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1 Iterators

1.1 What Are Iterators? Why Use Them?

Let’s start with an example we know from our unit on Python file and directory programming (http:
//heather.cs.ucdavis.edu/ matloff/Python/PyFileDir.pdf). Say we open a file and
assign the result to f, e.g.

f = open('x’)

Suppose we wish to print out the lengths of the lines of the file.

for 1 in f.readlines():
print len(l)

But the same result can be obtained with

for 1 in f:
print len(l)

The second method has two advantages:

(a) it’s simpler and more elegant

(b) aline of the file is not read until it is actually needed

Point (a) becomes even clearer if we take the functional programming approach. The code

print map(len, f.readlines())

1s not as nice as

print map(len, f)

Point (b) would be of major importance if the file were really large. The first method above would have the
entire file in memory, very undesirable. Here we read just one line of the file at a time. Of course, we also
could do this by calling readline() instead of readlines(), but not as simply and elegantly.

In our second method, f is serving as an iterator. Let’s look at the concept more generally.

Recall that a Python sequence is roughly like an array in most languages, and takes on two forms—Iists and
tuplesm Sequence operations in Python are much more flexible than in a language like C or C++. One can
have a function return a sequence; one can slice sequences; one can concatenate sequences; etc.

In this context, an iterator looks like a sequence when you use it, but with some major differences:

(a) you usually must write a function which actually constructs that sequence-like object
(b) an element of the “sequence” is not actually produced until you need it

(c) unlike real sequences, an iterator “sequence” can be infinitely long

"Recall also that strings are tuples, but with extra properties.
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1.2 Example: Fibonacci Numbers

For simplicity, let’s start with everyone’s favorite computer science example, Fibonacci numbers, as defined
by the recursion,

1 ifn=12
_— ? K b) 1
fn {fn—1+fn—2, ifn>2 (D

It’s easy to write a loop to compute these numbers. But let’s try it as an iterator:

# iterator example; uses Fibonacci numbers, so common in computer
# science examples: f_ n = f_{n-1} + f_{n-2}, with £. 0 = f_ 1 =1

class fibnum:

def _ _init_ (self):
self.fn2 = 1 # "f_{n-2}"
self.fnl =1 # "f_{n-1}"

def next (self): # next () is the heart of any iterator
# note the use of the following tuple to not only save lines of
# code but also to insure that only the old values of self.fnl and
# self.fn2 are used in assigning the new values
(self.fnl,self.fn2,01dfn2) = (self.fnl+self.fn2,self.fnl,self.fn2)
return oldfn2

def _ iter_ (self):
return self

Now here is how we would use the iterator, e.g. to loop with it:

from fib import =

def main() :
f = fibnum()
for i in f:
print i
if i > 20: break

if name == '_main__'":

main ()

By including the method __iter__() in our fibnum class, we informed the Python interpreter that we wish
to use this class as an iterator. We also had to include the method next(), which as its name implies, is the
mechanism by which the “sequence” is formed. This enabled us to simply place an instance of the class
in the for loop above. Knowing that f is an iterator, the Python interpreter will repeatedly call f.next(),
assigning the values returned by that function to i.

As stated above, the iterator approach often makes for more elegant code. But again, note the importance
of not having to compute the entire sequence at once. Having the entire sequence in memory would waste
memory and would be impossible in the case of an infinite sequence, as we have here. Our for loop above is
iterating through an infinite number of iterations—and would do so, if we didn’t stop it as we did. But each
element of the “sequence” is computed only at the time it is needed.

Rather than being thought of as an “accident,” one can use exceptions as an elegant way to end a loop

involving an iterator, using the built-in exception type StopIteration. For example:

class fibnum20:
def __init__ (self):
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self.fn2 = 1 # "f_{n-2}"
self.fnl =1 # "f_{n-1}"
def next (self):
(self.fnl,self.fn2,0ldfn2) = (self.fnl+self.fn2,self.fnl,self.fn?)
if oldfn2 > 20: raise StoplIteration
return oldfn2
def _ _iter_ (self):
return self

>>> from f£ib20 import =
>>> g = fibnum20 ()
>>> for i in g:

i

=0 U W N

What happens is that iterating in the loop

>>> for i1 in g:

catches the exception StoplIteration, which makes the looping terminate, and our “sequence” is finite.

You can also make a real sequence out of an iterator’s “output” by using the list() function, though you of
course do have to make sure the iterator produces finite output. For example:

>>> from f£ib20 import =

>>> g = fibnum20 ()

>>> g

<fib20.fibnum20 instance at Oxb7e6c50c>
>>> list (g)

(1, 1, 2, 3, 5, 8, 13]

The functions sum(), max() and min() are built-ins for iterators, e.g.

>>> from fib20 import =
>>> g = fibnum20 ()

>>> sum(g)

33

1.3 Example: “Circular” Array

Here’s an example of using iterators to make a “circular” array. In our tutorial on Python network pro-
gramming, http://heather.cs.ucdavis.edu/ matloff/Python/PyNet.pdf, we needed
to continually cycle through a list ¢s of client socketsﬂ

while (1):
# get next client, with effect of a circular queue

21 am slightly modifying it here, by assuming a constant number of clients.


http://heather.cs.ucdavis.edu/~matloff/Python/PyNet.pdf
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clnt = cs.pop(0)

cs.append (clnt)

Here’s how to make an iterator out of it

# circular queue
class cqg: # the argument g is a list
def __init__ (self,q):
self.qg = g
def _ iter_ (self):
return self
def next (self):
self.q = self.qg[l:] + [self.qg[0]]
return self.qg[-1]

Let’s test it:

>>> from cg import =*
>>> x = cq([1,2,3])
>>> x.next ()

>>> x.next ()
>>> x.next ()
>>> x.next ()

>>> x.next ()

With this, our while loop in the network program above would look like this:

cit = cqgl(cs)
for clnt in cit:
# code using clnt

The code would iterate indefinitely.

Of course, we had to do a bit of work to set this up. But now that we have, we can reuse this code in lots of
different applications in the future, and the nice, clear form such as that above,

for clnt in cs:

adds to ease of programming and readability of code.

1.4 The itertools Module

Here you can really treat an infinite iterator like a “sequence,” using various tools in this module.

For instance, iterators.islice() is handy:

3T’ve also made the code more compact, independent of the change to an iterator.



>>> from itertools import =x

>>> g = fibnum/()

>>> list (islice(g,6)) # slice out the first 6 elements
[, 1, 2, 3, 5, 8]

The general form of islice() is

itertools.islice(iteratorname, [start], stop, [stepl])

Here we get elements start, start + step, and so on, but ending before element sfop.

For instance:

>>> list (islice(g,3,9,2))
[3, 8, 21]

There are also analogs of the map() and filter() functions which operate on real sequences. The call

itertools.imap (f, iterl, iter2, ...)

returns the stream f(iter1[0],iter2[0]....), which one can then apply list() to.

The call

itertools.ifilter (boolean expression, iter)

applies the boolean test to each elment of the iterator stream.

2 Generators

2.1 General Structures

Generators are entities which generate iterators! Hence the name.

Speaking very roughly in terms of our goals, a generator is a function that we wish to call repeatedly, but
which is unlike an ordinary function in that successive calls to a generator function don’t start execution at
the beginning of the function. Instead, the current call to a generator function will resume execution right
after the spot in the code at which the last call exited, i.e. we “pick up where we left off.”

The way this occurs is as follows. One calls the generator itself just once. That returns an iterator. This is a
real iterator, with __iter()__ and next() methods. The latter is essentially the function which implements our
“pick up where we left off” goal. We can either call next() directly, or use the iterator in a loop.

Note that difference in approach:

o In the case of iterators, a class is recognized by the Python interpreter as an iterator by the presence
of the __iter()__ and next() methods.
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e By contrast, with a generator we don’t even need to set up a class. We simply write a plain function,
with its only distinguishing feature for recognition by the Python interpreter being that we use yield
instead of return.

Note, though, that yield and return work quite differently from each other. When a yield is executed, the
Python interpreter records the line number of that statement (there may be several yield lines within the
same generator). Then, the next time this generator function is called with this same iterator, the function
will resume execution at the line following the yield.

Here are the key points:

e A yield causes an exit from the function, but the next time the function is called, we start “where we
left off,” i.e. at the line following the yield rather than at the beginning of the function.

e All the values of the local variables which existed at the time of the yield action are now still intact
when we resume.

e There may be several yield lines in the same generator.

e We can also have return statements, but execution of any such statement will result in a StopIteration
exception being raised if the next() method is called again.

e The yield operation returns one argument (or none). That one argument can be a tuple, though. As
usual, if there is no ambiguity, you do not have to enclose the tuple in parentheses.

Read the following example carefully, keeping all of the above points in mind:

# yieldex.py example of yield, return in generator functions

def gy ():
x = 2
y = 3
yield x,vy,x+ty
z = 12
yield z/x
print z/y
return

def main():
g =gy()
print g.next ()
print g.next ()
print g.next ()
if _ name_ == '_ main__ ':
main ()

% python yieldex.py

(2, 3, 5)

6

4

Traceback (most recent call last):

File "yieldex.py", line 19, in ?
main ()

File "yieldex.py", line 16, in main
print g.next ()

StopIteration
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Note that execution of the actual code in the function gy(), i.e. the lines

does not occur until the first g.next() is executed.

2.2 Example: Fibonacci Numbers
As another simple illustration, let’s look at the good ol’ Fibonacci numbers again:

# fibg,py, generator example; Fibonacci numbers
# f£n=f {n-1} + f_{n-2}

def fib():
fn2 =1 # "f_{n-2}"
fnl =1 # "f_{n-1}"
while True:
(fnl, fn2,0l1dfn2) = (fnl+£fn2, fnl, £fn2)
yield oldfn2

>>> from fibg import x
>>> g = fib()
>>> g.next ()
>>> g.next ()
>>> g.next ()
>>> g.next ()

>>> g.next ()

>>> g.next ()

Note that we do need to resume execution of the function “in the middle,” rather than “at the top.” We
certainly don’t want to execute

fn2 = 1

again, for instance. Indeed, a key point is that the local variables fnl and fn2 retain their values between
calls. This is what allowed us to get away with using just a function instead of a class. This is simpler and
cleaner than the class-based approach. For instance, in the code here we refer to fnl instead of self.fn1 as
we did in our class-based version in Section [.2] In more complicated functions, all these simplifications
would add up to a major improvement in readability.

This property of retaining locals between calls is like that of locals declared as static in CEI). Note, though,
that in Python we might set up several instances of a given generator, each instance maintaining different
values for the locals. To do this in C, we need to have arrays of the locals, indexed by the instance number.

*If you need review of this in the C context, make sure to check a C book, or the “C portion” of a C++ book. It’s a very important
concept
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2.3 Example: Word Fetcher

The following is a producer/consumer example. The producer, getword(), gets words from a text file,

feeding them one at a time to the consumerE] In the test here, the consumer is testgw.py.

# getword.py

# the function getword() reads from the text file fl, returning one word
# at a time; will not return a word until an entire line has been read

def getword(fl):
for line in f1l:
for word in line.split():
yield word
return

# test of getword; counts words and computes average length of words
# usage: python testgw.py [filename]
# (stdin) is assumed if no file is specified)

from getword import x

def main () :
import sys
# determine which file we’ll evaluate
try:
f = open(sys.argv[l]
except:
f = sys.stdin
# generate the iterator
w = getword(f)
wcount = 0
wltot = 0
for wrd in w:
wcount += 1
wltot += len (wrd)

print "$d words, average length %f" % (wcount,wltot/float (wcount))
if _ _name__ == '_main__':
main ()

2.4 Mutiple Iterators from the Same Generator

Note our phrasing earlier (emphasis added):

...the next time this generator function is called with this same iterator, the function will resume
execution at the line following the yield

Suppose for instance that we have two sorted text files, one word per line, and we wish to merge them into
a combined sorted file. We could use our getword() function above, setting up two iterators, one for each
file. Note that we might reach the end of one file before the other. We would then continue with the other
file by itself. To deal with this, we would have to test for the StopIteration exception to sense when we’ve
come to the end of a file.

3] thank C. Osterwisch for this much improved version of the code I had here originally.



2.5 Modularity/Reusability

You may have noticed in the last example a similarity to Unix pipes. At the shell level, we can do a lot of
everyday tasks by simply chaining together several shell commands into a pipe. For instance, say I want to
find out how many lines in the file g contain the word *Davis’. I could do this:

% grep Davis x | wc -1

The command we (“word count”), with its -1 option, counts lines. So, grep would find the file’s lines that I
want, and pass them on to wc via the pipe, after which we would count them.

Similarly, the getword() function above is producing output which then is used as input by our program
testgw.py. We could chain several generators together in a “pipe.”

This shows that one of the biggest advantages of using iterators, and especially generators, is modularity
and reusability. Once you write a few tools like this, you can keep making use of them in lots of applications
that you write. Of course, we could still do that with ordinary functions, but without the compact elegance
and clarity that we get from iterators, e.g.

for w in word:

in the example above.

2.6 Coroutines

The term coroutines in computer science refers to subroutines that alternate in execution. Subroutine A will
run for a while, then subroutine B will run for a while, then A again, and so on. Each a subroutine runs, it
will resume execution right where it left off before—just like Python generators.

Basically coroutines are threads, but of the nonpreemptive type. In other words, a coroutine will continue
executing until it voluntarily relinquishes the CPU. (Of course, this doesn’t count timesharing. We are only
discussing flow of control among the threads of one program.) In “ordinary” threads, the timing of the
passing of control from one thread to another is to various degrees random.

The major advantage of using nonpreemptive threads is that you do not need locks. This makes your code
a lot simpler and cleaner, and much easier to debug. (The randomness alone makes ordinary threads really
tough to debug.)

In this section, I will show you two examples of Python coroutines. The first is a library class I wrote,
thrd, which serves as a Python nonpreemptive threads library. The second example is SimPy, a well-known
Python discrete-event simulation library written by Klaus Muller and Tony Vignaux.

2.6.1 My thrd Class

Though most threading systems are preemptive, there are some prominent exceptions. The GNU PTH
library, for instance, is nonpreemptive and supports C/C++. Another example is the threads library in the
Ruby scripting language.

10
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Generators make it easy to develop a nonpreemptive threads package in Python. The yield construct is a
natural way to relinquish the CPU, and one writes the threads manager to give a thread a turn by simply
calling i.next(), where i is the iterator for the thread. That’s what I’ve done here.

As an example of use of thrd, we’ll take the “string build” example presented in our units on networks and
threading, available athttp://heather.cs.ucdavis.edu/ matloff/Python/PyNet .pdf and
http://heather.cs.ucdavis.edu/ matloff/Python/PyThreads.pdf. Clients send char-
acters one at a time to a server, which accumulates them in a string, which it echoes back to the clients.

There are two major issues in the example. First, we must deal with the fact that we have asynchronous 1/O;
the server doesn’t know which client it will hear from next. Second, we must make sure that the accumulated
string is always updated atomically.

Here we will use nonblocking I/O to address the issue of asynchroneity. But atomicity will be no problem
at all. Again, since threads are never interrupted, we do not need locks. Here is the code for the server:

# simple illustration of thrd module

multiple clients connect to server; each client repeatedly sends a
letter k, which the server adds to a global string v and echos back
to the client; k = '’ means the client is dropping out; when all
clients are gone, server prints final value of v

HH = H

# this is the server

import socket
import sys
from pth import =

class glbs: # globals
v ="'’ 4 the string we are building up from the clients

class serveclient (thrd) :
def _ init_ (self,id,c):
thrd.__init__ (self, id)

self.c = c[0] # socket for this client
self.c.send(’c’) # confirm connection
def run(self):
while 1:
# receive letter or EOF signal from c
try:
k = self.c.recv(l)
if k == '’: break

# concatenate v with k, but do NOT need a lock
glbs.v += k
self.c.send(glbs.v)
except:
pass
yield ’clnt loop’, ’'pause’
self.c.close()

def main():
lstn = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
port = int(sys.argv[1l]) # server port number
lstn.bind((’’, port))
lstn.listen (5)
# initialize concatenated string, v
glbs.v = "7’
# number of clients
nclnt = 2
# accept calls from the clients
for i in range(nclnt):
(clnt,ap) = lstn.accept ()

11
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clnt.setblocking (0) # set client socket to be nonblocking
# start thread for this client, with the first argument being a
# string ID I choose for this thread, and the second argument begin
# (a tuple consisting of) the socket
t = serveclient ('client ’"+str (i), (clnt,))
# shut down the server socket, since it’s not needed anymore
lstn.close ()
# start the threads; the call will block until all threads are done

thrd.tmgr ()
print ’“the final value of v is’, glbs.v
if __name_ == '__main__ ’': main{()

Here is the client (which of course is not threaded):

=+

simple illustration of thrd module

two clients connect to server; each client repeatedly sends a letter,
stored in the variable k, which the server appends to a global string
v, and reports v to the client; k = ’’ means the client is dropping
out; when all clients are gone, server prints the final string v

HH H H

# this is the client; usage is
# python clnt.py server_address port_number

import socket
import sys

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
host = sys.argv([1l] # server address

port = int(sys.argv([2]) # server port
s.connect ( (host, port))

confirm = s.recv(1l)
print confirm

while (1) :
# get letter
k = raw_input ('enter a letter:’)
s.send (k) # send k to server
# if stop signal, then leave loop
if k == ’’: break
v = s.recv(1024) # receive v from server (up to 1024 bytes)
print v
s.close() # close socket

Note that as with the Python threading module, the user must write a function named run which will
override the one built in to the thrd class. As before, that function describes the action of the thread. The
difference here, though, is that now this function is a generator, as you (and the Python interpreter) can tell

from the presence of the yield statement.

There is a separate thread for each client. The thread for a given client will repeatedly execute the following

cycle:

e Try to read a character from the client.
e Process the character if there is one.

e Yield, allowing the thread for another client to run.

12
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Again, since a thread will run until it hits a yield, we don’t need locks.

Just as is the case with Python’s ordinary threads, thrd is good mainly for I/O-bound applications. While
one I/O action is being done in one thread, we can start another one in another thread. A common example
would be a Web server. But those applications would be too huge to deal with in this tutorial, so we have
that very simple toy example above.

Below is another toy example, even more contrived, but again presented here because it is simple, and
because it illustrates the set/wait constructs not included in the last example. There is really no way to
describe the actions it takes, except to say that it is designed to exercise most of the possible thrd operations.
Just look at the output shown below, and then see how the code works to produce that output.

al starts

al x: 6

al pauses

a2 starts

a2 x: 17

a2 pauses

b starts

b pauses

cl starts

cl waits for al-ev
c2 starts

c2 waits for al-ev
al z: 19

al waits for b-ev
a2 z: 21

a2 waits for b-ev
b.v: 8

b sets b-ev

al z: 19

al sets al-ev for all
cl quits

events:

b-ev: a2

al-ev:

c2 quits

events:

b-ev: a2

al-ev:

b sets b-ev but stays
b quits

a2 z: 21

az quits

al quits

Here is the code:

from pth import =

class a(thrd):

def _ _init_ (self,thrid):
thrd._ _init__ (self,thrid)
self.x = None
self.y = None
self.z = None
self.num = int (self.id[1]

def run(self):
print self.id, ’starts’

self.x = 5+self.num
self.y = 12+self.num
print self.id, ’x:’, self.x

13



print self.id,

print self.id,
print self.id,

' pauses’
yield "1’,’pause’
self.z = self.x + self.y

ro .
z:',

"waits for b-ev’

self.z

yield 72’ ,’wait’,’b-ev’

print self.id,
if self.id ==

print ’"al sets al-ev for all’
yield ’2a’,’set_all’,’al-ev’

print self.id,

class b (thrd):

rz:!,

131’ -

self.z

"quits’
yield "3',’quit’

def _ _init_ (self,thrid):

thrd._ _init__ (self,thrid)

self.u = None
self.v = None

def run(self):

print ’'b starts’

self.u =5

print ’b pauses’
yield 117, "pause’

self.v = 8
print 'b.v:’,

self.v

print 'b sets b-ev’
yield 712’ ,’set’,’b-ev’

print ’'b sets b-ev but stays’
uv’,’set_but_stay’,’'b-ev’

’

yield

print b quits’
yield ’"our last one’,’quit’

class c(thrd) :

def __init_ (self,thrid):

thrd.__init_ (self,thrid)

def run(self):

print self.id,
print self.id,

print self.id,
thrd.prevs (

"starts’

"waits for al-ev’
yield ’cwait’,’wait’,’al-ev’

"quits’

yield ’cquit’,’quit’

def main() :

if

Now, how is all this done. Below is the code for the thrd library.

First read the comments at the top of the file, and then the __init()__ code
threads manager . The latter repeatedly does the following:

tal = a(’al’)
ta2 = a(’a2’)
tbh = b('b’")
tcl = c('cl’)
tc2 = c('c2")
thrd.tmgr ()

name ==

e get the first thread in the runnable list, thr

e have it run until it hits a yield, by calling thr.itr.next()

main__':

main ()

. Then glance at the code for the

e take whatever action (pause, wait, set, etc.) that the thread requested when it yielded

14
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Then you should be able to follow the thrd member functions fairly easily.

HH

HH = H HH o H

H H H

HH=

pth.py: non-preemptive threads for Python; inspired by the GNU PTH
package for C/C++

typical application will have one class for each type of thread; its
main() will set up the threads as instances of the classes, and lastly
will call thrd.tmgr ()

each thread type is a subclass of the class thrd; in that subclass,
the user must override thrd.run(), with the code consisting of the
actions the thread will take

threads actions are triggered by the Python yield construct, in the
following format:

yvield yieldID, action_string [, arguments]
the yieldID is for application code debugging purposes
possible actions:

yield yieldID, ’pause’:
thread relinquishes this turn, rejoins runnable list at the end

yield yieldID, ’'wait’, eventID:
thread changes state to ’"waiting’, joins end of queue for
the given event

yield yieldID, ’'set’, eventID:
thread sets the given event, rejoins runnable list at the end;
the thread, if any, at head of queue for this event is inserted
at the head of the runnable list

yield yieldID, ’set_but_stay’, eventID:
thread sets the given event, but remains at head of runnable 1list;
thread, if any, at head of queue for the event is inserted in
runnable list following the head

yield yieldID, ’'set_all’, eventID:
thread sets the given event, rejoins runnable list at the end;
all threads in queue for the event are inserted at the head of
the runnable list, in the same order they had in the queue

yield yieldID, ’quit’:
thread exits

class thrd:

runlst = [] # runnable thread list

evnts = {} # a key is an event ID, a string; value is a list of
# threads waiting for that event

waitlst = [] # waiting thread list

didyield = None # thread that last performed a yield op; for
# application code debugging purposes

def _ _init_ (self,id):
self.id = id # user-supplied string

self.state = ’'runnable’ # the other possible state is 'waiting’
self.yieldact = '’ # action at last yield; for application code
# debugging purposes
self.waitevnt = '’ # what event this thread is waiting for, if any;
# for application code debugging purposes
self.itr = self.run() # this thread’s iterator

thrd.runlst.append(self)

def run(self): # stub, must override
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66 pass

67

68 # triggered by: vyield yieldID, ’pause’

69 def do_pause(self,yv):

70 del thrd.runlst[0]

71 thrd.runlst.append(self)

72

73 # triggered by: yield yieldID, ’wait’, eventID
74 def do_wait (self,yv):

75 del thrd.runlst[0]

76 self.state = "waiting’

77 self.waitevnt = yv([2]

78 # check to see if this is a new event

79 if yv[2] not in thrd.evnts.keys():

80 thrd.evnts[yv[2]] = [self]

81 else:

82 thrd.evnts[yv[2]].append(self)

83 thrd.waitlst.append(self)

84

85 # reactivate first thread waiting for this event, and place it at
86 # position pos of runlst

87 def react (ev,pos):

88 thr = thrd.evnts[ev].pop(0)

89 thr.state = 'runnable’

90 thr.waitevnt = '’

91 thrd.waitlst.remove (thr)

92 thrd.runlst.insert (pos, thr)

93 react = staticmethod(react)

94

95 # triggered by: vyield yieldID, ’set’, eventID
96 def do_set (thr,yv):

97 del thrd.runlst[0]

98 thrd.runlst.append (thr)

99 thrd.react (yv[2],0)

100 do_set = staticmethod (do_set)

101

102 # triggered by: vyield yieldID, ’set_but_stay’
103 def do_set_but_stay(thr,yv):

104 thrd.react (yv[2],1)

105 do_set_but_stay = staticmethod(do_set_but_stay)
106

107 # triggered by: vyield yieldID, ’set_all’, eventID
108 def do_set_all(self,yv):

109 del thrd.runlst[0]

110 ev = yv[2]

111 for i in range(len(thrd.evnts[ev])):

112 thrd.react (ev, i)

113 thrd.runlst.append(self)

114

115 # triggered by: vyield yieldID, ’quit’

116 def do_quit (self,yv):

117 del thrd.runlst[0]

118

119 # for application code debugging

120 # prints info about a thread

121 def prthr(self):

122 print ’ID: %s, state: %s, ev: %s, yldact: %$s’ % \
123 (self.id, self.state, self.waitevnt, self.yieldact)
124

125 # for application code debugging

126 # print info on all threads

127 def prthrs():

128 print ’‘runlst:’

129 for t in thrd.runlst:

130 t.prthr()

131 print ’‘waiting list:’

132 for t in thrd.waitlst:

133 thrd.prthr (t)
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prthrs = staticmethod (prthrs)

# for application code debugging
# printf info on all events
def prevs():
print ’events:’
for eid in thrd.evnts.keys():
print ’%s:’ % eid,
for thr in thrd.evnts[eid]:
print thr.id,
print
prevs = staticmethod (prevs)

# threads manager
def tmgr():
# while still have runnable threads, cycle repeatedly through them
while (thrd.runlst):
# get next thread
thr = thrd.runlst[0]

# call it
yieldvalue = thr.itr.next ()
# the above call to next () runs the thread until a yield, with

# the latter returning yieldvalue
thr.yieldID = yieldvalue[O0]
thrd.didyield = thr
# call the function requested in the yield
yvl = yieldvalue[l] # requested action
thr.yieldact = yvl
actftn = eval ('thrd.do_’+yvl)
actftn (thr,yieldvalue)

tmgr = staticmethod (tmgr)

2.6.2 The SimPy Discrete Event Simulation Library

In discrete event simulation (DES), we are modeling discontinuous changes in the system state. We may
be simulating a queuing system, for example, and since the number of jobs in the queue is an integer, the
number will be incremented by an integer value, typically 1 or -1 E| By contrast, if we are modeling a weather
system, variables such as temperature change continuously.

SimPy is a widely used open-source Python library for DES. Following is an example of its use:

#!/usr/bin/env python

# MachRep.py

# SimPy example: Two machines, but sometimes break down. Up time is

# exponentially distributed with mean 1.0, and repair time is

# exponentially distributed with mean 0.5. In this example, there is

# only one repairperson, so the two machines cannot be repaired

# simultaneously if they are down at the same time.

# In addition to finding the long-run proportion of up time, let’s also
# find the long-run proportion of the time that a given machine does not
# have immediate access to the repairperson when the machine breaks

# down. Output values should be about 0.6 and 0.67.

from SimPy.Simulation import =
from random import Random,expovariate,uniform

class G: # globals
Rnd = Random (12345)

Batch queues may take several jobs at a time, but the increment is still integer-valued.
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# create the repairperson
RepairPerson = Resource (1)

class MachineClass (Process) :
TotalUpTime = 0.0 # total up time for all machines
NRep = 0 # number of times the machines have broken down
NImmedRep = 0 # number of breakdowns in which the machine
# started repair service right away
UpRate = 1/1.0 # breakdown rate
RepairRate = 1/0.5 # repair rate

# the following two variables are not actually used, but are useful

# for debugging purposes

NextID = 0 # next available ID number for MachineClass objects
NUp = 0 # number of machines currently up
def _ _init_ (self):

Process._ _init__ (self)

self.StartUpTime = 0.0 # time the current up period stated

self.ID = MachineClass.NextID # ID for this MachineClass object

MachineClass.NextID += 1
MachineClass.NUp += 1 # machines start in the up mode
def Run(self):

while 1:
self.StartUpTime = now()
yield hold, self,G.Rnd.expovariate (MachineClass.UpRate)
MachineClass.TotalUpTime += now() - self.StartUpTime
# update number of breakdowns
MachineClass.NRep += 1
# check whether we get repair service immediately
if G.RepairPerson.n ==

MachineClass.NImmedRep += 1

# need to request, and possibly queue for, the repairperson
yield request, self, G.RepairPerson
# OK, we’ve obtained access to the repairperson; now
# hold for repair time
yield hold, self,G.Rnd.expovariate (MachineClass.RepairRate)
# release the repairperson
yield release,self,G.RepairPerson

def main():
initialize ()
# set up the two machine processes
for I in range(2):
M = MachineClass ()
activate (M,M.Run())
MaxSimtime = 10000.0
simulate (until=MaxSimtime)

print ’proportion of up time:’, MachineClass.TotalUpTime/ (2+xMaxSimtime)

print ’proportion of times repair was immediate:’, \
float (MachineClass.NImmedRep) /MachineClass.NRep

if name ==/ main_ ’: main()

There is a lot here, but basically it is similar to the thrd class we saw above. If you were to look at the
SimPy internal code, SimPy.Simulation.py, you would see that a large amount of it looks like the code in
thrd. In fact, the SimPy library could be rewritten on top of thrd, greatly reducing the size of the library.
That would make future changes to the library easier, and would even make it easier to convert SimPy to
some other language, say Ruby.

Read the comments in the first few lines of the code to see what kind of system this program is modeling
before going further.

Now, let’s see the details.

SimPy’s thread class is Process. The application programmer writes one or more subclasses of this one to
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serve as thread classes. Similar to the case for the thrd and threading classes, the subclasses of Process
must include a method Run(), which describes the actions of the thread. The SimPy method activate() is
used to add a thread to the run list.

The main new ingredient here is the notion of simulated time. The current simulated time is stored in the
variable Simulation._t. Each time an event is created, via execution of a statement like

yield hold, self, holdtime

SimPy schedules the event to occur holdtime time units from now, i.e. at time _t+holdtime. What I mean
by “schedule” here is that SimPy maintains an internal data structure which stores all future events, ordered
by their occurrence times. Let’s call this the scheduled events structure, SES. Note that the elements in SES
are threads, i.e. instances of the class Process. A new event will be inserted into the SES at the proper place
in terms of time ordering.

The main loop in SimPy repeatedly cycles through the following:

e Remove the earliest event, say v, from SES.

e Advance the simulated time clock Simulation._t to the occurrence time of v.

e (all the iterator for v, i.e. the iterator for the Run() generator of that thread.

o After Run() does a yield, act on whatever operation it requests, such as hold.
In simulation programming, we often need to have one entity wait for some event to occur. In our example
here, if one machine goes down while the other is being repaired, the newly-broken machine will need to

wait for the repairperson to become available. Clearly this is like the condition variables construct in most
threads packages, including the wait and set operations in thrd, albeit at a somewhat higher level.

Specifically, SimPy includes a Resource class. In our case here, the resource is the repairperson. When a
line like

yield request,self,G.RepairPerson

is executed, SimPy will look at the internal data structure in which SimPy stores the queue for the repair-
person. If it is empty, the thread that made the request will acquire access to the repairperson, and will
be kept on the runnable list. If there are threads in the queue (here, there would be at most one), then the
thread which made the request will be removed from the runnable list, and added to the queue. Later, when
a statement like

yield release,self,G.RepairPerson
is executed by the thread currently accessing the repairperson, SimPy will check its queue, and if the queue
is nonempty, SimPy will remove the first thread from the queue, and add it back to the runnable list.

Since the simulated time variable Simulation._t is in a separate module, we cannot access it directly. Thus
SimPy includes a “getter” function, now(), which returns the value of Simulation._t.

Most discrete event simulation applications are stochastic in nature, such as we see here with the random
up and repair times for the machines. Thus most SimPy programs import the Python random module, as in
this example.
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