after each iteration by stopping at the beginning
of the loop, starting with the second iteration:

(gdb) b 92 if step >= 1
Breakpoint 3 at 0x80490e3: file dijkstra.c, line 92.
(gdb) c
Continuing.
there are 4 threads

Breakpoint 3, __ompc_func_0 () at dijkstra.c:93
93 { md = MAXINT;

Let’s confirm that the first iteration did choose the correct vertex, vertex 1, to be
moved out of the “not done” set:

(gdb) p mv
$1 = 0

Our hypothesis does not confirm after all. Inspection of our code shows that on
line 99 we forgot to set mv. We fix it to read

{ md = mymd; mv = mymv; }

So, we recompile and run the program again. As noted earlier in this section (and
elsewhere in this book), it is very helpful to not exit GDB when we rerun the
program. We could run the program in another terminal window, but just for variety
let’s take a different approach here. We’ll temporarily disable our breakpoints, by
issuing the dis command, then run the recompiled program from within GDB,
and then re-enable the breakpoints using ena:
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(gdb) dis
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
‘/debug/dij’ has changed; re-reading symbols.
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1209026880 (LWP 11712)]
[New Thread -1209029728 (LWP 11740)]
[New Thread -1219519584 (LWP 11741)]
[New Thread -1230009440 (LWP 11742)]
there are 4 threads
graph weights:
0 3 6 17 15 13
3 0 15 6 12 9
6 15 0 1 2 7
17 6 1 0 10 19
15 12 2 10 0 3
13 9 7 19 3 0
minimum distances:
3
6
17
15
13

Program exited with code 06.
(gdb) ena

We’re still getting wrong answers. Let’s check things at that breakpoint again:

(gdb) r
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1209014592 (LWP 11744)]
[New Thread -1209017440 (LWP 11772)]
[New Thread -1219507296 (LWP 11773)]
[New Thread -1229997152 (LWP 11774)]
there are 4 threads
[Switching to Thread -1209014592 (LWP 11744)]

Breakpoint 3, __ompc_func_0 () at dijkstra.c:93
93 { md = MAXINT;
(gdb) p mv
$2 = 1

At least mv now has the right value. Let’s check mind[]:

(gdb) p *mind@6
$3 = {0, 3, 6, 17, 15, 13}
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Note that because we constructed the mind[] array dynamically via malloc(),
we could not use GDB’s print command in its usual form. Instead, we used
GDB’s artificial array feature.

At any rate, mind[] is still incorrect. For instance, mind[3] should be 3+6 = 9,
yet it is 17. Let’s check the code that updates mind[]:

(gdb) b 107 if me == 1
Breakpoint 4 at 0x8049176: file dijkstra.c, line 107.
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1209039168 (LWP 11779)]
[New Thread -1209042016 (LWP 11807)]
[New Thread -1219531872 (LWP 11808)]
[New Thread -1230021728 (LWP 11809)]
there are 4 threads
[Switching to Thread -1230021728 (LWP 11809)]

Breakpoint 4, __ompc_func_0 () at dijkstra.c:107
107 updatemind(startv,endv);

First we’ll confirm that startv and endv have sensible values:

(gdb) p startv
$4 = 1
(gdb) p endv
$5 = 1

Our chunk size is only 1? Let’s see:

(gdb) p chunk
$6 = 1

After checking the computation for chunk, we realize that we need the number
of threads to evenly divide nv. The latter has the value 6, which is not divisible
by our thread count, 4. We make a note to ourselves to insert some error-catching
code later, and we decide to reduce our thread count to 3 for now.

Once again, we do not want to exit GDB to do this. GDB inherits the environment
variables when it is first invoked, but the values of those variables can also be
changed or set within GDB, and that is what we do here:

(gdb) set environment OMP_NUM_THREADS = 3
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Now let’s run again:

(gdb) dis
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1208707392 (LWP 11819)]
[New Thread -1208710240 (LWP 11847)]
[New Thread -1219200096 (LWP 11848)]
there are 3 threads
graph weights:
0 3 6 17 15 13
3 0 15 6 12 9
6 15 0 1 2 7
17 6 1 0 10 19
15 12 2 10 0 3
13 9 7 19 3 0
minimum distances:
3
6
7
15
12

Program exited with code 06.
(gdb) ena

Aiyah, still the same wrong answers! Let’s continue to check the updating process
for mind[]:

(gdb) r
Starting program: /debug/dij 6 1
[Thread debugging using libthread_db enabled]
[New Thread -1208113472 (LWP 11851)]
[New Thread -1208116320 (LWP 11879)]
[New Thread -1218606176 (LWP 11880)]
there are 3 threads
[Switching to Thread -1218606176 (LWP 11880)]

Breakpoint 4, __ompc_func_0 () at dijkstra.c:107
107 updatemind(startv,endv);
(gdb) p startv
$7 = 2
(gdb) p endv
$8 = 3

All right, those are the correct values for startv and endv in the case of me =
1. So, let’s enter the function:
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(gdb) s
[Switching to Thread -1208113472 (LWP 11851)]

Breakpoint 3, __ompc_func_0 () at dijkstra.c:93
93 { md = MAXINT;
(gdb) c
Continuing.
[Switching to Thread -1218606176 (LWP 11880)]
updatemind (s=2, e=3) at dijkstra.c:69
69 for (i = s; i <= e; i++)

Note that due to context switches among the threads, we did not enter
updatemind() immediately. Now let’s check the case i = 3:

(gdb) tb 71 if i == 3
Breakpoint 5 at 0x8048fb2: file dijkstra.c, line 71.
(gdb) c
Continuing.
updatemind (s=2, e=3) at dijkstra.c:71
71 if (mind[mv] + ohd[mv*nv+i] < mind[i])

As usual, we apply the Principle of Confirmation:

(gdb) p mv
$9 = 0

Well, that’s a big problem. Recall that in the first iteration mv turns out to be 1;
why is it 0 here?

After a while we realize that those context switches should have been a big hint to
us. Take a look at the GDB output above again. The thread whose system ID is
11851 was already on line 93—in other words, it was already in the next iteration
of our algorithm’s main loop. In fact, when we hit c to continue, it even executed
line 94, which is

mv = 0;

This thread overwrote mv’s previous value of 1, so that our thread that updates
mind[3] is now relying on the wrong value of mv. The solution is to add another
barrier:

updatemind(startv,endv);
#pragma omp barrier
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After this fix, the program runs correctly.

The foregoing was based on the Omni compiler. As mentioned, beginning with
version 4.2, GCC handles OpenMP code as well. All you have to do is add the
-fopenmp flag to the GCC command line.

Unlike Omni, GCC generates code in such a way that GDB’s focus is in your own
source file from the beginning. Thus, issuing a command

(gdb) b main

at the very outset of a GDB session really will cause a breakpoint to be set in one’s
own main(), unlike what we saw for the Omni compiler.

However, at this writing, a major shortcoming of GCC is that the symbols for local
variables that are inside an OpenMP parallel block (called private variables in
OpenMP terminology) will not be visible within GDB. For example, the command

(gdb) p mv

that we issued for the Omni-generated code above will work for GCC-generated
code, but our command above

(gdb) p startv

will fail on GCC-generated code.

There are ways to work around this, of course. For instance, if we wish to know the
value of startv, we can query the value of s within updatemind(). Hope-
fully this issue will be resolved in next version of GCC.

Debugging In A Multiple-Activities Context 42


	Debugging In A Multiple-Activities Context
	Debugging Client/Server Network Programs
	Debugging Threaded Code
	Review of Processes and Threads
	Basic Example
	A Variation
	GDB Threads Command Summary
	Threads Commands in DDD
	Threads Commands in Eclipse

	Debugging Parallel Applications
	Message-Passing Systems
	Shared-Memory Systems

	Extended Example
	OpenMP Overview
	OpenMP Example Program



