Contents

1 Cons3.py: A Simple Example to Get Started 1

2 Bit More Realism 2

2.1 Aloha.py ... 3
2.2 Inv.py ... 5

3 Moving to “Time Average” Models 6

3.1 Aloha2.py ... 6
3.2 Inv2.py ... 7

1 Cons3.py: A Simple Example to Get Started

Here we present our first simulation program. It will be written in Python, but don’t worry if you don’t have any background in Python, as it is easy to read and you’ll pick it up quickly.\footnote{See my Python tutorial for details, at \url{http://heather.cs.ucdavis.edu/˜matloff/python.html}}

To get a feeling for the topic, let’s look at a simple example. Suppose a coin is tossed until we get three consecutive heads. Let X be the number of tosses needed. Let’s find P(X > 6) and E(X).
I regard the key to understanding here to be the notion of a “repeatable experiment.” Here the experiment consists of tossing the coin until we get three heads in a row. Our Python for loop here, in lines 13-24, we are repeating the experiment 10000 times; lines 13-24 do the experiment once. Since E(X) is the long-run average of X—overly infinitely many repetitions of the experiment—we approximate it by the short-run average, which is the average of X over those 10000 repetitions. That is done in line 24.

A probability is the long-run proportion of time an event occurs. Here the event X > 6 occurs on some of those 10000 repetitions, and our approximate value of P(X > 6) is the proportion of those repetitions in which the event occurs. That is computed in line 23.

Now let’s see how the experiment is simulated. Look at line 16. Here we are calling a library function, uniform(), which generates uniformly-distributed random numbers in [0,1). The way we simulate the tossing of the coin is to say the coin came up heads if the random uniform variate comes out smaller than 0.5, and say it’s tails otherwise. This is done in lines 17-22.

A bit more on the function uniform: It’s part of a Python library class random. In line 7, we tell Python we wish to bring in that library for our use. It does require initializing what is known as a seed for random number generation, which we do in line 9. We’ll find out in a later unit what this really is, but at this point it doesn’t matter much which number we use. My choice of 98765 was pretty arbitrary. What is important, though, is that an object is returned from the random class, which we assign to r. We’ll always need to do things through that object, as you can see by the “r.” in line 16.

One more point: We mentioned that the output of our program consists of short-run approximations to long-run averages and proportions. In this case, “short-run” was 10000 repetitions of the experiment. Is that enough? We will answer this question too in a later unit.

2 Bit More Realism

Let’s now move away from the realm of coins to examplex a little more reflective of the types of problems people simulate in the real world.

We’ll also make a bit more sophisticated use of Python, in particular Python classes. See my Python tutorial notes for more information.

2 Note that Python defines blocks by indentation. The fact that lines 13-24 are indented tells the Python interpreter that we intend these lines as a block.

3 We’ll see in a later unit why the interval includes 0 but excludes 1. But it is not important. Recall that for continuous random variables, the probability of a particular point is 0 anyway.
In our first case, our realm is the design of computer networks.

2.1 Aloha.py

Today’s Ethernet evolved from an experimental network developed at the University of Hawaii, called ALOHA. A number of network nodes would occasionally try to use the same radio channel to communicate with a central computer. The nodes couldn’t hear each other, due to the obstruction of mountains between them. If only one of them made an attempt to send, it would be successful, and it would receive an acknowledgement message in response from the central computer. But if more than one node were to transmit, a collision would occur, garbling all the messages. The sending nodes would timeout after waiting for an acknowledgement which never came, and try sending again later. To avoid having too many collisions, nodes would engage in backoff, meaning that they would refrain from sending for a while even though they had something to send.

In designing such a network, the key is to allow enough backoff to avoid having too many collisions, but not so much that a node often refrains from trying to send even though no other node tries.

One variation is slotted ALOHA, which divides time into discrete intervals which I will call “epochs.” The simulation program below finds the probability that k nodes currently have messages to send at epoch m.

Note that in any simulation, you have to decide how much detail to put into your model, and which parameters to incorporate. Here we had two central parameters, one being a probability p that models the amount of backoff. In the version we will consider here, in each epoch, if a node is “active,” i.e. has a message to send, it will either send or refrain from sending, with probability p and 1-p. (Real Ethernet hardware really does something like this, using a random number generator inside the chip.)

The other parameter q is the probability that a node which had been “inactive” generates a message during an epoch, and thus becomes “active.” Assume for simplicity that this happens just before the time that all the active nodes decide whether to try to send, so that a newly-arrived message might be sent in the same epoch.

Be sure to keep in mind that in our simple model here, during the time a node is active, it won’t generate any additional new messages.

Note that in real life q is basically imposed on us. We have a certain amount of traffic in our network, and we must deal with it. But we can control p, and indeed different values of q would require different values of p for best results.

Here is the program below. Some comments have been added concerning Python itself, to ease the reader’s transition to that language.
class node: # one object of this class models one network node
 # some class variables
 s = int(sys.argv[1]) # number of nodes
 p = float(sys.argv[2]) # transmit probability
 q = float(sys.argv[3]) # msg creation probability
 activeset = [] # which nodes are active now
 inactiveset = [] # which nodes are inactive now
 r = random.Random(98765) # set seed
 def __init__(self): # object constructor
 node.inactiveset.append(self)
 # class (i.e. not instance) methods
 def checkgoactive(): # determine which nodes will go active
 for n in node.inactiveset:
 if node.r.uniform(0,1) < node.q:
 node.inactiveset.remove(n)
 node.activeset.append(n)
 checkgoactive = staticmethod(checkgoactive)
 def trysend():
 numnodestried = 0 # number of nodes which have tried to send
 for n in node.activeset:
 if node.r.uniform(0,1) < node.p:
 whotried = n
 numnodestried += 1
 # we'll have a successful transmission if and only if exactly one
 # node has tried to send
 if numnodestried == 1:
 node.activeset.remove(whotried)
 node.inactiveset.append(whotried)
 trysend = staticmethod(trysend)
 def reset(): # resets variables after a repetition of the experiment
 for n in node.activeset:
 node.activeset.remove(n)
 node.inactiveset.append(n)
 reset = staticmethod(reset)
 def main():
 m = int(sys.argv[4])
 k = int(sys.argv[5])
 # set up the s nodes
 for i in range(node.s):
 node()
 count = 0
 for rep in range(10000):
 # run the process for m epochs
 for epoch in range(m):
 node.checkgoactive()
 node.trysend()
 # len() gives the length of an object
 if len(node.activeset) == k: count += 1
 node.reset()
 print 'P(k active at time m) =', count/10000.0
 if __name__ == '__main__': main()

Python arrays, called lists, are wonderfully flexible. Among other things, they’re nice for modeling set membership, so I set up arrays active and inactive. Python’s in operator enables me to test for set membership, as seen for instance in line 23. There we have a for loop that says we will loop through each of the inactive nodes, and check to see whether they generate a new message and become active (line 24). In lines 25 and 26, we use the Python list types built-in methods remove() and append() to move this node, which has just become active, from the inactive to the active set.
In lines 33-36, we simulate each active node deciding whether to try to send or not, and in line 39 we check to see if only one such attempt was made. If so, that attempt succeeds, and we move that node to the inactive set (lines 40-41).

Note the function reset() in lines 43-46, which allows us to reinitialize between repetitions of the experiment. Failure to do so would give us wrong answers. This is a common type of bug in simulation programming.

2.2 Inv.py

```python
# Inv.py, inventory simulation example

# each day during the daytime, a number of orders for widgets arrives,
# uniformly distributed on {0,1,2,...,k}; the number of widgets in an order
# is uniformly distributed on {1,2,...,m}; each evening, if the inventory has
# fallen below r during the day, the inventory is restocked to level s;
# inventory is initially s
#
# we will find E(N), where N is the number of days until the first
# instance of an unfilled order; N = 1,2,...
#
# usage: python Inv.py r s k m

import random, sys

class g: # global variables
    r = int(sys.argv[1]) # restocking signal level
    s = int(sys.argv[2]) # restocking replenishment level
    k = int(sys.argv[3]) # range for distr of number of orders
    m = int(sys.argv[4]) # range for distr of number of widgets per order
    tottimetobl = 0 # total wait time for those msgs
    inv = None # inventory level
    rnd = random.Random(98765) # set seed

    def simdaytime():
        norders = g.rnd.randint(0,g.k)
        for o in range(norders):
            nwidgets = g.rnd.randint(1,g.m)
            g.inv -= nwidgets

    def simevening():
        if g.inv < g.r: g.inv = g.s

    def main():
        nreps = int(sys.argv[5])
        for rep in range(nreps): # simulate nreps repetitions of the experiment
            day = 1
            g.inv = g.s # inventory full at first
            while True:
                simdaytime()
                if g.inv < 0: break
                simevening()
                day += 1
                g.tottimetobl += day
                g.tottimetobl2 += day*day
            print 'mean time to get a backlog =', g.tottimetobl/float(nreps)
        if __name__ == '__main__': main()
```

3 Moving to “Time Average” Models

Here, instead of the notion of a “repeatable” experiment, the situation here is that of a “continuing” experiment. In our ALOHA example above, we were interested in how things behave at a fixed epoch (m). But we could ask what happens further and further back in time. For example, we could ask, what is the long-run mean wait for messages to be sent successfully, with “long-run” meaning infinitely many epochs. For fixed q, what is the best value of p, i.e. what value of p minimizes the mean wait?

Implicit in such questions is the assumption that things converge to a limit. For example, let X_i denote the time the i^{th} message must wait to get through, and let N_m denote the number of messages that have been successfully transmitted by epoch m. Then the mean wait for messages through epoch m is

$$\bar{X}_m = \frac{X_1 + X_2 + ... + X_{N_m}}{N_m}$$

For many types of systems, one can show that

$$\lim_{m \to \infty} \bar{X}_m$$

exists and is equal to some constant c. That’s why such a simulation is sometimes called a steady-state simulation (the term ergodic is also used), with the type we looked at earlier being referred to as a terminating simulation.

Our job is to use simulation to approximate c. Our programs below do exactly that.

3.1 Aloha2.py

```python
# Aloha2.py, Python simulation example: a form of slotted ALOHA
# goal is to study response time (mean number of attempts needed to send
# a message), as a function of p
# usage: python Aloha2.py s p q
import random, sys

class node:  # models one network node
    # some class variables
    s = int(sys.argv[1])  # number of nodes
    p = float(sys.argv[2])  # transmit probability
    q = float(sys.argv[3])  # msg creation probability
    totsent = 0  # number of msgs sent successfully by all nodes so far
    totwait = 0  # total wait time for those msgs
    activeset = []  # which nodes are active now (empty list for now)
    inactiveset = []  # which nodes are inactive now
    r = random.Random(98765)  # set seed

    def __init__(self):  # object constructor
        # start this node in inactive mode
        node.inactiveset.append(self)
        # the number of epochs this node’s current msg has been waiting:
        self.wait = None  # currently undefined

    def checkgoactive():  # determine which nodes will go active
        for n in node.inactiveset:  # n is local to this function
            if node.r.uniform(0,1) < node.q:
                node.inactiveset.remove(n)```

6
def trysend():
    numnodestried = 0  # number of nodes which have tried to send
    whotried = None   # which node tried to send (last)
    for n in node.activeset:
        n.wait += 1
        if node.r.uniform(0,1) < node.p:
            whotried = n
            numnodestried += 1
    node.totwait += whotried.wait
    node.activeset.remove(whotried)
    node.inactiveset.append(whotried)
    trysend = staticmethod(trysend)

def main():
    for i in range(node.s): node()
    for rep in range(10000):  # simulate 10000 (approx. "infinity") epochs
        node.checkgoactive()
        node.trysend()
        print 'mean time to get through =', node.totwait/float(node.totsent)

if __name__ == '__main__': main()
3  # r widgets come in each day, though not more than the warehouse
4  # capacity w
5
6  # we will find E(X), where X is the number of days until a widget is
7  # shipped; X = 0 if it is shipped out the first day
8
9  # usage: python Inv2.py r w k m startinv nepochs
10
11 import random, sys
12
13 class g: # globals
14    r = None # restocking level
15    w = None # warehouse capacity
16    k = None # range for distr of number of orders
17    m = None # range for distr of number of widgets per order
18    inv = None # inventory level
19    day = 1 # day number in our simulated time
20    rnd = random.Random(98765) # set seed
21
22 class orderclass: # one object of this class represents one order
23    # class variables
24    queue = [] # queue of orders
25    qlen = 0 # number of orders in queue
26    nshipped = 0 # number of widgets shipped so far
27    totwait = 0 # total wait time for the widgets shipped so far
28    nshippedq = 0 # number of widgets shipped so far which had
29    # encountered a queue from previous night at arrival
30    totwaitq = 0 # total wait time for the widgets shipped so far which
31    # had encountered a queue from previous night at arrival
32    qleftoverfromlastnight = False # backlog left from previous night?
33
34    def __init__(self,nw): # new order of nw widgets
35        self.numpending = nw # widgets not shipped yet
36        self.dayorderreceived = g.day # day the order was received
37        self.arrivedtoq = orderclass.qleftoverfromlastnight
38        # boolean to record whether there had been a queue left over from
39        # last night when this order arrived
40        self.arrivedtoq = orderclass.qleftoverfromlastnight
41        # join the queue
42        orderclass.queue.append(self)
43        orderclass.qlen += 1
44
45    def simdaytime():
46        orderclass.qleftoverfromlastnight = len(orderclass.queue) > 0
47        # giving priority to the old orders is equivalent to adding the new
48        # orders at the end of the queue
49        numneworders = g.rnd.randint(0,g.k)
50        for o in range(numneworders):
51            nw = g.rnd.randint(1,g.m)
52            neworder = orderclass(nw)
53            self.dayorderreceived = g.day # day the order was received
54            # boolean to record whether there had been a queue left over from
55            # last night when this order arrived
56            if orderclass.queue == []: return
57            # while True: # go through all the pending orders, until inventory gone
58            if orderclass.queue == []: return
59            o = orderclass.queue[0] # current head of queue
60            if o.numpending <= g.inv: 
61                if o.numpending <= g.inv: # enough inventory for this order?
62                    partfill = False # did not just do a partial fill of the order
63                    orderclass.queue.remove(o)
64                else: # fill only part of the order
65                    partfill = True
66                o.numpending -= g.inv
67                g.inv -= o.numpending
68                g.inv -= sendtoday
69            else: # fill only part of the order
70                partfill = True
71                sendtoday = g.day - o.dayorderreceived
72                sendtoday = o.numpending
73                g.inv -= sendtoday
74                else: # fill only part of the order
75                partfill = False # did not just do a partial fill of the order
76                orderclass.queue.remove(o)
77                orderclass.qlen -= 1
78                sendtoday = o.numpending
79                g.inv -= sendtoday
80                else: # fill only part of the order
81                partfill = True
82                sendtoday = g.day - o.dayorderreceived
83                sendtoday = o.numpending
84                g.inv -= sendtoday
85                else: # fill only part of the order
86                partfill = False # did not just do a partial fill of the order
87                orderclass.queue.remove(o)
88                orderclass.qlen -= 1
89                sendtoday = o.numpending
90                g.inv -= sendtoday
91                else: # fill only part of the order
92                partfill = True
93                sendtoday = g.day - o.dayorderreceived
94                sendtoday = o.numpending
95                g.inv -= sendtoday
96                if partfill: return # don’t look at any more orders today
# o.__dict__ (this comment for debugging!)

simdaytime = staticmethod(simdaytime)
def simevening():
    if g.inv + g.r <= g.w: g.inv += g.r
    else: g.inv = g.w
    simevening = staticmethod(simevening)
def main():
    g.r = int(sys.argv[1])
g.w = int(sys.argv[2])
g.k = int(sys.argv[3])
g.m = int(sys.argv[4])
g.inv = int(sys.argv[5])  # inventory level
ndays = int(sys.argv[6])  # number of days to be simulated
for g.day in range(ndays):
    orderclass.simdaytime()
    orderclass.simevening()
print 'mean wait =', orderclass.totwait/float(orderclass.nshipped)
print 'mean wait for those encountering a queue =', 
    orderclass.totwaitq/float(orderclass.nshippedq)
if __name__ == '__main__': main()