
Introduction to Discrete-Event Simulation and the SimPy Language

Norm Matloff

February 13, 2008
c©2006-2008, N.S. Matloff

Contents

1 What Is Discrete-Event Simulation (DES)? 3

2 World Views in DES Programming 3

2.1 The Activity-Oriented Paradigm . 3

2.2 The Event-Oriented Paradigm . 4

2.3 The Process-Oriented Paradigm . 6

3 Introduction to the SimPy Simulation Language 7

3.1 SimPy Overview . 8

3.2 Introduction to SimPy Programming . 9

3.2.1 MachRep1.py: Our First SimPy Program . 10

3.2.2 MachRep2.py: Introducing the Resource Class . 14

3.2.3 MachRep3.py: Introducing Passivate/Reactivate Operations 16

3.2.4 MMk.py: “Do It Yourself” Queue Management . 18

3.2.5 SMP.py: Simultaneous Possession of Resources . 20

3.2.6 Cell.py: Dynamic Creation of Threads . 22

3.3 Note These Restrictions on PEMs . 25

3.4 SimPy Data Collection and Display . 25

3.4.1 Introduction to Monitors . 25

3.4.2 Time Averages . 26

3.4.3 The Function Monitor.timeAverage() . 27

3.4.4 But I Recommend That You Not Use This Function 27

1

3.4.5 Little’s Rule . 28

3.5 Other SimPy Features . 29

A How to Obtain and Install SimPy 29

B Debugging and Verifying SimPy Programs 30

B.1 Debugging Tools . 30

B.2 Know How Control Transfers in SimPy Programs . 30

B.3 Always Know What (Simulated) Time It Is . 31

B.4 Starting Over . 32

B.5 Repeatability . 32

B.6 Peeking at the SimPy’s Internal Event List . 32

B.7 SimPy’s Invaluable Tracing Library . 33

C Online Documentation for SimPy 33

2

1 What Is Discrete-Event Simulation (DES)?

Consider simulation of some system which evolves through time. There is a huge variety of such applica-
tions. One can simulate a weather system, for instance. A key point, though, is that in that setting, the events
being simulated would be continuous, meaning for example that if we were to graph temperature against
time, the curve would be continuous, no breaks.

By contrast, suppose we simulate the operation of a warehouse. Purchase orders come in and are filled,
reducing inventory, but inventory is replenished from time to time. Here a typical variable would be the
inventory itself, i.e. the number of items currently in stock for a given product. If we were to graph that
number against time, we would get what mathematicians call a step function, i.e. a set of flat line seg-
ments with breaks between them. The events here—decreases and increases in the inventory—are discrete
variables, not continuous ones.

DES involves simulating such systems.

2 World Views in DES Programming

Simulation programming can often be difficult—difficult to write the code, and difficult to debug. The
reason for this is that it really is a form of parallel programming, with many different activities in progress
simultaneously, and parallel programming can be challenging.

For this reason, many people have tried to develop separate simulation languages, or at least simulation
paradigms (i.e. programming styles) which enable to programmer to achieve clarity in simulation code.
Special simulation languages have been invented in the past, notably SIMULA, which was invented in the
1960s and has significance today in that it was the language which invented the concept of object-oriented
programmg that is so popular today. However, the trend today is to simply develop simulation libraries
which can be called from ordinary languages such as C++, instead of inventing entire new languages.1 So,
the central focus today is on the programming paradigms, not on language. In this section we will present
an overview of the three major discrete-event simulation paradigms.

Several world views have been developed for DES programming, as seen in the next few sections.

2.1 The Activity-Oriented Paradigm

Let us think of simulating a queuing system. Jobs arrive at random times, and the job server takes a ran-
dom time for each service. The time between arrivals of jobs, and the time needed to serve a job, will be
continuous random variables, possibly having exponential or other continuous distributions.

For concreteness, think of an example in which the server is an ATM cash machine and the jobs are cus-
tomers waiting in line.

Under the activity-oriented paradigm, we would break time into tiny increments. If for instance the mean
interarrival time were, say 20 seconds, we might break time into increments of size 0.001. At each time
point, our code would look around at all the activities, e.g. currently-active job servicing, and check for the
possible occurrence of events, e.g. completion of service. Our goal is to find the long-run average job wait

1These libraries are often called “languages” anyway, and I will do so too.

3

time.

Let SimTime represent current simulated time. Our simulation code in the queue example above would look
something like this:

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 generate NextArrivalTime // random # generation
6 NIncrements = MaxSimTime / 0.001
7 for SimTime = 1*0.001 to NIncrements*0.001 do
8 if SimTime = NextArrivalTime then
9 add new jobobject to queue

10 QueueLength++
11 generate NextArrivalTime // random # generation
12 if not ServerBusy then
13 ServerBusy = true
14 jobobject.ArrivalTime = SimTime
15 generate ServiceFinishedtime
16 currentjob = jobobject
17 delete head of queue and assign to currentjob
18 QueueLength--
19 else
20 if SimTime = ServiceFinishedtime then
21 NJobsServed++
22 SumResidenceTimes += SimTime - currentjob.ArrivalTime
23 if QueueLength > 0 then
24 generate ServiceFinishedtime // random # generation
25 delete currentjob from queue
26 QueueLength--
27 else
28 ServerBusy = false
29 print out SumResidenceTimes / NJobsServed

2.2 The Event-Oriented Paradigm

Clearly, an activity-oriented simulation program is going to be very slow to execute. Most time increments
will produce no state change to the system at all, i.e. no new arrivals to the queue and no completions of
service by the server. Thus the activity checks will be wasted processor time. This is a big issue, because
in general simulation code often needs a very long time to run. (Electronic chip manufacturers use DES for
chip simulation. A simulation can take days to run.)

Inspection of the above pseudocode, though, shows a way to dramatically increase simulation speed. Instead
of having time “creep along” so slowly, why not take a “shortcut” to the next event? What we could do is
something like the following:

Instead of having the simulated time advance via the code

1 for SimTime = 1*0.001 to NIncrements*0.001 do

we could advance simulated time directly to the time of the next event:

4

1 if ServerBusy and NextArrivalTime < ServiceFinishedtime or
2 not ServerBusy then
3 SimTime = NextArrivalTime
4 else
5 SimTime = ServiceFinishedtime

(The reason for checking ServerBusy is that ServiceFinishedtime will be undefined if ServerBusy is false.)

The entire pseudocode would then be

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 generate NextArrivalTime
6 SimTime = 0.0;
7 while (1) do
8 if ServerBusy and NextArrivalTime < ServiceFinishedtime or
9 not ServerBusy then

10 SimTime = NextArrivalTime
11 else
12 SimTime = ServiceFinishedtime
13 if SimTime > MaxSimTime then break
14 if SimTime = NextArrivalTime then
15 QueueLength++
16 generate NextArrivalTime
17 if not ServerBusy then
18 ServerBusy = true
19 jobobject.ArrivalTime = SimTime
20 currentjob = jobobject
21 generate ServiceFinishedtime
22 QueueLength--
23 else // the case SimTime = ServiceFinishedtime
24 NJobsServed++
25 SumResidenceTimes += SimTime - currentjob.ArrivalTime
26 if QueueLength > 0 then
27 generate ServiceFinishedtime
28 QueueLength--
29 else
30 ServerBusy = false
31 print out SumResidenceTimes / NJobsServed

The event-oriented paradigm formalizes this idea. We store an event set, which is the set of all pending
events. In our queue example above, for instance, there will always be at least one event pending, namely
the next arrival, and sometimes a second pending event, namely the completion of a service. Our code above
simply inspects the scheduled event times of all pending events (again, there will be either one or two of
them in our example here), and updates SimTime to the minimum among them.

In the general case, there may be many events in the event set, but the principle is still the same—in each
iteration of the while loop, we update SimTime to the minimum among the scheduled event times. Note
also that in each iteration of the while loop, a new event is generated and added to the set; be sure to look at
the pseudocode above and verify this.

5

Thus a major portion of the execution time for the program will consist of a find-minimum operation within
the event set. Accordingly, it is desirable to choose a data structure for the set which will facilitate this
operation, such as a heap-based priority queue. In many event-oriented packages, though, the event set is
implemented simply as a linearly-linked list. This will be sufficiently efficient as long as there usually aren’t
too many events in the event set; again, in the queue example above, the maximum size of the event set is 2.
(We will return to the issue of efficient event lists in a later unit.)

Again, note the contrast between this and continuous simulation models. The shortcut which is the heart
of the event-oriented paradigm was only possible because of the discrete nature of system change. So this
paradigm is not possible in models in which the states are continuous in nature.

The event-oriented paradigm was common in the earlier years of simulation, used in packages in which code
in a general-purpose programming language such as C called functions in a simulation library. It still has
some popularity today. Compared to the main alternative, the process-oriented paradigm, the chief virtues
of the event-oriented approach are:

• Ease of implementation. The process-oriented approach requires something like threads, and in those
early days there were no thread packages available. One needed to write one’s own threads mecha-
nisms, by writing highly platform-dependent assembly-language routines for stack manipulation.

• Execution speed. The threads machinery of process-oriented simulation really slows down execution
speed (even if user-level threads are used).

• Flexibility. If for example one event will trigger two others, it is easy to write this into the application
code.

2.3 The Process-Oriented Paradigm

Here each simulation activity is modeled by a process. The idea of a process is similar to the notion by
the same name in Unix, and indeed one could write process-oriented simulations using Unix processes.
However, these would be inconvenient to write, difficult to debug, and above all they would be slow.

As noted earlier, the old process-oriented software such as SIMULA and later CSIM were highly platform-
dependent, due to the need for stack manipulation. However, these days this problem no longer exists, due
to the fact that modern systems include threads packages (e.g. pthreads in Unix, Java threads, Windows
threads and so on). Threads are sometimes called “lightweight” processes.

If we were to simulate a queuing system as above, but using the process-oriented paradigm, we would have
two threads, one simulating the arrivals and the other simulating the operation of the server. Those would
be the application-specific threads (so NumActiveAppThreads = 2 in the code below), and we would also
have a general thread to manage the event set.

Our arrivals thread would look something like

1 NumActiveAppThreads++
2 while SimTime < MaxSimTime do
3 generate NextArrivalTime
4 add an arrival event for time NextArrivalTime to the event set
5 sleep until wakened by the event-set manager
6 jobobject.ArrivalTime = SimTime

6

7 add jobobject to the machine queue
8 thread exit

The server thread would look something like

1 NumActiveAppThreads++
2 while SimTime < MaxSimTime do
3 sleep until QueueLength > 0
4 while QueueLength > 0 do
5 remove queue head and assign to jobobject
6 QueueLength--
7 generate ServiceFinishedtime
8 add a service-done event for time ServiceFinishedtime to the event set
9 sleep until wakened by the event-set manager

10 SumResidenceTimes += SimTime - jobobject.ArrivalTime
11 NJobsServed++
12 thread exit

The event set manager thread would look something like

1 while SimTime < MaxSimTime do
2 sleep until event set is nonempty
3 delete the minimum-time event E from the event set
4 update SimTime to the time scheduled for E
5 wake whichever thread had added E to the event set
6 thread exit

The function main() would look something like this:

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 start the 3 threads
6 sleep until all 3 threads exit
7 print out SumResidenceTimes / NJobsServed

Note that the event set manager would be library code, while the other modules shown above would be
application code.

Two widely used oper-source process-oriented packages are C++SIM, available at http://cxxsim.
ncl.ac.uk and SimPy, available at http://simpy.sourceforge.net.

The process-oriented paradigm produces more modular code. This is probably easier to write and easier for
others to read. It is considered more elegant, and is the more popular of the two main world views today.

3 Introduction to the SimPy Simulation Language

SimPy (rhymes with “Blimpie”) is a package for process-oriented discrete-event simulation. It is written in,
and called from, Python. I like the clean manner in which it is designed, and the use of Python generators—

7

http://cxxsim.ncl.ac.uk
http://cxxsim.ncl.ac.uk
http://simpy.sourceforge.net

and for that matter, Python itself—is a really strong point. If you haven’t used Python before, you can learn
enough about it to use SimPy quite quickly; see my quick introduction to Python, at my Python tutorials
page, http://heather.cs.ucdavis.edu/˜matloff/python.html.

Instructions on how to obtain and install SimPy are given in Appendix A.

Instead of using threads, as is the case for most process-oriented simulation packages, SimPy makes novel
use of Python’s generators capability.2 Generators allow the programmer to specify that a function can be
prematurely exited and then later re-entered at the point of last exit, enabling coroutines, meaning functions
that alternate execution with each other. The exit/re-entry points are marked by Python’s yield keyword.
Each new call to the function causes a resumption of execution of the function at the point immediately
following the last yield executed in that function. As you will see below, that is exactly what we need for
DES.

For convenience, I will refer to each coroutine (or, more accurately, each instance of a coroutine), as a
thread.3

3.1 SimPy Overview

Here are the major SimPy classes which we will cover in this introduction:4

• Process: simulates an entity which evolves in time, e.g. one customer who needs to be served by an
ATM machine; we will refer to it as a thread, even though it is not a formal Python thread

• Resource: simulates something to be queued for, e.g. the machine

Here are the major SimPy operations/function calls we will cover in this introduction:

• activate(): used to mark a thread as runnable when it is first created

• simulate(): starts the simulation

• yield hold: used to indicate the passage of a certain amount of time within a thread; yield is a Python
operator whose first operand is a function to be called, in this case a code for a function that performs
the hold operation in the SimPy library

• yield request: used to cause a thread to join a queue for a given resource (and start using it immedi-
ately if no other jobs are waiting for the resource)

• yield release: used to indicate that the thread is done using the given resource, thus enabling the next
thread in the queue, if any, to use the resource

• yield passivate: used to have a thread wait until “awakened” by some other thread
2Python 2.2 or better is required. See my Python generators tutorial at the above URL if you wish to learn about generators, but

you do not need to know about them to use SimPy.
3This tutorial does not assume the reader has a background in threads programming. In fact, readers who do have that back-

ground will have to unlearn some of what they did before, because our threads here will be non-preemptive, unlike the preemptive
type one sees in most major threads packages.

4Others will be covered in our followup tutorial at AdvancedSimpy.pdf.

8

http://heather.cs.ucdavis.edu/~matloff/python.html
AdvancedSimpy.pdf

• reactivate(): does the “awakening” of a previously-passivated thread

• cancel(): cancels all the events associated with a previously-passivated thread

Here is how the flow of control goes from one function to another:

• When main() calls simulate() main() blocks. The simulation itself then begins, and main() will not
run again until the simulation ends. (When main() resumes, typically it will print out the results of
the simulation.)

• Anytime a thread executes yield, that thread will pause. SimPy’s internal functions will then run, and
will restart some thread (possibly the same thread).

• When a thread is finally restarted, its execution will resume right after whichever yield statement was
executed last in this thread.

Note that activate(), reactivate() and cancel do NOT result in a pause to the calling function. Such a pause
occurs only when yield is invoked. Those with extensive experience in threads programming (which, as
mentioned, we do NOT assume here) will recognize this the non-preemptive approach to threads. In my
opinion, this is a huge advantage, for two reasons:

• Your code is not cluttered up with a lot of lock/unlock operations.

• Execution is deterministic, which makes both writing and debugging the program much easier.

(A disadvantage is that SimPy, in fact Python in general, cannot run in a parallel manner on multiprocessor
machines.)

3.2 Introduction to SimPy Programming

We will demonstrate the usage of SimPy by presenting three variations on a machine-repair model. In
each case, we are modeling a system consisting of two machines which are subject to breakdown, but with
different repair patterns:

• MachRep1.py: There are two repairpersons, so that the two machines can be repaired simultaneously
if they are both down at once.

• MachRep2.py: Here there is only one repairperson, so if both machines are down then one machine
must queue for the repairperson while the other machine is being repaired.

• MachRep3.py: Here there is only one repairperson, and he/she is not summoned until both machines
are down.

In all cases, the up times and repair times are assumed to be exponentially distributed with means 1.0 and
0.5, respectively. Now, let’s look at the three programs.5

5You can make your own copies of these programs by downloading the raw .tex file for this tutorial, and then editing out the
material other than the program you want.

9

3.2.1 MachRep1.py: Our First SimPy Program

Here is the code:

1 #!/usr/bin/env python
2

3 # MachRep1.py
4

5 # Introductory SimPy example: Two machines, which sometimes break down.
6 # Up time is exponentially distributed with mean 1.0, and repair time is
7 # exponentially distributed with mean 0.5. There are two repairpersons,
8 # so the two machines can be repaired simultaneously if they are down
9 # at the same time.

10

11 # Output is long-run proportion of up time. Should get value of about
12 # 0.66.
13

14 import SimPy.Simulation # required
15 import random
16

17 class G: # global variables
18 Rnd = random.Random(12345)
19

20 class MachineClass(SimPy.Simulation.Process):
21 UpRate = 1/1.0 # reciprocal of mean up time
22 RepairRate = 1/0.5 # reciprocal of mean repair time
23 TotalUpTime = 0.0 # total up time for all machines
24 NextID = 0 # next available ID number for MachineClass objects
25 def __init__(self): # required constructor
26 SimPy.Simulation.Process.__init__(self) # must call parent constructor
27 # instance variables
28 self.StartUpTime = 0.0 # time the current up period started
29 self.ID = MachineClass.NextID # ID for this MachineClass object
30 MachineClass.NextID += 1
31 def Run(self): # required constructor
32 while 1:
33 # record current time, now(), so can see how long machine is up
34 self.StartUpTime = SimPy.Simulation.now()
35 # hold for exponentially distributed up time
36 UpTime = G.Rnd.expovariate(MachineClass.UpRate)
37 yield SimPy.Simulation.hold,self,UpTime # simulate UpTime
38 # update up time total
39 MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime
40 RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
41 # hold for exponentially distributed repair time
42 yield SimPy.Simulation.hold,self,RepairTime
43

44 def main():
45 SimPy.Simulation.initialize() # required
46 # set up the two machine threads
47 for I in range(2):
48 # create a MachineClass object
49 M = MachineClass()
50 # register thread M, executing M’s Run() method,
51 SimPy.Simulation.activate(M,M.Run()) # required
52 # run until simulated time 10000
53 MaxSimtime = 10000.0
54 SimPy.Simulation.simulate(until=MaxSimtime) # required
55 print "the percentage of up time was", \
56 MachineClass.TotalUpTime/(2*MaxSimtime)
57

58 if __name__ == ’__main__’: main()

First, some style issues:

10

• My style is to put all global variables into a Python class, which I usually call G. See my Python
introductory tutorial, cited earlier, if you wish to know my reasons.

• In order to be able to use debugging tools, I always define a function main() which is my “main”
program, and include the line

if __name__ == ’__main__’: main()

Again, see my Python introductory tutorial if you wish to know the reasons.

• In this first SimPy example, I am using the “wordier” form of Python’s import facility:

import SimPy.Simulation

This leads to rather cluttered code, such as

SimPy.Simulation.simulate(until=MaxSimtime)

instead of

simulate(until=MaxSimtime)

The latter could be used had we done the import via

from SimPy.Simulation import *

But in this first SimPy program, I wanted to clearly distinguish SimPy’s functions from the others.
The same holds for the functions in the Python library random. So, in this program, we use long
names.

Let’s look at main(). Since we are simulating two machines, we create two objects of our MachineClass
class. These will be the basis for our two machine threads. Here MachineClass is a class that I wrote, as a
subclass of SimPy’s built-in class Process.

By calling SimPy’s activate() function on the two instances of MachineClass, we tell SimPy to create a
thread for each of them, which will execute the Run() function for their class. This puts them on SimPy’s
internal “ready” list of threads that are ready to run.

The call to SimPy’s simulate() function starts the simulation. The next statement, the print, won’t execute
for quite a while, since it won’t be reached until the call to simulate() returns, and that won’t occur until the
end of the simulation.

Python allows named arguments in function calls,6, and this feature is used often in the SimPy library. For
example, SimPy’s simulate() function has many arguments, one of which is named until.7 In our call here,
we have only specified the value of until, omitting the values of the other arguments. That tells the Python
interpreter that we accept whatever default values the other arguments have, but we want the argument until
to have the value 10000.0. That argument has the meaning that we will run the simulation for a simulated
time span of duration 10000.0.

In general, I’ll refer to the functions like MachineClass.Run() in this example) as process execution meth-
ods (PEMs). (Functions in Python are called methods.)

6See my Python introductory tutorial.
7Look in the file Simulation.py of the SimPy library to see the entire code for simulate().

11

The object G.Rnd is an instance of the Random class in the random module of the Python library. This
will allow us to generate random numbers, the heart of the simulation. We have arbitrarily initialized the
seed to 12345.

Since we are assuming up times and repair times are exponentially distributed, our code calls the function
random.Random.expovariate(). Its argument is the reciprocal of the mean. Here we have taken the mean
up time and repair times to be 1.0 and 0.5, respectively, just as an example.

Note too that Python’s random class contains a variety of random number generators. To see what is
available, get into interactive mode in Python and type

>>> import random
>>> dir(random)

To find out what the functions do, use Python’s online help facility, e.g.

>>> help(random.expovariate)

The call to SimPy’s initialize() function is required for all SimPy programs.

Now, let’s look at MachineClass. First we define two class variables,8 TotalUpTime and NextID. As
the comment shows, TotalUpTime will be used to find the total up time for all machines, so that we can
eventually find out what proportion of the time the machines are up. Be sure to make certain you understand
why TotalUpTime must be a class variable rather than an instance variable.

Next, there is the class’ constructor function, init ().9 Since our class here, MachineClass, is a subclass
of the SimPy built-in class Process, the first thing we must do is call the latter’s constructor; our program
will not work if we forget this (it will also fail if we forget the argument self in either constructor).

Finally, we set several of the class’ instance variables, explained in the comments. Note in particular the ID
variable. You should always put in some kind of variable like this, not necessarily because it is used in the
simulation code itself, but rather as a debugging aid.

If you have experience with pre-emptive thread systems, note that we did NOT need to protect the line

MachineClass.NextID += 1

with a lock variable. This is because a SimPy thread retains control until voluntarily relinquishing it via a
yield. Our thread here will NOT be interrupted in the midst of incrementing MachineClass.NextID.

Now let’s look at the details of Machine.Run(), where the main action of the simulation takes place.

The SimPy function now() yields the current simulated time. We are starting this machine in up mode, i.e.
no failure has occurred yet. Remember, we want to record how much of the time each machine is up, so
we need to have a variable which shows when the current up period for this machine began. With this in
mind, we had our code self.StartUpTime = SimPy.Simulation.now() record the current time, so that later
the code

8If you are not familiar with the general object-oriented programming terms class variable and instance variable, see my
Python introductory tutorial.

9Some programmers consider this to be a bit different from a constructor function, but I’ll use that term here.

12

MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime

will calculate the duration of this latest uptime period, and add it to our running total.

Again, make sure you understand why StartUpTime needs to be an instance variable rather than a class
variable.

A point to always remember about simulation programming is that you must constantly go back and forth
between two mental views of things. On the one hand, there is what I call the “virtual reality” view, where
you are imagining what would happen in the real system you are simulating. On the other hand, there is the
“nuts and bolts programming” view, in which you are focused on what actual program statesments do. With
these two views in mind, let’s discuss the lines

UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime

First, from a “virtual reality” point of view, what the yield does is simulate the passage of time, specifically,
UpTime amount of time, while the machine goes through an up period, at the end of which a breakdown
occurs.

Now here’s the “nuts and bolts programming” point of view: Python’s yield construct is a like a return,
as it does mean an exit from the function and the passing of a return value to the caller. In this case, that
return value is the tuple (SimPy.Simulation.hold,self,UpTime). Note by the way that the first element in
that tuple is in SimPy cases always the name of a function in the SimPy library. The difference between
yield and return is that the “exit” from the function is only temporary. The SimPy internals will later call
this function again, and instead of starting at the beginning, it will “pick up where it left off.” In other words,
the statement

yield SimPy.Simulation.hold,self,UpTime

will cause a temporary exit from the function but later we will come back and resume execution at the line

MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime

The term “yield” alludes to the fact that this thread physically relinquishes control of the Python interpreter.
Execution of this thread will be suspended, and another thread will be run. Later, after simulated time
has advanced to the end of the up period, control will return to this thread, resuming exactly where the
suspension occurred.

The second yield,

RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
yield SimPy.Simulation.hold,self,RepairTime

works similarly, suspending execution of the thread for a simulated exponentially-distributed amount of time
to model the repair time.

In other words, the while loop within MachineClass.Run() simulates a repeated cycle of up time, down
time, up time, down time, ... for this machine.

13

It is very important to understand how control transfers back and forth among the threads. Say for example
that machine 0’s first uptime lasts 1.2 and its first downtime lasts 0.9, while for machine 1 the corresponding
times are 0.6 and 0.8. The simulation of course starts at time 0.0. Then here is what will happen:

• The two invocations of activate() in main() cause the two threads to be added to the “runnable” list
maintained by the SimPy internals.

• The invocation of simulate() tells SimPy to start the simulation. It will then pick a thread from the
“runnable” list and run it. We cannot predict which one it will be, but let’s say it’s the thread for
machine 0.

• The thread for machine 0 will generate the value 1.2, then yield. SimPy’s internal event list will now
show that the thread for machine 0 is suspended until simulated time 0.0+1.2 = 1.2. This thread will
be moved to SimPy’s “suspended” list.

• The thread for machine 1 (the only available choice at this time) will now run, generating the value
0.6, then yielding. SimPy’s event list will now show that the thread for machine 1 is waiting until time
0.6. The “runnable” list will be empty now.

• Upon finding that the runnable list is empty, SimPy now removes the earliest event from the event list,
which will be the event at time 0.6 (in which machine 1 breaks down). SimPy advances the simulated
time clock to this time, and then resumes the thread corresponding to the 0.6 event, i.e. the thread for
machine 1.

• The latter generates the value 0.8, then yields. SimPy’s event list will now show that the thread for
machine 1 has an event scheduled at time 0.6+0.8 = 1.4.

• SimPy advances the simulated time clock to the earliest event in the event list, which is for time 1.2.
It removes this event from the event list, and then resumes the thread corresponding to the 1.2 event,
i.e. the thread for machine 0.

• Etc.

When the simulation ends, control returns to the line following the call to simulate() where the result is
printed out:

print "the percentage of up time was", Machine.TotalUpTime/(2*MaxSimtime)

3.2.2 MachRep2.py: Introducing the Resource Class

Here is the code:

1 #!/usr/bin/env python
2

3 # MachRep2.py
4

5 # SimPy example: Variation of MachRep1.py. Two machines, but sometimes
6 # break down. Up time is exponentially distributed with mean 1.0, and
7 # repair time is exponentially distributed with mean 0.5. In this
8 # example, there is only one repairperson, so the two machines cannot be
9 # repaired simultaneously if they are down at the same time.

14

10

11 # In addition to finding the long-run proportion of up time as in
12 # Mach1.py, let’s also find the long-run proportion of the time that a
13 # given machine does not have immediate access to the repairperson when
14 # the machine breaks down. Output values should be about 0.6 and 0.67.
15

16 from SimPy.Simulation import *
17 from random import Random,expovariate,uniform
18

19 class G: # globals
20 Rnd = Random(12345)
21 # create the repairperson
22 RepairPerson = Resource(1)
23

24 class MachineClass(Process):
25 TotalUpTime = 0.0 # total up time for all machines
26 NRep = 0 # number of times the machines have broken down
27 NImmedRep = 0 # number of breakdowns in which the machine
28 # started repair service right away
29 UpRate = 1/1.0 # breakdown rate
30 RepairRate = 1/0.5 # repair rate
31 # the following two variables are not actually used, but are useful
32 # for debugging purposes
33 NextID = 0 # next available ID number for MachineClass objects
34 NUp = 0 # number of machines currently up
35 def __init__(self):
36 Process.__init__(self)
37 self.StartUpTime = 0.0 # time the current up period stated
38 self.ID = MachineClass.NextID # ID for this MachineClass object
39 MachineClass.NextID += 1
40 MachineClass.NUp += 1 # machines start in the up mode
41 def Run(self):
42 while 1:
43 self.StartUpTime = now()
44 yield hold,self,G.Rnd.expovariate(MachineClass.UpRate)
45 MachineClass.TotalUpTime += now() - self.StartUpTime
46 # update number of breakdowns
47 MachineClass.NRep += 1
48 # check whether we get repair service immediately
49 if G.RepairPerson.n == 1:
50 MachineClass.NImmedRep += 1
51 # need to request, and possibly queue for, the repairperson
52 yield request,self,G.RepairPerson
53 # OK, we’ve obtained access to the repairperson; now
54 # hold for repair time
55 yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
56 # repair done, release the repairperson
57 yield release,self,G.RepairPerson
58

59 def main():
60 initialize()
61 # set up the two machine processes
62 for I in range(2):
63 M = MachineClass()
64 activate(M,M.Run())
65 MaxSimtime = 10000.0
66 simulate(until=MaxSimtime)
67 print ’proportion of up time:’, MachineClass.TotalUpTime/(2*MaxSimtime)
68 print ’proportion of times repair was immediate:’, \
69 float(MachineClass.NImmedRep)/MachineClass.NRep
70

71 if __name__ == ’__main__’: main()

This model includes queuing. A typical (but not universal) way to handle that in SimPy is to add an object
of the SimPy class Resource:

15

RepairPerson = Resource(1)

with the “1” meaning that there is just one repairperson. Then in MachineClass.Run() we do the following
when an uptime period ends:

yield request,self,G.RepairPerson
yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
yield release,self,G.RepairPerson

Here is what those yield lines do:

• The first yield requests access to the repairperson. This will return immediately if the repairperson is
not busy now. Otherwise, this thread will be suspended until the repairperson is free, at which time
the thread will be resumed.

• The second yield simulates the passage of time, representing the repair time.

• The third yield releases the repairperson. If another machine had been in the queue, awaiting repair—
with its thread suspended, having executing the first yield—it would now attain access to the repair-
person, and its thread would now execute the second yield.

Suppose for instance the thread simulating machine 1 reaches the first yield slightly before the thread for
machine 0 does. Then the thread for machine 1 will immediately go to the second yield, while the thread
for machine 0 will be suspended at the first yield. When the thread for machine 1 finally executes the third
yield, then SimPy’s internal code will notice that the thread for machine 0 had been queued, waiting for the
repairperson, and would now reactivate that thread.

Note the line

if G.RepairPerson.n == 1:

Here n is a member variable in SimPy’s class Resource. It gives us the number of items in the resource
currently free. In our case here, we only have one repairperson, so this variable will have the value 1 or 0.
This enables us to keep a count of how many breakdowns are lucky enough to get immediate access to the
repairperson. We later use that count in our output.

The same class contains the member variable waitQ, which is a Python list which contains the queue for the
resource. This may be useful in debugging, or if you need to implement a special priority discipline other
than the ones offered by SimPy.

Another member variable is activeQ, which is a list of threads which are currently using units of this re-
source.

3.2.3 MachRep3.py: Introducing Passivate/Reactivate Operations

Here’s the code:

16

1 #!/usr/bin/env python
2

3 # MachRep3.py
4

5 # SimPy example: Variation of Mach1.py, Mach2.py. Two machines, but
6 # sometimes break down. Up time is exponentially distributed with mean
7 # 1.0, and repair time is exponentially distributed with mean 0.5. In
8 # this example,there is only one repairperson, and she is not summoned
9 # until both machines are down. We find the proportion of up time. It

10 # should come out to about 0.45.
11

12 from SimPy.Simulation import *
13 from random import Random,expovariate
14

15 class G: # globals
16 Rnd = Random(12345)
17 RepairPerson = Resource(1)
18

19 class MachineClass(Process):
20 MachineList = [] # list of all objects of this class
21 UpRate = 1/1.0
22 RepairRate = 1/0.5
23 TotalUpTime = 0.0 # total up time for all machines
24 NextID = 0 # next available ID number for MachineClass objects
25 NUp = 0 # number of machines currently up
26 def __init__(self):
27 Process.__init__(self)
28 self.StartUpTime = None # time the current up period started
29 self.ID = MachineClass.NextID # ID for this MachineClass object
30 MachineClass.NextID += 1
31 MachineClass.MachineList.append(self)
32 MachineClass.NUp += 1 # start in up mode
33 def Run(self):
34 while 1:
35 self.StartUpTime = now()
36 yield hold,self,G.Rnd.expovariate(MachineClass.UpRate)
37 MachineClass.TotalUpTime += now() - self.StartUpTime
38 # update number of up machines
39 MachineClass.NUp -= 1
40 # if only one machine down, then wait for the other to go down
41 if MachineClass.NUp == 1:
42 yield passivate,self
43 # here is the case in which we are the second machine down;
44 # either (a) the other machine was waiting for this machine to
45 # go down, or (b) the other machine is in the process of being
46 # repaired
47 elif G.RepairPerson.n == 1:
48 reactivate(MachineClass.MachineList[1-self.ID])
49 # now go to repair
50 yield request,self,G.RepairPerson
51 yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
52 MachineClass.NUp += 1
53 yield release,self,G.RepairPerson
54

55 def main():
56 initialize()
57 for I in range(2):
58 M = MachineClass()
59 activate(M,M.Run())
60 MaxSimtime = 10000.0
61 simulate(until=MaxSimtime)
62 print ’proportion of up time was’, MachineClass.TotalUpTime/(2*MaxSimtime)
63

64 if __name__ == ’__main__’: main()

Recall that in this model, the repairperson is not summoned until both machines are down. We add a class
variable MachineClass.NUp which we use to record the number of machines currently up, and then use it

17

in the following code, which is executed when an uptime period for a machine ends:

1 if MachineClass.NUp == 1:
2 yield passivate,self
3 elif G.RepairPerson.n == 1:
4 reactivate(MachineClass.MachineList[1-self.ID])

We first update the number of up machines, by decrementing MachineClass.NUp. Then if we find that
there is still one other machine remaining up, this thread must suspend, to simulate the fact that this broken
machine must wait until the other machine goes down before the repairperson is summoned. The way this
suspension is implemented is to invoke yield with the operand passivate. Later the other machine’s thread
will execute the reactivate() statement on this thread, “waking” it.

But there is a subtlety here. Suppose the following sequence of events occur:

• machine 1 goes down

• machine 0 goes down

• the repairperson arrives

• machine 0 starts repair10

• machine 0 finishes repair

• machine 1 starts repair

• machine 0 goes down again

The point is that when the thread for machine 0 now executes

if MachineClass.NUp == 1:

the answer will be no, since MachineClass.NUp will be 0. Thus this machine should not passivate itself.
But it is not a situation in which this thread should waken the other one either. Hence the need for the elif
condition.

3.2.4 MMk.py: “Do It Yourself” Queue Management

Here is an alternate way to handle queues, by writing one’s own code to manage them. Though for most
situations in which entities queue for a resource we make use of the SimPy’s Resource class, there are some
situations in which we want finer control. For instance, we may wish to set up a special priority scheme, or
we may be modeling a system in which the number of resources varies with time.11

We thus need to be able to handle resource management “on our own,” without making use of the Resource
class. The following program shows how we can do this, via passivate() and reactivate().

10You might argue that machine 1 should be served first, but we put nothing in our code to prioritize the order of service.
11One way to do this with Resource is to use fake yield request and yield release statements, with the effect of reducing

and increasing the number of servers. However, this must be done carefully. See a discussion of this on the SimPy Web site, at
http://simpy.sourceforge.net/changingcapacity.htm.

18

http://simpy.sourceforge.net/changingcapacity.htm

This is what is known as an M/M/k queue. Service and interarrival times are exponentially distributed, and
there are k servers with a common queue.

In the arrivals thread, when a job arrives, the code adds the job to the queue, and if any server is idle, it is
awakened to serve this new job. In the server thread, a server sleeps until awakened, then serves jobs as long
as the queue is nonempty, then goes back to sleep.

1 #!/usr/bin/env python
2

3 # simulates NMachines machines, plus a queue of jobs waiting to use them
4

5 # usage: python MMk.py NMachines ArvRate SrvRate MaxSimtime
6

7 from SimPy.Simulation import *
8 from random import Random,expovariate
9

10 # globals
11 class G:
12 Rnd = Random(12345)
13

14 class MachineClass(Process):
15 SrvRate = None # reciprocal of mean service time
16 Busy = [] # busy machines
17 Idle = [] # idle machines
18 Queue = [] # queue for the machines
19 NDone = 0 # number of jobs done so far
20 TotWait = 0.0 # total wait time of all jobs done so far, including
21 # both queuing and service times
22 def __init__(self):
23 Process.__init__(self)
24 MachineClass.Idle.append(self) # starts idle
25 def Run(self):
26 while 1:
27 # "sleep" until this machine awakened
28 yield passivate,self
29 MachineClass.Idle.remove(self)
30 MachineClass.Busy.append(self)
31 # take jobs from the queue as long as there are some there
32 while MachineClass.Queue != []:
33 # get the job
34 J = MachineClass.Queue.pop(0)
35 # do the work
36 yield hold,self,G.Rnd.expovariate(MachineClass.SrvRate)
37 # bookkeeping
38 MachineClass.NDone += 1
39 MachineClass.TotWait += now() - J.ArrivalTime
40 MachineClass.Busy.remove(self)
41 MachineClass.Idle.append(self)
42

43 class JobClass:
44 def __init__(self):
45 self.ArrivalTime = now()
46

47 class ArrivalClass(Process):
48 ArvRate = None
49 def __init__(self):
50 Process.__init__(self)
51 def Run(self):
52 while 1:
53 # wait for arrival of next job
54 yield hold,self,G.Rnd.expovariate(ArrivalClass.ArvRate)
55 J = JobClass()
56 MachineClass.Queue.append(J)
57 # any machine ready?
58 if MachineClass.Idle != []:
59 reactivate(MachineClass.Idle[0])

19

60

61 def main():
62 NMachines = int(sys.argv[1])
63 ArrivalClass.ArvRate = float(sys.argv[2])
64 MachineClass.SrvRate = float(sys.argv[3])
65 initialize()
66 for I in range(NMachines):
67 M = MachineClass()
68 activate(M,M.Run())
69 A = ArrivalClass()
70 activate(A,A.Run())
71 MaxSimtime = float(sys.argv[4])
72 simulate(until=MaxSimtime)
73 print MachineClass.TotWait/MachineClass.NDone
74

75 if __name__ == ’__main__’: main()

Note the line

ArvRate = None

in the class ArrivalClass. You may think that that cancels the action of the line

ArrivalClass.ArvRate = float(sys.argv[2])

in main(), further down in the file. But in Python, the interpreter executes a source file from top to bottom,
and any freestanding variables, in this case class variables, will be executed along the way. So,

ArvRate = None

is executed before

ArrivalClass.ArvRate = float(sys.argv[2])

not after.

We actually could have dispensed with

ArvRate = None

because in Python variables for a class can be added during execution, but we have this line for the sake of
documentation.

3.2.5 SMP.py: Simultaneous Possession of Resources

Here is another example, this one modeling a multiprocessor computer system, i.e. one with many CPUs.

Computer communicate with memory and I/O devices via buses, which are simply sets of parallel wires.
Only one entity can use the bus at a time, so if more than one attempts to do so, only one succeeds and the

20

others must wait. We say that the entity that succeeds—whether it be a CPU, an I/O device (including those
using Direct Memory Access), a sophisticated memory system, etc.—acquires the bus.

A bus, being a single path, can become a bottleneck in multiprocessor systems. One solution to this problem
is to have multipath connection networks, but even for a bus-based system there are measures we can take.
One of them is to make the bus work in split-transaction form, which is what we assume here. It means
that when a CPU places a memory request on the bus, that CPU then immediately releases the bus, so that
other entities can use the bus while the memory request is pending. When the memory request is complete,
the memory module involved will then acquire the bus, place the result on the bus (the read value in the
case of a read request, an acknowledgement in the case of a write request), and also place on the bus the ID
number of the CPU that had made the request. The latter ID will see that the memory’s response is for it.

In our SimPy code here, we see more use of SimPy’s request and release capabilities. One thing to pay
particular attention to is the fact that a processor needs at one point to have possession of (i.e. execute a
yield request for) of two things at once.

1 #!/usr/bin/env python
2

3 # SMP.py
4

5 # SimPy example: Symmetric multiprocessor system. Have m processors
6 # and m memory modules on a single shared bus. The processors read from
7 # and write to the memory modules via messages sent along this shared
8 # bus. The key word here is "shared"; only one entity (processor or
9 # memory module) can transmit information on the bus at one time.

10

11 # When a processor generates a memory request, it must first queue for
12 # possession of the bus. Then it takes 1.0 amount of time to reach the
13 # proper memory module. The request is queued at the memory module, and
14 # when finally served, the service takes 0.6 time. The memory module
15 # must then queue for the bus. When it acquires the bus, it sends the
16 # response (value to be read in the case of a read request,
17 # acknowledgement in the case of a write) along the bus, together with
18 # the processor number. The processor which originally made the request
19 # has been watching the bus, and thus is able to pick up the response.
20

21 # When a memory module finishes a read or write operation, it will not
22 # start any other operations until it finishes sending the result of the
23 # operation along the bus.
24

25 # For any given processor, the time between the completion of a previous
26 # memory request and the generation of a new request has an exponential
27 # distribution. The specific memory module requested is assumed to be
28 # chosen at random (i.e. uniform distribution) from the m modules.
29 # While a processor has a request pending, it does not generate any new
30 # ones.
31

32 # The processors are assumed to act independently of each other, and the
33 # requests for a given processor are assumed independent through time.
34 # Of course, more complex assumptions could be modeled.
35

36 from SimPy.Simulation import *
37 from random import Random,expovariate,uniform
38 import sys
39

40 class Processor(Process):
41 M = int(sys.argv[1]) # number of CPUs/memory modules
42 InterMemReqRate = 1.0/float(sys.argv[2])
43 NDone = 0 # number of memory requests completed so far
44 TotWait = 0.0 # total wait for those requests
45 WaitMem = 0
46 NextID = 0
47 def __init__(self):

21

48 Process.__init__(self)
49 self.ID = Processor.NextID
50 Processor.NextID += 1
51 def Run(self):
52 while 1:
53 # generate a memory request
54 yield hold,self,expovariate(Processor.InterMemReqRate)
55 self.StartWait = now() # start of wait for mem request
56 # acquire bus
57 yield request,self,G.Bus
58 # use bus
59 yield hold,self,1.0
60 # relinquish bus
61 yield release,self,G.Bus
62 self.Module = G.Rnd.randrange(0,Processor.M)
63 # go to memory
64 self.StartMemQ = now()
65 yield request,self,G.Mem[self.Module]
66 if now() > self.StartMemQ:
67 Processor.WaitMem += 1
68 # simulate memory operation
69 yield hold,self,0.6
70 # memory sends result back to requesting CPU
71 yield request,self,G.Bus
72 yield hold,self,1.0
73 # done
74 yield release,self,G.Bus
75 yield release,self,G.Mem[self.Module]
76 Processor.NDone += 1
77 Processor.TotWait += now() - self.StartWait
78

79 # globals
80 class G:
81 Rnd = Random(12345)
82 Bus = Resource(1)
83 CPU = [] # array of processors
84 Mem = [] # array of memory modules
85

86 def main():
87 initialize()
88 for I in range(Processor.M):
89 G.CPU.append(Processor())
90 activate(G.CPU[I],G.CPU[I].Run())
91 G.Mem.append(Resource(1))
92 MaxSimtime = 10000.0
93 simulate(until=MaxSimtime)
94 print ’mean residence time’, Processor.TotWait/Processor.NDone
95 print ’prop. wait for mem’, float(Processor.WaitMem)/Processor.NDone
96

97 if __name__ == ’__main__’:
98 main()

3.2.6 Cell.py: Dynamic Creation of Threads

In our examples so far, all creations of threads, i.e. all calls to activate(), have been done within main().
Now let’s see an example in which thread creation occurs throughout execution of the program.

This program simulates one cell of a cellular phone network. A major highway runs through the cell, so calls
in progress enter the cell at random times. The action of a call being transferred from one cell to another
is called handoff. Handoff calls stay active for a constant time, the time it takes to drive through the cell.
(In this simpler model, we assume that the call lasts the entire time the car is in the cell. There are nice
SimPy features we could use if we were to drop this assumption.) We also assume that cars entering the cell

22

without calls in progress don’t start one in the cell.

Calls also originate at random times from local people, who stay in the cell. Local calls last a random time.

Each call uses a separate channel (i.e. frequency or time slot). If there are no free channels available when a
handoff call arrives, it is rejected. Handoff calls have priority over local calls. Specifically, among whatever
free channels available at a given time, NRsrvd of them will be reserved for handoff calls that might come
in. If we have more than that many free channels, the excess are available for local calls.

Note that individual channels are not reserved. Say for example that NChn is 8 and NRsrvd is 3. If we
currently have three or fewer free channels, then any local call will be rejected. If we have more than three
free channels, then a local call will be accepted (and the number of free channels will be reduced by one).

A rejected call is dropped, not queued.

Here is the code:

1 # simulates one cell in a cellular phone network; a major highway runs
2 # through it, so handoff calls come in at random times but stay active
3 # for a constant time, the time it takes to drive through the cell (in
4 # this simpler model, we assume that a handoff call lasts the entire
5 # time the car is in the cell); calls also originate at random times
6 # from local people, who stay in the cell; for them, calls last a random
7 # time; a call is dropped, not queued, if a channel is not available
8

9 # usage:
10

11 # python Cell.py HRate DrvTime LRate LDurRate NChn NRsrvd MaxSimTime
12

13 # where:
14

15 # HRate = rate of arrivals of handoff calls (reciprocal of mean time
16 # between arrivals)
17 # DrvTime = drive-through time for the cell
18 # LRate = rate of creations of local calls (reciprocal of mean time
19 # between creations)
20 # LDurRate = reciprocal of mean duration of local calls
21 # NChn = number of channels
22 # NRsrvd = number of channels reserved for handoff calls
23 # MaxSimtime = amount of time to simulate
24

25 import sys,random
26

27 from SimPy.Simulation import *
28

29 class Globals:
30 Rnd = random.Random(12345)
31

32 class Cell:
33 NChn = None
34 NRsrvd = None
35 FreeChannels = None
36 NNoLocalsAllowedPeriods = 0
37 TimeNoLocalsAllowed = 0.0
38 LatestStartNoLocalsAllowed = None
39 def GrabAChannel():
40 Cell.FreeChannels -= 1 # grab the channel
41 if Cell.FreeChannels == Cell.NRsrvd:
42 Cell.LatestStartNoLocalsAllowed = now()
43 GrabAChannel = staticmethod(GrabAChannel)
44 def ReleaseAChannel():
45 Cell.FreeChannels += 1 # release the channel
46 if Cell.FreeChannels == Cell.NRsrvd+1:
47 Cell.NNoLocalsAllowedPeriods += 1

23

48 Cell.TimeNoLocalsAllowed += now() - Cell.LatestStartNoLocalsAllowed
49 Cell.LatestStartNoLocalsAllowed = None
50 ReleaseAChannel = staticmethod(ReleaseAChannel)
51

52 class Arrivals(Process):
53 NArrv = {’handoff’:0,’local’:0} # numbers of calls arrived so far
54 def __init__(self,Type,Arr,Dur):
55 Process.__init__(self)
56 self.Type = Type
57 self.Arr = Arr
58 self.Dur = Dur
59 def Run(self):
60 while 1:
61 TimeToNextArrival = Globals.Rnd.expovariate(self.Arr)
62 yield hold,self,TimeToNextArrival
63 Arrivals.NArrv[self.Type] += 1
64 C = Call(self.Type,self.Dur)
65 activate(C,C.Run())
66

67 class Call(Process):
68 NRej = {’handoff’:0,’local’:0} # numbers of calls rejected so far
69 def __init__(self,Type,Dur):
70 Process.__init__(self)
71 self.Type = Type
72 self.Dur = Dur
73 def Run(self): # simulates one call
74 if self.Type == ’handoff’ and Cell.FreeChannels == 0 or \
75 self.Type == ’local’ and Cell.FreeChannels <= Cell.NRsrvd:
76 Call.NRej[self.Type] += 1
77 return
78 Cell.GrabAChannel()
79 if self.Type == ’handoff’:
80 CallTime = self.Dur
81 else: # ’local’
82 CallTime = Globals.Rnd.expovariate(self.Dur)
83 yield hold,self,CallTime # the call runs its course
84 Cell.ReleaseAChannel()
85

86 def main():
87 HRate = float(sys.argv[1])
88 DrvTime = float(sys.argv[2])
89 LRate = float(sys.argv[3])
90 LDurRate = float(sys.argv[4])
91 Cell.NChn = int(sys.argv[5])
92 Cell.FreeChannels = Cell.NChn
93 Cell.NRsrvd = int(sys.argv[6])
94 initialize()
95 HA = Arrivals(’handoff’,HRate,DrvTime)
96 activate(HA,HA.Run())
97 LCr = Arrivals(’local’,LRate,LDurRate)
98 activate(LCr,LCr.Run())
99 MaxSimtime = float(sys.argv[7])

100 simulate(until=MaxSimtime)
101 print ’percentage of rejected handoff calls:’, \
102 Call.NRej[’handoff’]/float(Arrivals.NArrv[’handoff’])
103 print ’percentage of rejected local calls:’, \
104 Call.NRej[’local’]/float(Arrivals.NArrv[’local’])
105 print ’mean banned period for locals’, \
106 Cell.TimeNoLocalsAllowed/float(Cell.NNoLocalsAllowedPeriods)
107

108 if __name__ == ’__main__’: main()

As you can see, main() sets up two arrivals threads, but each of those in turn creates call threads throughout
the simulation.

The program finds the proportions of rejected calls of each type, and the mean duration of periods during

24

which the door is closed to local calls. Note the code for the latter in particular, as it is a common pattern.

An alternative approach would have been to model the channels as threads. All channels start out free,
placed in a Python list which would serve as a pool of free channels to draw from. At the beginning of
its Run() function, a thread would passivate itself. When a call arrived, that arrivals thread would pull the
thread for a free channel, if any, from this pool and reactivate that thread.

3.3 Note These Restrictions on PEMs

Some PEMs may be rather lengthy, and thus you will probably want to apply top-down program design and
break up one monolithic PEM into smaller functions. In other words, you may name your PEM Run(), and
then have Run() in turn call some smaller functions. This is of course highly encouraged. However, you
must make sure that you do not invoke yield in those subprograms; it must be used only in the PEM itself.
Otherwise the Python interpreter would lose track of where to return the next time the PEM were to resume
execution.

Also, make sure NOT to invoke yield from within main() or some other function not associated with a call
to activate().

3.4 SimPy Data Collection and Display

SimPy provides the class Monitor to make it more convenient to collect data for your simulation output. It
is a subclass of the Python list type.

3.4.1 Introduction to Monitors

For example, suppose you have a variable X in some line in your SimPy code and you wish to record all
values X takes on during the simulation. Then you would set up an object of type Monitor, say named
XMon, in order to remind yourself that this is a monitor for X. Each time you have a value of X to record,
you would have a line like

XMon.observe(X)

which would add a 2-tuple consisting of the current simulated time and the value X to the list XMon. (So,
XMon consists of main a list of pairs.)

The Monitor class also includes member functions that operate on the list. For example, you can compute
the mean of X:

print ’the mean of X was’, XMon.mean()

For example, we could apply this to the program MMk.py in Section 3.2.4. Here are code excerpts where
we would make changes (look for lines referring to WaitMon):

class MachineClass(Process):
...

25

TotWait = 0.0
WaitMon = Monitor()
def __init__(self):

...
def Run(self):

while 1:
...

while MachineClass.Queue != []:
J = MachineClass.Queue.pop(0)
yield hold,self,G.Rnd.expovariate(MachineClass.SrvRate)
Wait = now() - J.ArrivalTime
MachineClass.WaitMon.observe(Wait)

...
MaxSimtime = float(sys.argv[4])
simulate(until=MaxSimtime)
print MachineClass.WaitMon.mean()

There is a function Monitor.var() for the variance too.

Note, though, that means are often not meaningful, no pun intended. To get a better understanding of queue
wait times, for instance, you may wish to plot a histogram of the wait times, rather than just computing their
mean. This is possible, via the function Monitor.histogram, which finds the bin counts and places them
into a data structure which can then be displayed using SimPy’s SimPlot package.

Indeed, since monitors collect all the data, you can write your own routines (or better, subclasses of Monitor,
to find quantiles, etc.

3.4.2 Time Averages

Suppose in the example above we wished to find the long-run queue length. Before addressing how to do
this, let’s first ask what it really means.

Suppose we record every queue length that occurs in our simulation run, and take the average of those
numbers. Would that be what we want? No, because it doesn’t account for the time duration of each of
those numbers. If for instance the queue had length 5 for long periods of time but had length 2 for shorter
times, clearly we should not give the 5 and the 2 equal weights. We need to factor the durations into our
weighting.

Say for instance the queue lengths were as follows: 2 between times 0.0 and 1.4, 3 between times 1.4 and
2.1, 2 between times 2.1 and 4.9, and 1 between 4.9 and 5.3. Then the average would be

(2× 1.4 + 3× 0.7 + 2× 2.8 + 1× 0.4)/5.3 = 2.06 (1)

Another way to look at it would be to think of observing the system at regular time intervals, say 1.0, 2.0,
3.0 etc. Let Qi denote the queue length observed at time i. Then we could define the long-run average queue
length as

lim
n→∞

Q1 + ... + Qn

n
(2)

This actually is consistent with (1), in the long run.

26

3.4.3 The Function Monitor.timeAverage()

The function Monitor.timeAverage() computes time-value product averages for us, very convenient. Each
time the queue changes length, you would call Monitor.observe() with the current queue length as argument,
resulting in Monitor recording the length and the current simulated time (from now()).

In our little numerical example which led to (1), when the simulation ends, at time 5.3, the monitor will
consist of this list of pairs: [[0.0,2], [1.4,3], [2.1,2], [4.9,1]] The function timeAverage() would then
compute the value 2.06, as desired.

3.4.4 But I Recommend That You Not Use This Function

You should be careful, though. Properly keeping track of when to call timeAverage() is a bit delicate. Also,
this function only gives you a mean, not variances or other statistics.

Thus I recommend that you simply set up another thread whose sole purpose is to add periodic sampling to
estimate (2). This is simpler, more general and more flexible. To that end, here is a function you can use:

1 # PeriodicSampler.py
2

3 # creates a thread for periodic sampling, e.g. to be used for long-run
4 # queue length; the arguments Per, Mon and Fun are the sampling period,
5 # the monitor to be used, and the function to be called to get the data
6 # to be recorded
7

8 from SimPy.Simulation import *
9

10 class PerSmp(Process):
11 def __init__(self,Per,Mon,Fun):
12 Process.__init__(self)
13 self.Per = Per
14 self.Mon = Mon
15 self.Fun = Fun
16 def Run(self):
17 while 1:
18 yield hold,self,self.Per
19 Data = self.Fun()
20 self.Mon.observe(Data)

Here the argument Per allows us to sample with whatever frequency we like. A higher rate gives us more
statistical accuracy (due to taking more samples), while a lower rate means a somewhat faster program.

Note the need for the function argument Fun. We need to tell PerSmp what data item to record. If we had
made the argument that data, then we’d only get the first value of that data (probably 0 or None), rather than
the changing values over time.

Here is an example of use:

1 #!/usr/bin/env python
2

3 # PerSmpExample.py--illustration of usage of the PerSmp class
4

5 # single-server queue, with interarrival and service times having
6 # uniform distributions on (0,1) and (0,0.5), respectively
7

8 from SimPy.Simulation import *

27

9 from random import Random,uniform
10 import sys
11 from PeriodicSampler import PerSmp
12

13 class G: # globals
14 Rnd = Random(12345)
15 S = None # our one server
16

17 class Srvr(Resource):
18 def __init__(self):
19 Resource.__init__(self)
20 self.QMon = Monitor() # monitor queue lengths
21 self.PrSm = PerSmp(1.0,self.QMon,self.SMonFun)
22 activate(self.PrSm,self.PrSm.Run())
23 def SMonFun(self): # for PerSmp
24 return len(self.waitQ)
25

26 class Job(Process):
27 def __init__(self):
28 Process.__init__(self)
29 self.ArrivalTime = now()
30 def Run(self):
31 yield request,self,G.S
32 yield hold,self,G.Rnd.uniform(0,0.5)
33 yield release,self,G.S
34

35 class Arrivals(Process):
36 def __init__(self):
37 Process.__init__(self)
38 def Run(self):
39 while 1:
40 yield hold,self,G.Rnd.uniform(0,1)
41 J = Job()
42 activate(J,J.Run())
43

44 def main():
45 initialize()
46 A = Arrivals()
47 activate(A,A.Run())
48 G.S = Srvr()
49 MaxSimtime = 10000.0
50 simulate(until=MaxSimtime)
51 print ’mean queue length:’,G.S.QMon.mean()
52

53 if __name__ == ’__main__’: main()

3.4.5 Little’s Rule

Little’s Rule says,

mean queue length = arrival rate × mean wait

For First Come, First Served queues, an informal proof goes along the following lines: Imagine that you
have just gotten to the head of the queue and have started service, with a wait of 5 minutes, and that the
arrival rate is 2 jobs per minute. During your 5-minute wait, there would be an average of 5 × 2 = 10 jobs
arriving, thus an average of 10 jobs behind you now in the queue, i.e. the mean queue length should be 10.
Little’s Rule has been formally proved in quite broad generality, including for non-FCFS priority policies.

The point is that if your simulation program is finding the mean wait anyway, you can get the mean queue
length from it via Little’s Rule, without any extra code.

28

Little’s Rule is solely an issue of flow, so it can be used fairly broadly. In our unit on advanced SimPy,
http://heather.cs.ucdavis.edu/˜matloff/156/PLN/AdvancedSimPy.pdf, there is an
example in which we have data and video packets in a network. In that program, we use Little’s Rule to find
the mean number of data packets in the system, as a product of the data arrival rate (given) and the mean
residence time of data packets (computed in the simulation). The fact that data and video packets are mixed
together in the same queue is irrelevant.

3.5 Other SimPy Features

Advanced features of SimPy will be discussed in a separate document, http://heather.cs.ucdavis.
edu/˜matloff/156/PLN/AdvancedSimPy.tex.

A How to Obtain and Install SimPy

You will need to have Python version 2.3 or better.

Download SimPy from SimPy’s Sourceforge site, http://simpy.sourceforge.net.

Create a directory, say /usr/local/SimPy.12 You need to at least put the code files Simulation. and init .
in that directory, and I will assume here that you also put in the test and documentation subdirectories which
come with the package, say as subdirectories of /usr/local/SimPy.

You’ll need that directory to be in your Python path, which is controlled by the PYTHONPATH environment
variable. Set this in whatever manner your OS/shell sets environment variable. For example, in a csh/UNIX
environment, type

setenv PYTHONPATH /usr/local/

Modify accordingly for bash, Windows, etc.

One way or the other, you need to be set up so that Python finds the library files correctly. Both the SimPy
example programs and our example programs here include lines like

from SimPy.Simulation import *

which instructs the Python interpreter to look for the module Simulation in the package SimPy. Given
the setting of PYTHONPATH above, Python would look in /usr/local/ for a directory SimPy, i.e. look
for a directory /usr/local/SimPy, and then look for Simulation.py and init .py (or their .pyc compiled
versions) within that directory.

Test by copying testSimPy from that directory to some other directory and then running

python testSimPy.py

Some graphical windows will pop up, and after you remove them, a message like “Run 54 tests...” will
appear.

12My instructions here will occasionally have a slight Unix orientation, but it should be clear how to make the small adjustments
needed for other platforms.

29

http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.pdf
http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.tex
http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.tex
http://simpy.sourceforge.net

B Debugging and Verifying SimPy Programs

Debugging is difficult in any context, but especially so in parallel ones, or pseudo-parallel in the case of
SimPy. This section will give you some tips on how to debug effectively.

In addition, there is the issue of verification of program correctness. In simulation situations, we typically
do not have good test cases to use to check our code. After all, the reason we are simulating the system in
the first place is because we don’t know the quantity we are finding via simulation.

So, in simulation contexts, the only way to really check whether your code is correct is to use a debugging
tool to step through the code for a certain amount of simulated time, verifying that the events which occur
jibe with the model being simulated.

B.1 Debugging Tools

As with any other type of programming, do yourself a big favor and use a debugging tool, rather than
just adding print statements. See my debugging slide show for general tips on debugging, at http:
//heather.cs.ucdavis.edu/˜matloff/debug.html, and I have some points on Python de-
bugging in particular in my introductory Python tutorial, available at my Python tutorials page, http:
//heather.cs.ucdavis.edu/˜matloff/python.html.

Most people prefer GUI debuggers. However, the treatment below begins with the text-based debugger
included in the Python package, PDB, both because it serves as a common ground from which to illustrate
general concepts, So, I assume here that you are familiar with the material on PDB in the appendix on
debugging in my Python tutorial.

As to the GUIs, I highly recommend DDD, which provides a GUI front end to (a somewhat modified). I am
not a fan of IDEs. They are slow to load and occupy too much space on the screen, and worst of all, they
typically force me to use their text editor, rather than the one I’m comfortable with. But if I were to use
an IDE, Eclipse would be it. I have an Eclipse tutorial, which eliminates all the “gotchas” (or all the ones
I know of) and should make use of Eclipse easy. For more details on using DDD and Eclipse in a Python
context, see my Python tutorial mentioned above.

A bit of a compromise between PDB and the GUIs is available vi Xpdb, which is still text-based but adds a
source view window to PDB. See http://heather.cs.ucdavis.edu/˜matloff/xpdb.html.

B.2 Know How Control Transfers in SimPy Programs

Your ability to debug SimPy programs will be greatly enhanced by having some degree of familiarity with
SimPy’s internal operations. You should review the discussion of the SimPy threads manager at the end of
Section 3.2.1, concerning how control transfers among various SimPy functions, and always keep this in
mind. Consider for example what happens when you execute your code in PDB, and reach a line like

yield hold,self,Rnd.expovariate(ArrvRate)

Let’s see what will now happen with the debugging tool. First let’s issue PDB’s n (”next”) command, which
skips over function calls, so as to skip over the call to expovariate(). We will still be on the yield line:

30

http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/debug.html
http://heather.cs.ucdavis.edu/~matloff/python.html
http://heather.cs.ucdavis.edu/~matloff/python.html
http://heather.cs.ucdavis.edu/~matloff/xpdb.html

(Pdb) n
--Return--
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(14)Run()->(1234, yield hold,self,Rnd.expovariate(ArrvRate)

If we were to issue the n command again, the hold operation would be started, which causes us to enter
SimPy’s holdfunc() method:

(Pdb) n
> /usr/local/SimPy/Simulation.py(388)holdfunc()
-
. holdfunc(a):

This presents a problem. We don’t want to traipse through all that SimPy internals code.

One way around this would be to put breakpoints after every yield, and then simply issue the continue
command, c, each time we hit a yield.

Another possibility would be to use the debugger’s command that allows us to exit a function from within
it. In the case of PDB, this is the r (”return”) command. We issue the command twice:

(Pdb) r
--Return--
> /usr/local/SimPy/Simulation.py(389)holdfunc()->None
-> a[0][1]._hold(a)
(Pdb) r
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(29)Run()->(1234, , 0.45785058071658913)
-> yield hold,self,Rnd.expovariate(ExpRate)

Ah, there, we’re finally out of that bewildering territory.

B.3 Always Know What (Simulated) Time It Is

In debugging SimPy programs, you will always need to know what time it is on the simulated clock. Almost
any debugging tool allows you to check the values of variables, but in SimPy’s case the variable that stores
the simulated time is accessed through a function call, now().

In PDB, you could use an alias to arrange for an automatic call to now() at each breakpoint, e.g.:

alias c c;;now()

This replaces PDB’s continue command by the sequence: continue; print out the current simulated time.

Ironically, the situation is not as simple for the putatively more-powerful GUIs, as they rely on displaying
values of variables. The variable in question here, t, which stores the simulated time, is not easily accessible.
In order to keep things up to date, you would need to place a line

from SimPy.Simulation import _t

after every yield hold and at the beginning of each PEM. You could then display t in your GUI debugger’s
variable display window.

31

(Note that if a Python name begins with , you must explicitly ask for access; the wildcard form of
from...import... doesn’t pick up such variables.)

SimPy has another way to keep track of simulated time (and other things), to be discussed in Section B.7.

B.4 Starting Over

During your debugging process, you will often need to start the program over again, even though you have
not finished. To do this, first stop the simulation, by calling the following SimPy function:

(Pdb) stopSimulation()

Then hit c a couple of times to continue, which will restart the program.

If your program runs into an execution error, hit c in this case as well.

The actions for other debuggers are similar; the key is the call to stopSimulation().

B.5 Repeatability

The debugging process will be much easier if it is repeatable, i.e. if successive runs of the program give
the same output. In order to have this occur, you need to use random.Random() to initialize the seed for
Python’s random number generator, as we have done in our examples here.

B.6 Peeking at the SimPy’s Internal Event List

Here is another trick which you may find useful. You can enable looking at SimPy’s internal event list by
placing the following code in each of your PEMs:

from SimPy.Simulation import _e

The internal events list is e.events, and is implemented as a Python dictionary type, showing the events
(address of threads) for each simulated time in the future. For example,

(Pdb) _e.events
{4.9862113069200458: [<SimPy.Simulation._Action instance at
0x4043334c>], 3.3343289782218619: [<SimPy.Simulation._Action instance at
0x4043332c>]}

To do this effectively, code something like the following:

class Globals:
e = None # copy of the pointer SimPy.Simulation._e

...
def main():

...
initialize()
from SimPy.Simulation import _e
Globals.e = _e

32

Then in PDB you could issue an alias like

(Pdb) alias c c;;Globals.e.events

so that the event list would print out at each pause of execution of the program.

Similarly, in one of the GUI-based debuggers, you could display Globals.e in the variable display window.

And as mentioned earlier, you can print out the wait queue for a Resource object, etc.

B.7 SimPy’s Invaluable Tracing Library

SimPy includes a hugely useful tracing library. Here’s how to use it:

The library is part of a special version of the file Simulation.py, called SimulationTrace.py. At the top of
your code, have

from SimPy.SimulationTrace import *

instead of

from SimPy.Simulation import *

Better yet, have your command line either include ’debug’ or not, as a flag indicating whether you want
tracing turned on:

import sys,random

if ’debug’ in sys.argv: from SimPy.SimulationTrace import *
else: from SimPy.Simulation import *

Then when you run your code, type ’debug’ as, say, the last part of your command line if you want tracing
on, and omit it otherwise.

With tracing enabled, each time your code does a yield or otherwise transfers control to SimPy internals,
the tracer will print out a message. The message will first show the time, alleviating you of the need to
call now() by hand, as in Section B.3. If it is a yield hold operation, the hold time (termed “delay” in the
message) will be printed out too.

All this information will be shown by your debugging tool, say in the console section.

C Online Documentation for SimPy

Remember that Python includes documentation which is accessible in interactive mode, via dir(), help()
and PyDoc. See my Python tutorial for details.

Of course, you can also look in the SimPy source code.

33

	What Is Discrete-Event Simulation (DES)?
	World Views in DES Programming
	The Activity-Oriented Paradigm
	The Event-Oriented Paradigm
	The Process-Oriented Paradigm

	Introduction to the SimPy Simulation Language
	SimPy Overview
	Introduction to SimPy Programming
	MachRep1.py: Our First SimPy Program
	MachRep2.py: Introducing the Resource Class
	MachRep3.py: Introducing Passivate/Reactivate Operations
	MMk.py: ``Do It Yourself'' Queue Management
	SMP.py: Simultaneous Possession of Resources
	Cell.py: Dynamic Creation of Threads

	Note These Restrictions on PEMs
	SimPy Data Collection and Display
	Introduction to Monitors
	Time Averages
	The Function Monitor.timeAverage()
	But I Recommend That You Not Use This Function
	Little's Rule

	Other SimPy Features

	How to Obtain and Install SimPy
	Debugging and Verifying SimPy Programs
	Debugging Tools
	Know How Control Transfers in SimPy Programs
	Always Know What (Simulated) Time It Is
	Starting Over
	Repeatability
	Peeking at the SimPy's Internal Event List
	SimPy's Invaluable Tracing Library

	Online Documentation for SimPy

