Contents

1 What Is Discrete-Event Simulation (DES)? 3

2 World Views in DES Programming 3

 2.1 The Activity-Oriented Paradigm 3
 2.2 The Event-Oriented Paradigm 4
 2.3 The Process-Oriented Paradigm 6

3 Introduction to the SimPy Simulation Language 7

 3.1 SimPy Overview 8
 3.2 Introduction to SimPy Programming 9

 3.2.1 MachRep1.py: Our First SimPy Program 10
 3.2.2 MachRep2.py: Introducing the Resource Class 14
 3.2.3 MachRep3.py: Introducing Passivate/Reactivate Operations 16
 3.2.4 MMk.py: “Do It Yourself” Queue Management 18
 3.2.5 SMP.py: Simultaneous Possession of Resources 20
 3.2.6 Cell.py: Dynamic Creation of Threads 22

 3.3 Note These Restrictions on PEMs 25

 3.4 SimPy Data Collection and Display 25

 3.4.1 Introduction to Monitors 25
 3.4.2 Time Averages 26
 3.4.3 The Function Monitor.timeAverage() 27
 3.4.4 But I Recommend That You Not Use This Function 27
1 What Is Discrete-Event Simulation (DES)?

Consider simulation of some system which evolves through time. There is a huge variety of such applications. One can simulate a weather system, for instance. A key point, though, is that in that setting, the events being simulated would be continuous, meaning for example that if we were to graph temperature against time, the curve would be continuous, no breaks.

By contrast, suppose we simulate the operation of a warehouse. Purchase orders come in and are filled, reducing inventory, but inventory is replenished from time to time. Here a typical variable would be the inventory itself, i.e. the number of items currently in stock for a given product. If we were to graph that number against time, we would get what mathematicians call a step function, i.e. a set of flat line segments with breaks between them. The events here—decreases and increases in the inventory—are discrete variables, not continuous ones.

DES involves simulating such systems.

2 World Views in DES Programming

Simulation programming can often be difficult—difficult to write the code, and difficult to debug. The reason for this is that it really is a form of parallel programming, with many different activities in progress simultaneously, and parallel programming can be challenging.

For this reason, many people have tried to develop separate simulation languages, or at least simulation paradigms (i.e. programming styles) which enable to programmer to achieve clarity in simulation code. Special simulation languages have been invented in the past, notably SIMULA, which was invented in the 1960s and has significance today in that it was the language which invented the concept of object-oriented programming that is so popular today. However, the trend today is to simply develop simulation libraries which can be called from ordinary languages such as C++, instead of inventing entire new languages. So, the central focus today is on the programming paradigms, not on language. In this section we will present an overview of the three major discrete-event simulation paradigms.

Several world views have been developed for DES programming, as seen in the next few sections.

2.1 The Activity-Oriented Paradigm

Let us think of simulating a queuing system. Jobs arrive at random times, and the job server takes a random time for each service. The time between arrivals of jobs, and the time needed to serve a job, will be continuous random variables, possibly having exponential or other continuous distributions.

For concreteness, think of an example in which the server is an ATM cash machine and the jobs are customers waiting in line.

Under the activity-oriented paradigm, we would break time into tiny increments. If for instance the mean interarrival time were, say 20 seconds, we might break time into increments of size 0.001. At each time point, our code would look around at all the activities, e.g. currently-active job servicing, and check for the possible occurrence of events, e.g. completion of service. Our goal is to find the long-run average job wait

1 These libraries are often called “languages” anyway, and I will do so too.
time.

Let SimTime represent current simulated time. Our simulation code in the queue example above would look something like this:

```plaintext
QueueLength = 0
NJobsServed = 0
SumResidenceTimes = 0
ServerBusy = false

generate NextArrivalTime // random # generation
NIncrements = MaxSimTime / 0.001
for SimTime = 1*0.001 to NIncrements*0.001 do
    if SimTime = NextArrivalTime then
        add new jobobject to queue
        QueueLength++
        generate NextArrivalTime // random # generation
    if not ServerBusy then
        ServerBusy = true
        jobobject.ArrivalTime = SimTime
        generate ServiceFinishedtime
        currentjob = jobobject
        delete head of queue and assign to currentjob
        QueueLength--
    else
        if SimTime = ServiceFinishedtime then
            NJobsServed++
            SumResidenceTimes += SimTime - currentjob.ArrivalTime
            if QueueLength > 0 then
                generate ServiceFinishedtime // random # generation
                delete currentjob from queue
                QueueLength--
            else
                ServerBusy = false
        print out SumResidenceTimes / NJobsServed
```

2.2 The Event-Oriented Paradigm

Clearly, an activity-oriented simulation program is going to be very slow to execute. Most time increments will produce no state change to the system at all, i.e. no new arrivals to the queue and no completions of service by the server. Thus the activity checks will be wasted processor time. This is a big issue, because in general simulation code often needs a very long time to run. (Electronic chip manufacturers use DES for chip simulation. A simulation can take days to run.)

Inspection of the above pseudocode, though, shows a way to dramatically increase simulation speed. Instead of having time “creep along” so slowly, why not take a “shortcut” to the next event? What we could do is something like the following:

Instead of having the simulated time advance via the code

```plaintext
for SimTime = 1*0.001 to NIncrements*0.001 do
```

we could advance simulated time directly to the time of the next event:
if ServerBusy and NextArrivalTime < ServiceFinishedtime or not ServerBusy then
 SimTime = NextArrivalTime
else
 SimTime = ServiceFinishedtime

(The reason for checking ServerBusy is that ServiceFinishedtime will be undefined if ServerBusy is false.)

The entire pseudocode would then be

QueueLength = 0
NJobsServed = 0
SumResidenceTimes = 0
ServerBusy = false
generate NextArrivalTime
SimTime = 0.0;
while (1) do
 if ServerBusy and NextArrivalTime < ServiceFinishedtime or not ServerBusy then
 SimTime = NextArrivalTime
 else
 SimTime = ServiceFinishedtime
 if SimTime > MaxSimTime then break
 if SimTime = NextArrivalTime then
 QueueLength++
 generate NextArrivalTime
 if not ServerBusy then
 Server Busy = true
 jobobject.ArrivalTime = SimTime
 currentjob = jobobject
 generate ServiceFinishedtime
 QueueLength--
 else // the case SimTime = ServiceFinishedtime
 NJobsServed++
 SumResidenceTimes += SimTime - currentjob.ArrivalTime
 if QueueLength > 0 then
 generate ServiceFinishedtime
 QueueLength--
 else
 ServerBusy = false
 print out SumResidenceTimes / NJobsServed

The event-oriented paradigm formalizes this idea. We store an event set, which is the set of all pending events. In our queue example above, for instance, there will always be at least one event pending, namely the next arrival, and sometimes a second pending event, namely the completion of a service. Our code above simply inspects the scheduled event times of all pending events (again, there will be either one or two of them in our example here), and updates SimTime to the minimum among them.

In the general case, there may be many events in the event set, but the principle is still the same—in each iteration of the while loop, we update SimTime to the minimum among the scheduled event times. Note also that in each iteration of the while loop, a new event is generated and added to the set; be sure to look at the pseudocode above and verify this.
Thus a major portion of the execution time for the program will consist of a find-minimum operation within the event set. Accordingly, it is desirable to choose a data structure for the set which will facilitate this operation, such as a heap-based priority queue. In many event-oriented packages, though, the event set is implemented simply as a linearly-linked list. This will be sufficiently efficient as long as there usually aren’t too many events in the event set; again, in the queue example above, the maximum size of the event set is 2. (We will return to the issue of efficient event lists in a later unit.)

Again, note the contrast between this and continuous simulation models. The shortcut which is the heart of the event-oriented paradigm was only possible because of the discrete nature of system change. So this paradigm is not possible in models in which the states are continuous in nature.

The event-oriented paradigm was common in the earlier years of simulation, used in packages in which code in a general-purpose programming language such as C called functions in a simulation library. It still has some popularity today. Compared to the main alternative, the process-oriented paradigm, the chief virtues of the event-oriented approach are:

- Ease of implementation. The process-oriented approach requires something like threads, and in those early days there were no thread packages available. One needed to write one’s own threads mechanisms, by writing highly platform-dependent assembly-language routines for stack manipulation.
- Execution speed. The threads machinery of process-oriented simulation really slows down execution speed (even if user-level threads are used).
- Flexibility. If for example one event will trigger two others, it is easy to write this into the application code.

2.3 The Process-Oriented Paradigm

Here each simulation activity is modeled by a process. The idea of a process is similar to the notion by the same name in Unix, and indeed one could write process-oriented simulations using Unix processes. However, these would be inconvenient to write, difficult to debug, and above all they would be slow.

As noted earlier, the old process-oriented software such as SIMULA and later CSIM were highly platform-dependent, due to the need for stack manipulation. However, these days this problem no longer exists, due to the fact that modern systems include threads packages (e.g. pthreads in Unix, Java threads, Windows threads and so on). Threads are sometimes called “lightweight” processes.

If we were to simulate a queuing system as above, but using the process-oriented paradigm, we would have two threads, one simulating the arrivals and the other simulating the operation of the server. Those would be the application-specific threads (so NumActiveAppThreads = 2 in the code below), and we would also have a general thread to manage the event set.

Our arrivals thread would look something like

```plaintext
1 NumActiveAppThreads++
2 while SimTime < MaxSimTime do
3     generate NextArrivalTime
4     add an arrival event for time NextArrivalTime to the event set
5     sleep until wakened by the event-set manager
6     jobobject.ArrivalTime = SimTime
```
add jobobject to the machine queue
thread exit

The server thread would look something like

```plaintext
NumActiveAppThreads++
while SimTime < MaxSimTime do
    sleep until QueueLength > 0
    while QueueLength > 0 do
        remove queue head and assign to jobobject
        QueueLength--
        generate ServiceFinishedtime
        add a service-done event for time ServiceFinishedtime to the event set
        sleep until wakened by the event-set manager
        SumResidenceTimes += SimTime - jobobject.ArrivalTime
        NJobsServed++
    end
end
thread exit
```

The event set manager thread would look something like

```plaintext
while SimTime < MaxSimTime do
    sleep until event set is nonempty
    delete the minimum-time event E from the event set
    update SimTime to the time scheduled for E
    wake whichever thread had added E to the event set
end
thread exit
```

The function main() would look something like this:

```plaintext
QueueLength = 0
NJobsServed = 0
SumResidenceTimes = 0
ServerBusy = false
start the 3 threads
sleep until all 3 threads exit
print out SumResidenceTimes / NJobsServed
```

Note that the event set manager would be library code, while the other modules shown above would be application code.

The process-oriented paradigm produces more modular code. This is probably easier to write and easier for others to read. It is considered more elegant, and is the more popular of the two main world views today.

3 Introduction to the SimPy Simulation Language

SimPy (rhymes with “Blimpie”) is a package for process-oriented discrete-event simulation. It is written in, and called from, Python. I like the clean manner in which it is designed, and the use of Python generators—
and for that matter, Python itself—is a really strong point. If you haven’t used Python before, you can learn enough about it to use SimPy quite quickly; see my quick introduction to Python, at my Python tutorials page, http://heather.cs.ucdavis.edu/~matloff/python.html.

Instructions on how to obtain and install SimPy are given in Appendix A.

Instead of using threads, as is the case for most process-oriented simulation packages, SimPy makes novel use of Python’s generators capability. Generators allow the programmer to specify that a function can be prematurely exited and then later re-entered at the point of last exit, enabling coroutines, meaning functions that alternate execution with each other. The exit/re-entry points are marked by Python’s `yield` keyword. Each new call to the function causes a resumption of execution of the function at the point immediately following the last yield executed in that function. As you will see below, that is exactly what we need for DES.

For convenience, I will refer to each coroutine (or, more accurately, each instance of a coroutine), as a thread.

3.1 SimPy Overview

Here are the major SimPy classes which we will cover in this introduction:

- **Process**: simulates an entity which evolves in time, e.g. one customer who needs to be served by an ATM machine; we will refer to it as a thread, even though it is not a formal Python thread
- **Resource**: simulates something to be queued for, e.g. the machine

Here are the major SimPy operations/function calls we will cover in this introduction:

- **activate()**: used to mark a thread as runnable when it is first created
- **simulate()**: starts the simulation
- **yield hold**: used to indicate the passage of a certain amount of time within a thread; `yield` is a Python operator whose first operand is a function to be called, in this case a code for a function that performs the hold operation in the SimPy library
- **yield request**: used to cause a thread to join a queue for a given resource (and start using it immediately if no other jobs are waiting for the resource)
- **yield release**: used to indicate that the thread is done using the given resource, thus enabling the next thread in the queue, if any, to use the resource
- **yield passivate**: used to have a thread wait until “awakened” by some other thread

Python 2.2 or better is required. See my Python generators tutorial at the above URL if you wish to learn about generators, but you do not need to know about them to use SimPy.

This tutorial does not assume the reader has a background in threads programming. In fact, readers who do have that background will have to unlearn some of what they did before, because our threads here will be non-preemptive, unlike the preemptive type one sees in most major threads packages.

Others will be covered in our followup tutorial at AdvancedSimpy.pdf
• **reactivate():** does the “awakening” of a previously-passivated thread

• **cancel():** cancels all the events associated with a previously-passivated thread

Here is how the flow of control goes from one function to another:

• When `main()` calls `simulate()` `main()` blocks. The simulation itself then begins, and `main()` will not run again until the simulation ends. (When `main()` resumes, typically it will print out the results of the simulation.)

• Anytime a thread executes `yield`, that thread will pause. SimPy’s internal functions will then run, and will restart some thread (possibly the same thread).

• When a thread is finally restarted, its execution will resume right after whichever `yield` statement was executed last in this thread.

Note that `activate()`, `reactivate()` and `cancel` do NOT result in a pause to the calling function. Such a pause occurs only when `yield` is invoked. Those with extensive experience in threads programming (which, as mentioned, we do NOT assume here) will recognize this the **non-preemptive** approach to threads. In my opinion, this is a huge advantage, for two reasons:

• Your code is not cluttered up with a lot of lock/unlock operations.

• Execution is deterministic, which makes both writing and debugging the program much easier.

(A disadvantage is that SimPy, in fact Python in general, cannot run in a parallel manner on multiprocessor machines.)

3.2 Introduction to SimPy Programming

We will demonstrate the usage of SimPy by presenting three variations on a machine-repair model. In each case, we are modeling a system consisting of two machines which are subject to breakdown, but with different repair patterns:

• **MachRep1.py:** There are two repairpersons, so that the two machines can be repaired simultaneously if they are both down at once.

• **MachRep2.py:** Here there is only one repairperson, so if both machines are down then one machine must queue for the repairperson while the other machine is being repaired.

• **MachRep3.py:** Here there is only one repairperson, and he/she is not summoned until both machines are down.

In all cases, the up times and repair times are assumed to be exponentially distributed with means 1.0 and 0.5, respectively. Now, let’s look at the three programs[^5]

[^5]: You can make your own copies of these programs by downloading the raw `.tex` file for this tutorial, and then editing out the material other than the program you want.
3.2.1 MachRep1.py: Our First SimPy Program

Here is the code:

```python
#!/usr/bin/env python

# MachRep1.py

# Introductory SimPy example: Two machines, which sometimes break down.
# Up time is exponentially distributed with mean 1.0, and repair time is
# exponentially distributed with mean 0.5. There are two repairpersons,
# so the two machines can be repaired simultaneously if they are down
# at the same time.

# Output is long-run proportion of up time. Should get value of about
# 0.66.

import SimPy.Simulation # required
import random

class G:
    # global variables
    Rnd = random.Random(12345)

class MachineClass(SimPy.Simulation.Process):
    UpRate = 1/1.0 # reciprocal of mean up time
    RepairRate = 1/0.5 # reciprocal of mean repair time
    TotalUpTime = 0.0 # total up time for all machines
    NextID = 0 # next available ID number for MachineClass objects
    def __init__(self): # required constructor
        SimPy.Simulation.Process.__init__(self) # must call parent constructor
        # instance variables
        self.StartUpTime = 0.0 # time the current up period started
        self.ID = MachineClass.NextID # ID for this MachineClass object
        MachineClass.NextID += 1
        def Run(self):
            while 1:
                # record current time, now(), so can see how long machine is up
                self.StartUpTime = SimPy.Simulation.now()
                UpTime = G.Rnd.expovariate(MachineClass.UpRate)
                yield SimPy.Simulation.hold,self,UpTime # simulate UpTime
                # update up time total
                RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
                # hold for exponentially distributed repair time
                yield SimPy.Simulation.hold,self,RepairTime

class main:
    def __init__(self):
        SimPy.Simulation.initialize() # required
        # set up the two machine threads
        for I in range(2):
            # create a MachineClass object
            M = MachineClass()
            # register thread M, executing M's Run() method,
            SimPy.Simulation.activate(M,M.Run()) # required
        # run until simulated time 10000
        MaxSimtime = 10000.0
        SimPy.Simulation.simulate(unti=MaxSimtime) # required
        print "the percentage of up time was", \
        MachineClass.TotalUpTime/(2*MaxSimtime)

if __name__ == '__main__': main()
```

First, some style issues:
• My style is to put all global variables into a Python class, which I usually call G. See my Python introductory tutorial, cited earlier, if you wish to know my reasons.

• In order to be able to use debugging tools, I always define a function main() which is my “main” program, and include the line

```python
if __name__ == '__main__': main()
```

Again, see my Python introductory tutorial if you wish to know the reasons.

• In this first SimPy example, I am using the “wordier” form of Python’s import facility:

```python
import SimPy.Simulation
```

This leads to rather cluttered code, such as

```python
SimPy.Simulation.simulate(until=MaxSimtime)
```

instead of

```python
simulate(until=MaxSimtime)
```

The latter could be used had we done the import via

```python
from SimPy.Simulation import *
```

But in this first SimPy program, I wanted to clearly distinguish SimPy’s functions from the others. The same holds for the functions in the Python library random. So, in this program, we use long names.

Let’s look at main(). Since we are simulating two machines, we create two objects of our MachineClass class. These will be the basis for our two machine threads. Here MachineClass is a class that I wrote, as a subclass of SimPy’s built-in class Process.

By calling SimPy’s activate() function on the two instances of MachineClass, we tell SimPy to create a thread for each of them, which will execute the Run() function for their class. This puts them on SimPy’s internal “ready” list of threads that are ready to run.

The call to SimPy’s simulate() function starts the simulation. The next statement, the print, won’t execute for quite a while, since it won’t be reached until the call to simulate() returns, and that won’t occur until the end of the simulation.

Python allows named arguments in function calls[6] and this feature is used often in the SimPy library. For example, SimPy’s simulate() function has many arguments, one of which is named until[7]. In our call here, we have only specified the value of until, omitting the values of the other arguments. That tells the Python interpreter that we accept whatever default values the other arguments have, but we want the argument until to have the value 10000.0. That argument has the meaning that we will run the simulation for a simulated time span of duration 10000.0.

In general, I’ll refer to the functions like MachineClass.Run() in this example) as process execution methods (PEMs). (Functions in Python are called methods.)

[7]Look in the file Simulation.py of the SimPy library to see the entire code for simulate().
The object `G.Rnd` is an instance of the `Random` class in the `random` module of the Python library. This will allow us to generate random numbers, the heart of the simulation. We have arbitrarily initialized the seed to 12345.

Since we are assuming up times and repair times are exponentially distributed, our code calls the function `random.Random.expovariate()`. Its argument is the reciprocal of the mean. Here we have taken the mean up time and repair times to be 1.0 and 0.5, respectively, just as an example.

Note too that Python’s `random` class contains a variety of random number generators. To see what is available, get into interactive mode in Python and type

```
>>> import random
>>> dir(random)
```

To find out what the functions do, use Python’s online help facility, e.g.

```
>>> help(random.expovariate)
```

The call to SimPy’s `initialize()` function is required for all SimPy programs.

Now, let’s look at `MachineClass`. First we define two class variables `TotalUpTime` and `NextID`. As the comment shows, `TotalUpTime` will be used to find the total up time for all machines, so that we can eventually find out what proportion of the time the machines are up. Be sure to make certain you understand why `TotalUpTime` must be a class variable rather than an instance variable.

Next, there is the class’ constructor function, `__init__()`. Since our class here, `MachineClass`, is a subclass of the SimPy built-in class `Process`, the first thing we must do is call the latter’s constructor; our program will not work if we forget this (it will also fail if we forget the argument `self` in either constructor).

Finally, we set several of the class’ instance variables, explained in the comments. Note in particular the ID variable. You should always put in some kind of variable like this, not necessarily because it is used in the simulation code itself, but rather as a debugging aid.

If you have experience with pre-emptive thread systems, note that we did NOT need to protect the line

```
MachineClass.NextID += 1
```

with a lock variable. This is because a SimPy thread retains control until voluntarily relinquishing it via a `yield`. Our thread here will NOT be interrupted in the midst of incrementing `MachineClass.NextID`.

Now let’s look at the details of `Machine.Run()`, where the main action of the simulation takes place.

The SimPy function `now()` yields the current simulated time. We are starting this machine in up mode, i.e. no failure has occurred yet. Remember, we want to record how much of the time each machine is up, so we need to have a variable which shows when the current up period for this machine began. With this in mind, we had our code `self.StartUpTime = SimPy.Simulation.now()` record the current time, so that later the code

```
```

If you are not familiar with the general object-oriented programming terms `class variable` and `instance variable`, see my Python introductory tutorial.

Some programmers consider this to be a bit different from a constructor function, but I’ll use that term here.

will calculate the duration of this latest uptime period, and add it to our running total.

Again, make sure you understand why StartUpTime needs to be an instance variable rather than a class variable.

A point to always remember about simulation programming is that you must constantly go back and forth between two mental views of things. On the one hand, there is what I call the “virtual reality” view, where you are imagining what would happen in the real system you are simulating. On the other hand, there is the “nuts and bolts programming” view, in which you are focused on what actual program statements do. With these two views in mind, let’s discuss the lines

UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime

First, from a “virtual reality” point of view, what the yield does is simulate the passage of time, specifically, **UpTime** amount of time, while the machine goes through an up period, at the end of which a breakdown occurs.

Now here’s the “nuts and bolts programming” point of view: Python’s yield construct is a like a return, as it does mean an exit from the function and the passing of a return value to the caller. In this case, that return value is the tuple (SimPy.Simulation.hold,self,UpTime). Note by the way that the first element in that tuple is in SimPy cases always the name of a function in the SimPy library. The difference between yield and return is that the “exit” from the function is only temporary. The SimPy internals will later call this function again, and instead of starting at the beginning, it will “pick up where it left off.” In other words, the statement

yield SimPy.Simulation.hold,self,UpTime

will cause a temporary exit from the function but later we will come back and resume execution at the line

The term “yield” alludes to the fact that this thread physically relinquishes control of the Python interpreter. Execution of this thread will be suspended, and another thread will be run. Later, after simulated time has advanced to the end of the up period, control will return to this thread, resuming exactly where the suspension occurred.

The second yield,

RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
yield SimPy.Simulation.hold,self,RepairTime

works similarly, suspending execution of the thread for a simulated exponentially-distributed amount of time to model the repair time.

In other words, the while loop within MachineClass.Run() simulates a repeated cycle of up time, down time, up time, down time, ... for this machine.
It is very important to understand how control transfers back and forth among the threads. Say for example that machine 0’s first uptime lasts 1.2 and its first downtime lasts 0.9, while for machine 1 the corresponding times are 0.6 and 0.8. The simulation of course starts at time 0.0. Then here is what will happen:

- The two invocations of `activate()` in `main()` cause the two threads to be added to the “runnable” list maintained by the SimPy internals.
- The invocation of `simulate()` tells SimPy to start the simulation. It will then pick a thread from the “runnable” list and run it. We cannot predict which one it will be, but let’s say it’s the thread for machine 0.
- The thread for machine 0 will generate the value 1.2, then yield. SimPy’s internal event list will now show that the thread for machine 0 is suspended until simulated time 0.0+1.2 = 1.2. This thread will be moved to SimPy’s “suspended” list.
- The thread for machine 1 (the only available choice at this time) will now run, generating the value 0.6, then yielding. SimPy’s event list will now show that the thread for machine 1 is waiting until time 0.6. The “runnable” list will be empty now.
- Upon finding that the runnable list is empty, SimPy now removes the earliest event from the event list, which will be the event at time 0.6 (in which machine 1 breaks down). SimPy advances the simulated time clock to this time, and then resumes the thread corresponding to the 0.6 event, i.e. the thread for machine 1.
- The latter generates the value 0.8, then yields. SimPy’s event list will now show that the thread for machine 1 has an event scheduled at time 0.6+0.8 = 1.4.
- SimPy advances the simulated time clock to the earliest event in the event list, which is for time 1.2. It removes this event from the event list, and then resumes the thread corresponding to the 1.2 event, i.e. the thread for machine 0.
- Etc.

When the simulation ends, control returns to the line following the call to `simulate()` where the result is printed out:

```
print "the percentage of up time was", Machine.TotalUpTime/(2*MaxSimtime)
```

3.2.2 MachRep2.py: Introducing the Resource Class

Here is the code:

```python
#!/usr/bin/env python
# MachRep2.py
# SimPy example: Variation of MachRep1.py. Two machines, but sometimes
# break down. Up time is exponentially distributed with mean 1.0, and
# repair time is exponentially distributed with mean 0.5. In this
# example, there is only one repairperson, so the two machines cannot be
# repaired simultaneously if they are down at the same time.
```
In addition to finding the long-run proportion of up time as in Mach1.py, let’s also find the long-run proportion of the time that a given machine does not have immediate access to the repairperson when the machine breaks down. Output values should be about 0.6 and 0.67.

```python
from SimPy.Simulation import *
from random import Random, expovariate, uniform

class G: # globals
    Rnd = Random(12345)
    # create the repairperson
    RepairPerson = Resource(1)

class MachineClass(Process):
    TotalUpTime = 0.0 # total up time for all machines
    NRep = 0 # number of times the machines have broken down
    NImmedRep = 0 # number of breakdowns in which the machine
    # started repair service right away
    UpRate = 1/1.0 # breakdown rate
    RepairRate = 1/0.5 # repair rate
    # the following two variables are not actually used, but are useful
    # for debugging purposes
    NextID = 0 # next available ID number for MachineClass objects
    NUp = 0 # number of machines currently up

def __init__(self):
    Process.__init__(self)
    self.StartUpTime = 0.0 # time the current up period stated
    self.ID = MachineClass.NextID # ID for this MachineClass object
    MachineClass.NextID += 1
    MachineClass.NUp += 1 # machines start in the up mode

def Run(self):
    while 1:
        self.StartUpTime = now()
        yield hold, self, G.Rnd.expovariate(MachineClass.UpRate)
        MachineClass.TotalUpTime += now() - self.StartUpTime
        # update number of breakdowns
        MachineClass.NRep += 1
        if G.RepairPerson.n == 1:
            MachineClass.NImmedRep += 1
        else:
            yield request, self, G.RepairPerson
        # OK, we’ve obtained access to the repairperson; now
        yield request, self, G.RepairPerson
        # hold for repair time
        yield hold, self, G.Rnd.expovariate(MachineClass.RepairRate)
        # repair done, release the repairperson
        yield release, self, G.RepairPerson

def main():
    initialize()
    # set up the two machine processes
    for I in range(2):
        M = MachineClass()
        activate(M, M.Run())
    MaxSimtime = 10000.0
    simulate(until=MaxSimtime)
    print 'proportion of up time:', MachineClass.TotalUpTime/(2*MaxSimtime)
    print 'proportion of times repair was immediate:',
    print float(MachineClass.NImmedRep)/MachineClass.NRep

if __name__ == '__main__': main()
```

This model includes queuing. A typical (but not universal) way to handle that in SimPy is to add an object of the SimPy class `Resource`:
with the “1” meaning that there is just one repairperson. Then in MachineClass.Run() we do the following when an uptime period ends:

```python
yield request, self, G.RepairPerson
yield hold, self, G.Rnd.expovariate(MachineClass.RepairRate)
yield release, self, G.RepairPerson
```

Here is what those `yield` lines do:

- The first `yield` requests access to the repairperson. This will return immediately if the repairperson is not busy now. Otherwise, this thread will be suspended until the repairperson is free, at which time the thread will be resumed.
- The second `yield` simulates the passage of time, representing the repair time.
- The third `yield` releases the repairperson. If another machine had been in the queue, awaiting repair—with its thread suspended, having executing the first `yield`—it would now attain access to the repairperson, and its thread would now execute the second `yield`.

Suppose for instance the thread simulating machine 1 reaches the first `yield` slightly before the thread for machine 0 does. Then the thread for machine 1 will immediately go to the second `yield`, while the thread for machine 0 will be suspended at the first `yield`. When the thread for machine 1 finally executes the third `yield`, then SimPy’s internal code will notice that the thread for machine 0 had been queued, waiting for the repairperson, and would now reactivate that thread.

Note the line

```python
if G.RepairPerson.n == 1:
```

Here `n` is a member variable in SimPy’s class `Resource`. It gives us the number of items in the resource currently free. In our case here, we only have one repairperson, so this variable will have the value 1 or 0. This enables us to keep a count of how many breakdowns are lucky enough to get immediate access to the repairperson. We later use that count in our output.

The same class contains the member variable `waitQ`, which is a Python list which contains the queue for the resource. This may be useful in debugging, or if you need to implement a special priority discipline other than the ones offered by SimPy.

Another member variable is `activeQ`, which is a list of threads which are currently using units of this resource.

3.2.3 MachRep3.py: Introducing Passivate/Reactivate Operations

Here’s the code:
Recall that in this model, the repairperson is not summoned until both machines are down. We add a class variable `MachineClass.NUp` which we use to record the number of machines currently up, and then use it
in the following code, which is executed when an uptime period for a machine ends:

```python
1 if MachineClass.NUp == 1:
2     yield passivate, self
3 elif G.RepairPerson.n == 1:
4     reactivate(MachineClass.MachineList[1-self.ID])
```

We first update the number of up machines, by decrementing `MachineClass.NUp`. Then if we find that there is still one other machine remaining up, this thread must suspend, to simulate the fact that this broken machine must wait until the other machine goes down before the repairperson is summoned. The way this suspension is implemented is to invoke `yield` with the operand `passivate`. Later the other machine’s thread will execute the `reactivate()` statement on this thread, “waking” it.

But there is a subtlety here. Suppose the following sequence of events occur:

- machine 1 goes down
- machine 0 goes down
- the repairperson arrives
- machine 0 starts repair
- machine 0 finishes repair
- machine 1 starts repair
- machine 0 goes down again

The point is that when the thread for machine 0 now executes

```python
if MachineClass.NUp == 1:
```

the answer will be no, since `MachineClass.NUp` will be 0. Thus this machine should not passivate itself. But it is not a situation in which this thread should waken the other one either. Hence the need for the `elif` condition.

3.2.4 MMk.py: “Do It Yourself” Queue Management

Here is an alternate way to handle queues, by writing one’s own code to manage them. Though for most situations in which entities queue for a resource we make use of the SimPy’s `Resource` class, there are some situations in which we want finer control. For instance, we may wish to set up a special priority scheme, or we may be modeling a system in which the number of resources varies with time.

We thus need to be able to handle resource management “on our own,” without making use of the `Resource` class. The following program shows how we can do this, via `passivate()` and `reactivate()`.

10 You might argue that machine 1 should be served first, but we put nothing in our code to prioritize the order of service.

11 One way to do this with `Resource` is to use fake `yield request` and `yield release` statements, with the effect of reducing and increasing the number of servers. However, this must be done carefully. See a discussion of this on the SimPy Web site, at http://simpy.sourceforge.net/changingcapacity.htm
This is what is known as an M/M/k queue. Service and interarrival times are exponentially distributed, and there are k servers with a common queue.

In the arrivals thread, when a job arrives, the code adds the job to the queue, and if any server is idle, it is awakened to serve this new job. In the server thread, a server sleeps until awakened, then serves jobs as long as the queue is nonempty, then goes back to sleep.

```python
#!/usr/bin/env python
# simulates NMachines machines, plus a queue of jobs waiting to use them
# usage: python MMk.py NMachines ArvRate SrvRate MaxSimtime
from SimPy.Simulation import *
from random import Random, expovariate

# globals
class G:
    Rnd = Random(12345)

class MachineClass(Process):
    SrvRate = None # reciprocal of mean service time
    Busy = [] # busy machines
    Idle = [] # idle machines
    Queue = [] # queue for the machines
    NDone = 0 # number of jobs done so far
    TotWait = 0.0 # total wait time of all jobs done so far, including
    # both queuing and service times

def __init__(self):
    Process.__init__(self)
    MachineClass.Idle.append(self) # starts idle

def Run(self):
    while 1:
        # "sleep" until this machine awakened
        yield passivate, self
        MachineClass.Idle.remove(self)
        MachineClass.Busy.append(self)
        # take jobs from the queue as long as there are some there
        while MachineClass.Queue != []:
            # get the job
            J = MachineClass.Queue.pop(0)
            # do the work
            yield hold, self, G.Rnd.expovariate(MachineClass.SrvRate)
            # bookkeeping
            MachineClass.NDone += 1
            MachineClass.TotWait += now() - J.ArrivalTime
            MachineClass.Busy.remove(self)
            MachineClass.Idle.append(self)

class JobClass:

def __init__(self):
    self.ArrivalTime = now()

class ArrivalClass(Process):
    ArvRate = None

def __init__(self):
    Process.__init__(self)

def Run(self):
    while 1:
        # wait for arrival of next job
        yield hold, self, G.Rnd.expovariate(ArrivalClass.ArvRate)
        J = JobClass()
        MachineClass.Queue.append(J)
        # any machine ready?
        if MachineClass.Idle != []:
            reactivate(MachineClass.Idle[0])
```
def main():
 NMachines = int(sys.argv[1])
 ArrivalClass.ArvRate = float(sys.argv[2])
 MachineClass.SrvRate = float(sys.argv[3])
 initialize()
 for i in range(NMachines):
 M = MachineClass()
 activate(M, M.Run())
 A = ArrivalClass()
 activate(A, A.Run())
 MaxSimtime = float(sys.argv[4])
 simulate(until=MaxSimtime)
 print MachineClass.TotWait/MachineClass.NDone

if __name__ == '__main__': main()

Note the line

 ArvRate = None

in the class ArrivalClass. You may think that that cancels the action of the line

 ArrivalClass.ArvRate = float(sys.argv[2])

in main(), further down in the file. But in Python, the interpreter executes a source file from top to bottom, and any freestanding variables, in this case class variables, will be executed along the way. So,

 ArvRate = None

is executed before

 ArrivalClass.ArvRate = float(sys.argv[2])

not after.

We actually could have dispensed with

 ArvRate = None

because in Python variables for a class can be added during execution, but we have this line for the sake of documentation.

3.2.5 SMP.py: Simultaneous Possession of Resources

Here is another example, this one modeling a multiprocessor computer system, i.e. one with many CPUs. Computer communicate with memory and I/O devices via buses, which are simply sets of parallel wires. Only one entity can use the bus at a time, so if more than one attempts to do so, only one succeeds and the
others must wait. We say that the entity that succeeds—whether it be a CPU, an I/O device (including those using Direct Memory Access), a sophisticated memory system, etc.—acquires the bus.

A bus, being a single path, can become a bottleneck in multiprocessor systems. One solution to this problem is to have multipath connection networks, but even for a bus-based system there are measures we can take. One of them is to make the bus work in split-transaction form, which is what we assume here. It means that when a CPU places a memory request on the bus, that CPU then immediately releases the bus, so that other entities can use the bus while the memory request is pending. When the memory request is complete, the memory module involved will then acquire the bus, place the result on the bus (the read value in the case of a read request, an acknowledgement in the case of a write request), and also place on the bus the ID number of the CPU that had made the request. The latter ID will see that the memory’s response is for it.

In our SimPy code here, we see more use of SimPy’s request and release capabilities. One thing to pay particular attention to is the fact that a processor needs at one point to have possession of (i.e. execute a yield request for) of two things at once.

```python
#!/usr/bin/env python

# SMP.py

# SimPy example: Symmetric multiprocessor system. Have m processors
# and m memory modules on a single shared bus. The processors read from
# and write to the memory modules via messages sent along this shared
# bus. The key word here is "shared"; only one entity (processor or
# memory module) can transmit information on the bus at one time.

# When a processor generates a memory request, it must first queue for
# possession of the bus. Then it takes 1.0 amount of time to reach the
# proper memory module. The request is queued at the memory module, and
# when finally served, the service takes 0.6 time. The memory module
# must then queue for the bus. When it acquires the bus, it sends the
# response (value to be read in the case of a read request,
# acknowledgement in the case of a write) along the bus, together with
# the processor number. The processor which originally made the request
# has been watching the bus, and thus is able to pick up the response.

# When a memory module finishes a read or write operation, it will not
# start any other operations until it finishes sending the result of the
# operation along the bus.

# For any given processor, the time between the completion of a previous
# memory request and the generation of a new request has an exponential
# distribution. The specific memory module requested is assumed to be
# chosen at random (i.e. uniform distribution) from the m modules.
# While a processor has a request pending, it does not generate any new
# ones.

# The processors are assumed to act independently of each other, and the
# requests for a given processor are assumed independent through time.

from SimPy.Simulation import *
from random import Random,expovariate,uniform
import sys

class Processor(Process):
    M = int(sys.argv[1])  # number of CPUS/memory modules
    InterMemReqRate = 1.0/float(sys.argv[2])
    NDone = 0  # number of memory requests completed so far
    TotWait = 0.0  # total wait for those requests
    WaitMem = 0
    NextID = 0
    def __init__(self):
```
3.2.6 Cell.py: Dynamic Creation of Threads

In our examples so far, all creations of threads, i.e. all calls to activate(), have been done within main(). Now let’s see an example in which thread creation occurs throughout execution of the program.

This program simulates one cell of a cellular phone network. A major highway runs through the cell, so calls in progress enter the cell at random times. The action of a call being transferred from one cell to another is called handoff. Handoff calls stay active for a constant time, the time it takes to drive through the cell. (In this simpler model, we assume that the call lasts the entire time the car is in the cell. There are nice SimPy features we could use if we were to drop this assumption.) We also assume that cars entering the cell
without calls in progress don’t start one in the cell.

Calls also originate at random times from local people, who stay in the cell. Local calls last a random time.

Each call uses a separate channel (i.e. frequency or time slot). If there are no free channels available when a handoff call arrives, it is rejected. Handoff calls have priority over local calls. Specifically, among whatever free channels available at a given time, \textbf{NRsrvd} of them will be reserved for handoff calls that might come in. If we have more than that many free channels, the excess are available for local calls.

Note that individual channels are not reserved. Say for example that \textbf{NChn} is 8 and \textbf{NRsrvd} is 3. If we currently have three or fewer free channels, then any local call will be rejected. If we have more than three free channels, then a local call will be accepted (and the number of free channels will be reduced by one).

A rejected call is dropped, not queued.

Here is the code:

```python
# simulates one cell in a cellular phone network; a major highway runs
# through it, so handoff calls come in at random times but stay active
# for a constant time, the time it takes to drive through the cell (in
# this simpler model, we assume that a handoff call lasts the entire
# time the car is in the cell); calls also originate at random times
# from local people, who stay in the cell; for them, calls last a random
# time; a call is dropped, not queued, if a channel is not available

# usage:
# python Cell.py HRate DrvTime LRate LDurRate NChn NRsrvd MaxSimTime
# where:
# HRate = rate of arrivals of handoff calls (reciprocal of mean time
# between arrivals)
# DrvTime = drive-through time for the cell
# LRate = rate of creations of local calls (reciprocal of mean time
# between creations)
# LDurRate = reciprocal of mean duration of local calls
# NChn = number of channels
# NRsrvd = number of channels reserved for handoff calls
# MaxSimtime = amount of time to simulate

import sys, random

from SimPy.Simulation import *

class Globals:
    Rnd = random.Random(12345)

class Cell:
    NChn = None
    NRsrvd = None
    FreeChannels = None
    NNoLocalsAllowedPeriods = 0
    TimeNoLocalsAllowed = 0.0
    LatestStartNoLocalsAllowed = None

def GrabAChannel():
    Cell.FreeChannels -= 1 # grab the channel
    if Cell.FreeChannels == Cell.NRsrvd:
        Cell.LatestStartNoLocalsAllowed = now()
GrabAChannel = staticmethod(GrabAChannel)

def ReleaseAChannel():
    Cell.FreeChannels += 1 # release the channel
    if Cell.FreeChannels == Cell.NRsrvd+1:
        Cell.NNoLocalsAllowedPeriods += 1

23
```
Cell.TimeNoLocalsAllowed += now() - Cell.LatestStartNoLocalsAllowed
Cell.LatestStartNoLocalsAllowed = None
ReleaseAChannel = staticmethod(ReleaseAChannel)

class Arrivals(Process):
 NArrv = {'handoff':0,'local':0} # numbers of calls arrived so far
def __init__(self,Type,Arr,Dur):
 Process.__init__(self)
 self.Type = Type
 self.Arr = Arr
 self.Dur = Dur
def Run(self):
 while 1:
 TimeToNextArrival = Globals.Rnd.expovariate(self.Arr)
yield hold,self,TimeToNextArrival
 Arrivals.NArrv[self.Type] += 1
 C = Call(self.Type,self.Dur)
 activate(C,C.Run())

class Call(Process):
 NRej = {'handoff':0,'local':0} # numbers of calls rejected so far
def __init__(self,Type,Dur):
 Process.__init__(self)
 self.Type = Type
 self.Dur = Dur
def Run(self): # simulates one call
 if self.Type == 'handoff' and Cell.FreeChannels == 0 or
 self.Type == 'local' and Cell.FreeChannels <= Cell.NRsrvd:
 Call.NRej[self.Type] += 1
 return
 Call.GrabAChannel()
 if self.Type == 'handoff':
 CallTime = self.Dur
 else: # 'local'
 CallTime = Globals.Rnd.expovariate(self.Dur)
 yield hold,self,CallTime # the call runs its course
 Cell.ReleaseAChannel()

def main():
 HRate = float(sys.argv[1])
 DrvTime = float(sys.argv[2])
LRate = float(sys.argv[3])
LDurRate = float(sys.argv[4])
Cell.NChn = int(sys.argv[5])
Cell.FreeChannels = Cell.NChn
Cell.NRsrvd = int(sys.argv[6])
initialize()
HA = Arrivals('handoff',HRate,DrvTime)
activate(HA,HA.Run())
LCr = Arrivals('local',LRate,LDurRate)
activate(LCr,LCr.Run())
MaxSimtime = float(sys.argv[7])
simulate(until=MaxSimtime)
print 'percentage of rejected handoff calls:', \
 Call.NRej['handoff']/float(Arrivals.NArrv['handoff'])
print 'percentage of rejected local calls:', \
 Call.NRej['local']/float(Arrivals.NArrv['local'])
print 'mean banned period for locals', \
 Cell.TimeNoLocalsAllowed/float(Cell.NNoLocalsAllowedPeriods)
if __name__ == '__main__': main()

As you can see, main() sets up two arrivals threads, but each of those in turn creates call threads throughout
the simulation.

The program finds the proportions of rejected calls of each type, and the mean duration of periods during
which the door is closed to local calls. Note the code for the latter in particular, as it is a common pattern.

An alternative approach would have been to model the channels as threads. All channels start out free, placed in a Python list which would serve as a pool of free channels to draw from. At the beginning of its \texttt{Run()} function, a thread would passivate itself. When a call arrived, that arrivals thread would pull the thread for a free channel, if any, from this pool and reactivate that thread.

\section*{3.3 Note These Restrictions on PEMs}

Some PEMs may be rather lengthy, and thus you will probably want to apply top-down program design and break up one monolithic PEM into smaller functions. In other words, you may name your PEM \texttt{Run()}, and then have \texttt{Run()} in turn call some smaller functions. This is of course highly encouraged. However, you must make sure that you do not invoke \texttt{yield} in those subprograms; it must be used only in the PEM itself. Otherwise the Python interpreter would lose track of where to return the next time the PEM were to resume execution.

Also, make sure NOT to invoke \texttt{yield} from within \texttt{main()} or some other function not associated with a call to \texttt{activate()}.

\section*{3.4 SimPy Data Collection and Display}

SimPy provides the class \texttt{Monitor} to make it more convenient to collect data for your simulation output. It is a subclass of the Python \texttt{list} type.

\subsection*{3.4.1 Introduction to Monitors}

For example, suppose you have a variable \texttt{X} in some line in your SimPy code and you wish to record all values \texttt{X} takes on during the simulation. Then you would set up an object of type \texttt{Monitor}, say named \texttt{XMon}, in order to remind yourself that this is a monitor for \texttt{X}. Each time you have a value of \texttt{X} to record, you would have a line like

\begin{verbatim}
XMon.observe(X)
\end{verbatim}

which would add a 2-tuple consisting of the current simulated time and the value \texttt{X} to the list \texttt{XMon}. (So, \texttt{XMon} consists of main a list of pairs.)

The \texttt{Monitor} class also includes member functions that operate on the list. For example, you can compute the mean of \texttt{X}:

\begin{verbatim}
print 'the mean of X was', XMon.mean()
\end{verbatim}

For example, we could apply this to the program \texttt{MMy.py} in Section \ref{sec:mmk}. Here are code excerpts where we would make changes (look for lines referring to \texttt{WaitMon}):

\begin{verbatim}
class MachineClass(Process):
 ...
\end{verbatim}
There is a function `Monitor.var()` for the variance too.

Note, though, that means are often not meaningful, no pun intended. To get a better understanding of queue wait times, for instance, you may wish to plot a histogram of the wait times, rather than just computing their mean. This is possible, via the function `Monitor.histogram`, which finds the bin counts and places them into a data structure which can then be displayed using SimPy’s SimPlot package.

Indeed, since monitors collect all the data, you can write your own routines (or better, subclasses of `Monitor`, to find quantiles, etc.

3.4.2 Time Averages

Suppose in the example above we wished to find the long-run queue length. Before addressing how to do this, let’s first ask what it really means.

Suppose we record every queue length that occurs in our simulation run, and take the average of those numbers. Would that be what we want? No, because it doesn’t account for the time duration of each of those numbers. If for instance the queue had length 5 for long periods of time but had length 2 for shorter times, clearly we should not give the 5 and the 2 equal weights. We need to factor the durations into our weighting.

Say for instance the queue lengths were as follows: 2 between times 0.0 and 1.4, 3 between times 1.4 and 2.1, 2 between times 2.1 and 4.9, and 1 between 4.9 and 5.3. Then the average would be

\[
\frac{(2 \times 1.4 + 3 \times 0.7 + 2 \times 2.8 + 1 \times 0.4)}{5.3} = 2.06
\]

(1)

Another way to look at it would be to think of observing the system at regular time intervals, say 1.0, 2.0, 3.0 etc. Let \(Q_i \) denote the queue length observed at time \(i \). Then we could define the long-run average queue length as

\[
\lim_{n \to \infty} \frac{Q_1 + \ldots + Q_n}{n}
\]

(2)

This actually is consistent with \([1]\), in the long run.
3.4.3 The Function Monitor.timeAverage()

The function Monitor.timeAverage() computes time-value product averages for us, very convenient. Each time the queue changes length, you would call Monitor.observe() with the current queue length as argument, resulting in Monitor recording the length and the current simulated time (from now()).

In our little numerical example which led to (1), when the simulation ends, at time 5.3, the monitor will consist of this list of pairs: \[\{ [0.0,2], [1.4,3], [2.1,2], [4.9,1] \} \] The function timeAverage() would then compute the value 2.06, as desired.

3.4.4 But I Recommend That You Not Use This Function

You should be careful, though. Properly keeping track of when to call timeAverage() is a bit delicate. Also, this function only gives you a mean, not variances or other statistics.

Thus I recommend that you simply set up another thread whose sole purpose is to add periodic sampling to estimate (2). This is simpler, more general and more flexible. To that end, here is a function you can use:

```python
# PeriodicSampler.py

class PerSmp(Process):
    def __init__(self, Per, Mon, Fun):
        Process.__init__(self)
        self.Per = Per
        self.Mon = Mon
        self.Fun = Fun

    def Run(self):
        while 1:
            yield hold, self, self.Per
            Data = self.Fun()
            self.Mon.observe(Data)
```

Here the argument Per allows us to sample with whatever frequency we like. A higher rate gives us more statistical accuracy (due to taking more samples), while a lower rate means a somewhat faster program.

Note the need for the function argument Fun. We need to tell PerSmp what data item to record. If we had made the argument that data, then we’d only get the first value of that data (probably 0 or None), rather than the changing values over time.

Here is an example of use:

```python
#!/usr/bin/env python

class PerSmpExample:
    def __init__(self):
        # single-server queue, with interarrival and service times having uniform distributions on (0,1) and (0,0.5), respectively
        from SimPy.Simulation import *
```
Little’s Rule

Little’s Rule says,

\[\text{mean queue length} = \text{arrival rate} \times \text{mean wait} \]

For First Come, First Served queues, an informal proof goes along the following lines: Imagine that you have just gotten to the head of the queue and have started service, with a wait of 5 minutes, and that the arrival rate is 2 jobs per minute. During your 5-minute wait, there would be an average of \(5 \times 2 = 10\) jobs arriving, thus an average of 10 jobs behind you now in the queue, i.e. the mean queue length should be 10. Little’s Rule has been formally proved in quite broad generality, including for non-FCFS priority policies.

The point is that if your simulation program is finding the mean wait anyway, you can get the mean queue length from it via Little’s Rule, without any extra code.
Little’s Rule is solely an issue of flow, so it can be used fairly broadly. In our unit on advanced SimPy, http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.pdf there is an example in which we have data and video packets in a network. In that program, we use Little’s Rule to find the mean number of data packets in the system, as a product of the data arrival rate (given) and the mean residence time of data packets (computed in the simulation). The fact that data and video packets are mixed together in the same queue is irrelevant.

3.5 Other SimPy Features

Advanced features of SimPy will be discussed in a separate document, http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.tex

A How to Obtain and Install SimPy

You will need to have Python version 2.3 or better.

Create a directory, say `/usr/local/SimPy`. You need to at least put the code files `Simulation` and `__init__.` in that directory, and I will assume here that you also put in the test and documentation subdirectories which come with the package, say as subdirectories of `/usr/local/SimPy`.

You’ll need that directory to be in your Python path, which is controlled by the PYTHONPATH environment variable. Set this in whatever manner your OS/shell sets environment variable. For example, in a csh/UNIX environment, type

```bash
setenv PYTHONPATH /usr/local/
```

Modify accordingly for `bash`, Windows, etc.

One way or the other, you need to be set up so that Python finds the library files correctly. Both the SimPy example programs and our example programs here include lines like

```python
from SimPy.Simulation import *
```

which instructs the Python interpreter to look for the module `Simulation` in the package SimPy. Given the setting of PYTHONPATH above, Python would look in `/usr/local/` for a directory `SimPy`, i.e. look for a directory `/usr/local/SimPy`, and then look for `Simulation.py` and `__init__.py` (or their `.pyc` compiled versions) within that directory.

Test by copying `testSimPy` from that directory to some other directory and then running

```bash
python testSimPy.py
```

Some graphical windows will pop up, and after you remove them, a message like “Run 54 tests...” will appear.

12 My instructions here will occasionally have a slight Unix orientation, but it should be clear how to make the small adjustments needed for other platforms.
B Debugging and Verifying SimPy Programs

Debugging is difficult in any context, but especially so in parallel ones, or pseudo-parallel in the case of SimPy. This section will give you some tips on how to debug effectively.

In addition, there is the issue of verification of program correctness. In simulation situations, we typically do not have good test cases to use to check our code. After all, the reason we are simulating the system in the first place is because we don’t know the quantity we are finding via simulation.

So, in simulation contexts, the only way to really check whether your code is correct is to use a debugging tool to step through the code for a certain amount of simulated time, verifying that the events which occur jibe with the model being simulated.

B.1 Debugging Tools

Most people prefer GUI debuggers. However, the treatment below begins with the text-based debugger included in the Python package, PDB, both because it serves as a common ground from which to illustrate general concepts, So, I assume here that you are familiar with the material on PDB in the appendix on debugging in my Python tutorial.

As to the GUIs, I highly recommend DDD, which provides a GUI front end to (a somewhat modified). I am not a fan of IDEs. They are slow to load and occupy too much space on the screen, and worst of all, they typically force me to use their text editor, rather than the one I’m comfortable with. But if I were to use an IDE, Eclipse would be it. I have an Eclipse tutorial, which eliminates all the “gotchas” (or all the ones I know of) and should make use of Eclipse easy. For more details on using DDD and Eclipse in a Python context, see my Python tutorial mentioned above.

A bit of a compromise between PDB and the GUIs is available via Xpdb, which is still text-based but adds a source view window to PDB. See http://heather.cs.ucdavis.edu/~matloff/xpdb.html.

B.2 Know How Control Transfers in SimPy Programs

Your ability to debug SimPy programs will be greatly enhanced by having some degree of familiarity with SimPy’s internal operations. You should review the discussion of the SimPy threads manager at the end of Section 3.2.1 concerning how control transfers among various SimPy functions, and always keep this in mind. Consider for example what happens when you execute your code in PDB, and reach a line like

```python
yield hold, self, Rnd.expovariate(ArrvRate)
```

Let’s see what will now happen with the debugging tool. First let’s issue PDB’s n (“next”) command, which skips over function calls, so as to skip over the call to expovariate(). We will still be on the yield line:
If we were to issue the `n` command again, the `hold` operation would be started, which causes us to enter SimPy’s `holdfunc()` method:

```
(Pdb) n
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(14)Run()-->(1234, yield hold,self,Rnd.expovariate(ArrvRate)
```

This presents a problem. We don’t want to traipse through all that SimPy internals code.

One way around this would be to put breakpoints after every `yield`, and then simply issue the continue command, `c`, each time we hit a `yield`.

Another possibility would be to use the debugger’s command that allows us to exit a function from within it. In the case of PDB, this is the `r` ("return") command. We issue the command twice:

```
(Pdb) r
--Return--
> /usr/local/SimPy/Simulation.py(388)holdfunc()=None
-> a[0][1]._hold(a)
(Pdb) r
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(29)Run()-->(1234, , 0.45785058071658913)
-> yield hold,self,Rnd.expovariate(ExpRate)
```

Ah, there, we’re finally out of that bewildering territory.

B.3 Always Know What (Simulated) Time It Is

In debugging SimPy programs, you will always need to know what time it is on the simulated clock. Almost any debugging tool allows you to check the values of variables, but in SimPy’s case the variable that stores the simulated time is accessed through a function call, `now()`.

In PDB, you could use an alias to arrange for an automatic call to `now()` at each breakpoint, e.g.:

```
alias c c;;now()
```

This replaces PDB’s continue command by the sequence: continue; print out the current simulated time. Ironically, the situation is not as simple for the putatively more-powerful GUIs, as they rely on displaying values of variables. The variable in question here, `_t`, which stores the simulated time, is not easily accessible. In order to keep things up to date, you would need to place a line

```
from SimPy.Simulation import _t
```

after every `yield hold` and at the beginning of each PEM. You could then display `_t` in your GUI debugger’s variable display window.
(Note that if a Python name begins with _, you must explicitly ask for access; the wildcard form of from...import... doesn’t pick up such variables.)

SimPy has another way to keep track of simulated time (and other things), to be discussed in Section [B.7]

B.4 Starting Over

During your debugging process, you will often need to start the program over again, even though you have not finished. To do this, first stop the simulation, by calling the following SimPy function:

(Pdb) stopSimulation()

Then hit c a couple of times to continue, which will restart the program.

If your program runs into an execution error, hit e in this case as well.

The actions for other debuggers are similar; the key is the call to stopSimulation().

B.5 Repeatability

The debugging process will be much easier if it is repeatable, i.e. if successive runs of the program give the same output. In order to have this occur, you need to use random.Random() to initialize the seed for Python’s random number generator, as we have done in our examples here.

B.6 Peeking at the SimPy’s Internal Event List

Here is another trick which you may find useful. You can enable looking at SimPy’s internal event list by placing the following code in each of your PEMs:

```python
from SimPy.Simulation import _e
```

The internal events list is _e.events, and is implemented as a Python dictionary type, showing the events (address of threads) for each simulated time in the future. For example,

(Pdb) _e.events
{4.9862113069200458: [<SimPy.Simulation._Action instance at 0x4043334c>], 3.3343289782218619: [<SimPy.Simulation._Action instance at 0x4043332c>]}

To do this effectively, code something like the following:

```python
class Globals:
    e = None  # copy of the pointer SimPy.Simulation._e
...
def main():
    ...
    initialize()
    from SimPy.Simulation import _e
    globals.e = _e
```
Then in PDB you could issue an alias like

(Pdb) alias c c;c;Globals.e.events

so that the event list would print out at each pause of execution of the program.

Similarly, in one of the GUI-based debuggers, you could display \texttt{Globals.e} in the variable display window.

And as mentioned earlier, you can print out the wait queue for a \texttt{Resource} object, etc.

\section*{B.7 SimPy’s Invaluable Tracing Library}

SimPy includes a hugely useful tracing library. Here’s how to use it:

The library is part of a special version of the file \texttt{Simulation.py}, called \texttt{SimulationTrace.py}. At the top of your code, have

\begin{verbatim}
from SimPy.SimulationTrace import *
\end{verbatim}

instead of

\begin{verbatim}
from SimPy.Simulation import *
\end{verbatim}

Better yet, have your command line either include ‘debug’ or not, as a flag indicating whether you want tracing turned on:

\begin{verbatim}
import sys,random
if ‘debug’ in sys.argv: from SimPy.SimulationTrace import *
else: from SimPy.Simulation import *
\end{verbatim}

Then when you run your code, type ‘debug’ as, say, the last part of your command line if you want tracing on, and omit it otherwise.

With tracing enabled, each time your code does a \texttt{yield} or otherwise transfers control to SimPy internals, the tracer will print out a message. The message will first show the time, alleviating you of the need to call \texttt{now()} by hand, as in Section \ref{sec:simpy-trace}. If it is a \texttt{yield hold} operation, the hold time (termed “delay” in the message) will be printed out too.

All this information will be shown by your debugging tool, say in the console section.

\section*{C Online Documentation for SimPy}

Remember that Python includes documentation which is accessible in interactive mode, via \texttt{dir()}, \texttt{help()} and PyDoc. See my Python tutorial for details.

Of course, you can also look in the SimPy source code.