
Advanced Features of the SimPy Language

Norm Matloff

January 27, 2008
c©2006-2008, N.S. Matloff

Contents

1 Overview 2

2 Use of SimPy’s cancel() Function 2

2.1 Example: Network Timeout . 2

2.2 Example: Machine with Breakdown . 4

3 Job Interruption 6

3.1 Example: Machine Breakdown Again . 6

3.2 Example: Network Timeout Again . 9

4 Interthread Synchronization 10

4.1 Example: Yet Another Machine Breakdown Model . 10

4.2 Which Comes First? . 12

4.3 Waiting for Whichever Action Comes First . 13

4.4 The yield queueevent Operation . 13

5 Advanced Use of the Resource Class 13

5.1 Example: Network Channel with Two Levels of Service . 13

5.2 Example: Call Center . 16

1

1 Overview

In this document we present several advanced features of the SimPy language. These will make your SimPy
programming more convenient and enjoyable. In small programs, use of some of these features will pro-
duce a modest but worthwhile reduction on programming effort and increase in program clarity. In large
programs, the savings add up, and can make a very significant improvement.

2 Use of SimPy’s cancel() Function

In many simulation programs, a thread is waiting for one of two events; whichever occurs first will trigger
a resumption of execution of the thread. The thread will typically want to ignore the other, later-occurring
event. We can use SimPy’s cancel() function to cancel the later event.

2.1 Example: Network Timeout

An example of this is in the program TimeOut.py. The model consists of a network node which transmits
but also sets a timeout period, as follows: After sending the message out onto the network, the node waits
for an acknowledgement from the recipient. If an acknowledgement does not arrive within a certain specified
period of time, it is assumed that the message was lost, and it will be sent again. We wish to determine the
percentage of attempted transmissions which result in timeouts.

The timeout period is assumed to be 0.5, and acknowledgement time is assumed to be exponentially dis-
tributed with mean 1.0. Here is the code:

1 #!/usr/bin/env python
2

3 # Introductory SimPy example to illustrate the modeling of "competing
4 # events" such as timeouts, especially using SimPy’s cancel() method. A
5 # network node sends a message but also sets a timeout period; if the
6 # node times out, it assumes the message it had sent was lost, and it
7 # will send again. The time to get an acknowledgement for a message is
8 # exponentially distributed with mean 1.0, and the timeout period is
9 # 0.5. Immediately after receiving an acknowledgement, the node sends

10 # out a new message.
11

12 # We find the proportion of messages which timeout. The output should
13 # be about 0.61.
14

15 # the main classes are:
16

17 # Node, simulating the network node, with our instance being Nd
18 # TimeOut, simulating a timeout timer, with our instance being TO
19 # Acknowledge, simulating an acknowledgement, with our instance being ACK
20

21 # overview of program design:
22

23 # Nd acts as the main "driver," with a loop that continually creates
24 # TimeOuts and Acknowledge objects, passivating itself until one of
25 # those objects’ events occurs; if for example the timeout occurs
26 # before the acknowledge, the TO object will reactivate Nd and cancel
27 # the ACK object’s event, and vice versa
28

29 from SimPy.Simulation import *
30 from random import Random,expovariate

2

31

32 class Node(Process):
33 def __init__(self):
34 Process.__init__(self)
35 self.NMsgs = 0 # number of messages sent
36 self.NTimeOuts = 0 # number of timeouts which have occurred
37 # ReactivatedCode will be 1 if timeout occurred, 2 ACK if received
38 self.ReactivatedCode = None
39 def Run(self):
40 while 1:
41 self.NMsgs += 1
42 # set up the timeout
43 G.TO = TimeOut()
44 activate(G.TO,G.TO.Run())
45 # set up message send/ACK
46 G.ACK = Acknowledge()
47 activate(G.ACK,G.ACK.Run())
48 yield passivate,self
49 if self.ReactivatedCode == 1:
50 self.NTimeOuts += 1
51 self.ReactivatedCode = None
52

53 class TimeOut(Process):
54 TOPeriod = 0.5
55 def __init__(self):
56 Process.__init__(self)
57 def Run(self):
58 yield hold,self,TimeOut.TOPeriod
59 G.Nd.ReactivatedCode = 1
60 reactivate(G.Nd)
61 self.cancel(G.ACK)
62

63 class Acknowledge(Process):
64 ACKRate = 1/1.0
65 def __init__(self):
66 Process.__init__(self)
67 def Run(self):
68 yield hold,self,G.Rnd.expovariate(Acknowledge.ACKRate)
69 G.Nd.ReactivatedCode = 2
70 reactivate(G.Nd)
71 self.cancel(G.TO)
72

73 class G: # globals
74 Rnd = Random(12345)
75 Nd = Node()
76

77 def main():
78 initialize()
79 activate(G.Nd,G.Nd.Run())
80 simulate(until=10000.0)
81 print ’the percentage of timeouts was’, float(G.Nd.NTimeOuts)/G.Nd.NMsgs
82

83 if __name__ == ’__main__’: main()

The main driver here is a class Node, whose PEM code includes the lines

1 while 1:
2 self.NMsgs += 1
3 G.TO = TimeOut()
4 activate(G.TO,G.TO.Run())
5 G.ACK = Acknowledge()
6 activate(G.ACK,G.ACK.Run())
7 yield passivate,self
8 if self.ReactivatedCode == 1:
9 self.NTimeOuts += 1

10 self.ReactivatedCode = None

3

The node creates an object G.TO of our TimeOut class, which will simulate a timeout period, and creates
an object G.ACK of our Acknowledge class to simulate a transmission and acknowledgement. Then the
node passivates itself, allowing G.TO and G.ACK to do their work. One of them will finish first, and then
will call SimPy’s reactivate() function to “wake up” the suspended node. The node senses whether it was
a timeout or acknowledgement which woke it up, via the variable ReactivatedCode, and then updates its
timeout count accordingly.

Here’s what TimeOut.Run() does:

1 yield hold,self,TimeOut.TOPeriod
2 G.Nd.ReactivatedCode = 1
3 reactivate(G.Nd)
4 self.cancel(G.ACK)

It holds a random timeout time, then sets a flag in Nd to let the latter know that it was the timeout which
occurred first, rather than the acknowledgement. Then it reactivates Nd and cancels ACK. ACK of course
has similar code for handling the case in which the acknowledgement occurs before the timeout.

Note that in our case here, we want the thread to go out of existence when canceled. The cancel() function
does not make that occur. It simply removes the pending events associated with the given thread. The thread
is still there.

However, here the TO and ACK threads will go out of existence anyway, for a somewhat subtle reason:1

Think of what happens when we finish one iteration of the while loop in main(). A new object of type
TimeOut will be created, and then assigned to G.TO. That means that the G.TO no longer points to the old
TimeOut object, and since nothing else points to it either, the Python interpreter will now garbage collect
that old object.

2.2 Example: Machine with Breakdown

Here is another example of cancel():

1 #!/usr/bin/env python
2

3 # JobBreak.py
4

5 # One machine, which sometimes breaks down. Up time and repair time are
6 # exponentially distributed. There is a continuing supply of jobs
7 # waiting to use the machine, i.e. when one job finishes, another
8 # immediately begins. When a job is interrupted by a breakdown, it
9 # resumes "where it left off" upon repair, with whatever time remaining

10 # that it had before.
11

12 from SimPy.Simulation import *
13 from random import Random,expovariate
14

15 import sys
16

17 class G: # globals
18 CurrentJob = None
19 Rnd = Random(12345)
20 M = None # our one machine
21

22 class Machine(Process):

1Thanks to Travis Grathwell for pointing this out.

4

23 def __init__(self):
24 Process.__init__(self)
25 def Run(self):
26 while 1:
27 UpTime = G.Rnd.expovariate(Machine.UpRate)
28 yield hold,self,UpTime
29 CJ = G.CurrentJob
30 self.cancel(CJ)
31 NewNInts = CJ.NInts + 1
32 NewTimeLeft = CJ.TimeLeft - (now()-CJ.LatestStart)
33 RepairTime = G.Rnd.expovariate(Machine.RepairRate)
34 yield hold,self,RepairTime
35 G.CurrentJob = Job(CJ.ID,NewTimeLeft,NewNInts,CJ.OrigStart,now())
36 activate(G.CurrentJob,G.CurrentJob.Run())
37

38 class Job(Process):
39 ServiceRate = None
40 NDone = 0 # jobs done so far
41 TotWait = 0.0 # total wait for those jobs
42 NNoInts = 0 # jobs done so far that had no interruptions
43 def __init__(self,ID,TimeLeft,NInts,OrigStart,LatestStart):
44 Process.__init__(self)
45 self.ID = ID
46 self.TimeLeft = TimeLeft # amount of work left for this job
47 self.NInts = NInts # number of interruptions so far
48 # time this job originally started
49 self.OrigStart = OrigStart
50 # time the latest work period began for this job
51 self.LatestStart = LatestStart
52 def Run(self):
53 yield hold,self,self.TimeLeft
54 # job done
55 Job.NDone += 1
56 Job.TotWait += now() - self.OrigStart
57 if self.NInts == 0: Job.NNoInts += 1
58 # start the next job
59 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
60 G.CurrentJob = Job(G.CurrentJob.ID+1,SrvTm,0,now(),now())
61 activate(G.CurrentJob,G.CurrentJob.Run())
62

63 def main():
64 Job.ServiceRate = float(sys.argv[1])
65 Machine.UpRate = float(sys.argv[2])
66 Machine.RepairRate = float(sys.argv[3])
67 initialize()
68 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
69 G.CurrentJob = Job(0,SrvTm,0,0.0,0.0)
70 activate(G.CurrentJob,G.CurrentJob.Run())
71 G.M = Machine()
72 activate(G.M,G.M.Run())
73 MaxSimtime = float(sys.argv[4])
74 simulate(until=MaxSimtime)
75 print ’mean wait:’, Job.TotWait/Job.NDone
76 print ’% of jobs with no interruptions:’, \
77 float(Job.NNoInts)/Job.NDone
78

79 if __name__ == ’__main__’: main()

Here we have one machine, with occasional breakdown, but we also keep track of the number of jobs done.
See the comments in the code for details.

Here we have set up a class Job. When a new job starts service, an instance of this class is set up to model
that job. If its service then runs to completion without interruption, fine. But if the machine breaks down in
the midst of service, this instance of the Job class will be discarded, and a new instance will later be created
when this job resumes service after the repair. In other words, each object of the class Job models one job

5

to be done, but it can be either a brand new job or the resumption of an interrupted job.

Let’s take a look at Job.Run():

1 yield hold,self,self.TimeLeft
2 Job.NDone += 1
3 Job.TotWait += now() - self.OrigStart
4 if self.NInts == 0: Job.NNoInts += 1
5 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
6 G.CurrentJob = Job(G.CurrentJob.ID+1,SrvTm,0,now(),now())
7 activate(G.CurrentJob,G.CurrentJob.Run())

This looks innocuous enough. We hold for the time it takes to finish the job, then update our totals, and
launch the next job. What is not apparent, though, is that we may actually never reach that second line,

Job.NDone += 1

The reason for this is that the machine may break down before the job finishes. In that case, what we have
set up is that Machine.Run() will cancel the pending job completion event,

self.cancel(CJ)

simulate the repair of the machine,

RepairTime = G.Rnd.expovariate(Machine.RepairRate)
yield hold,self,RepairTime

and then create a new instance of Job which will simulate the processing of the remainder of the interrupted
job (which may get interrupted too):

NewNInts = CJ.NInts + 1
NewTimeLeft = CJ.TimeLeft - (now()-CJ.LatestStart)
...
G.CurrentJob = Job(CJ.ID,NewTimeLeft,NewNInts,CJ.OrigStart,now())
activate(G.CurrentJob,G.CurrentJob.Run())

There are other ways of doing this, in particular by using SimPy’s interrupt() and interrupted() functions,
but we defer this to Section 3.

3 Job Interruption

SimPy allows one thread to interrupt another, which can be very useful.

3.1 Example: Machine Breakdown Again

In Section 2.2 we had a program JobBreak.py, which modeled a machine with breakdown on which we
collected job time data. We presented that program as an example of cancel(). However, it is much more
easily handeled via the function interrupt(). Here is a new version of the program using that function:

6

1 #!/usr/bin/env python
2

3 # JobBreakInt.py: illustration of interrupt() and interrupted()
4

5 # One machine, which sometimes breaks down. Up time and repair time are
6 # exponentially distributed. There is a continuing supply of jobs
7 # waiting to use the machine, i.e. when one job finishes, the next
8 # begins. When a job is interrupted by a breakdown, it resumes "where
9 # it left off" upon repair, with whatever time remaining that it had

10 # before.
11

12 from SimPy.Simulation import *
13 from random import Random,expovariate
14

15 import sys
16

17 class G: # globals
18 CurrentJob = None
19 Rnd = Random(12345)
20 M = None # our one machine
21

22 class Machine(Process):
23 def __init__(self):
24 Process.__init__(self)
25 def Run(self):
26 from SimPy.Simulation import _e
27 while 1:
28 UpTime = G.Rnd.expovariate(Machine.UpRate)
29 yield hold,self,UpTime
30 self.interrupt(G.CurrentJob)
31 RepairTime = G.Rnd.expovariate(Machine.RepairRate)
32 yield hold,self,RepairTime
33 reactivate(G.CurrentJob)
34

35 class Job(Process):
36 ServiceRate = None
37 NDone = 0 # jobs done so far
38 TotWait = 0.0 # total wait for those jobs
39 NNoInts = 0 # jobs done so far that had no interruptions
40 NextID = 0
41 def __init__(self):
42 Process.__init__(self)
43 self.ID = Job.NextID
44 Job.NextID += 1
45 # amount of work left for this job
46 self.TimeLeft = G.Rnd.expovariate(Job.ServiceRate)
47 self.NInts = 0 # number of interruptions so far
48 # time this job originally started
49 self.OrigStart = now()
50 # time the latest work period began for this job
51 self.LatestStart = now()
52 def Run(self):
53 from SimPy.Simulation import _e
54 while True:
55 yield hold,self,self.TimeLeft
56 # did the job run to completion?
57 if not self.interrupted(): break
58 self.NInts += 1
59 self.TimeLeft -= now() - self.LatestStart
60 yield passivate,self # wait for repair
61 self.LatestStart = now()
62 Job.NDone += 1
63 Job.TotWait += now() - self.OrigStart
64 if self.NInts == 0: Job.NNoInts += 1
65 # start the next job
66 G.CurrentJob = Job()
67 activate(G.CurrentJob,G.CurrentJob.Run())
68

7

69 def main():
70 Job.ServiceRate = float(sys.argv[1])
71 Machine.UpRate = float(sys.argv[2])
72 Machine.RepairRate = float(sys.argv[3])
73 initialize()
74 G.CurrentJob = Job()
75 activate(G.CurrentJob,G.CurrentJob.Run())
76 G.M = Machine()
77 activate(G.M,G.M.Run())
78 MaxSimtime = float(sys.argv[4])
79 simulate(until=MaxSimtime)
80 print ’mean wait:’, Job.TotWait/Job.NDone
81 print ’% of jobs with no interruptions:’, \
82 float(Job.NNoInts)/Job.NDone
83

84 if __name__ == ’__main__’: main()

The first key part of Machine.Run() is

yield hold,self,UpTime
self.interrupt(G.CurrentJob)

A call to interrupt() cancels the pending yield hold operation of its “victim,” i.e. the thread designated
in the argument. 2 A new artificial event will be created for the victim, with event time being the current
simulated time, now(). The caller does not lose control of the CPU, and continues to execute, but when it
hits its next yield statement (or passivate() etc.) and thus loses control of the CPU, the victim will probably
be next to run, as its (new, artificial) event time will be the current time.

In our case here, at the time

self.interrupt(G.CurrentJob)

is executed by the Machine thread, the current job is in the midst of being serviced. The call interrupts
that service, to reflect the fact that the machine has broken down. At this point, the current job’s event is
canceled, with the artificial event being created as above. The current job’s thread won’t run yet, and the
Machine thread will continue. But when the latter reaches the line

yield hold,self,RepairTime

the Machine thread loses control of the CPU and the current job’s thread runs. The latter executes

if not self.interrupted(): break
self.NInts += 1
self.TimeLeft -= now() - self.LatestStart
yield passivate,self # wait for repair

The interruption will be sensed by self.interrupted() returning True. The job thread will then do the proper
bookkeeping, and then passivate itself, waiting for the machine to come back up. When the latter event
occurs, the machine’s thread executes

reactivate(G.CurrentJob)

2The function interrupt() should not be called unless the thread to be interrupted is in the midst of yield hold.

8

to get the interrupted job started again.

Note that a job may go through multiple cycles of run, interruption, run, interruption, etc., depending on
how many breakdowns the machine has during the lifetime of this job. This is the reason for the while loop
in Job.Run():

1 while True:
2 yield hold,self,self.TimeLeft
3 # did the job run to completion?
4 if not self.interrupted(): break
5 self.NInts += 1
6 self.TimeLeft -= now() - self.LatestStart
7 yield passivate,self # wait for repair
8 self.LatestStart = now()
9 Job.NDone += 1

10 Job.TotWait += now() - self.OrigStart
11 ...

In the job’s final cycle (which could be its first), the yield hold will not be interrupted. In this case the call
to interrupted() will inform the thread that it had not been interrupted. The loop will be exited, the final
bookkeeping for this job will be done, and the next job will be started.

By the way, we did not have to have our instance variable TimeLeft in Job. SimPy’s Process class has
its own built-in instance variable interruptLeft which records how much time in the yield hold had been
remaining at the time of the interruption.

3.2 Example: Network Timeout Again

Use of interrupts makes our old network node acknowledgement/timeout program TimeOut.py in Section
2.1 considerably simpler:

1 #!/usr/bin/env python
2

3 # TimeOutInt.py
4

5 # Same as TimeOut.py but using interrupts. A network node sends a message
6 # but also sets a timeout period; if the node times out, it assumes the
7 # message it had sent was lost, and it will send again. The time to get
8 # an acknowledgement for a message is exponentially distributed with
9 # mean 1.0, and the timeout period is 0.5. Immediately after receiving

10 # an acknowledgement, the node sends out a new message.
11

12 # We find the proportion of messages which timeout. The output should
13 # be about 0.61.
14

15 from SimPy.Simulation import *
16 from random import Random,expovariate
17

18 class Node(Process):
19 def __init__(self):
20 Process.__init__(self)
21 self.NMsgs = 0 # number of messages sent
22 self.NTimeOuts = 0 # number of timeouts which have occurred
23 def Run(self):
24 from SimPy.Simulation import _e
25 while 1:
26 self.NMsgs += 1
27 # set up the timeout
28 G.TO = TimeOut()

9

29 activate(G.TO,G.TO.Run())
30 # wait for ACK, but could be timeout
31 yield hold,self,G.Rnd.expovariate(1.0)
32 if self.interrupted():
33 self.NTimeOuts += 1
34 else: self.cancel(G.TO)
35

36 class TimeOut(Process):
37 TOPeriod = 0.5
38 def __init__(self):
39 Process.__init__(self)
40 def Run(self):
41 from SimPy.Simulation import _e
42 yield hold,self,TimeOut.TOPeriod
43 self.interrupt(G.Nd)
44

45 class G: # globals
46 Rnd = Random(12345)
47 Nd = Node()
48

49 def main():
50 initialize()
51 activate(G.Nd,G.Nd.Run())
52 simulate(until=10000.0)
53 print ’the percentage of timeouts was’, float(G.Nd.NTimeOuts)/G.Nd.NMsgs
54

55 if __name__ == ’__main__’: main()

Use of interrupts allowed us to entirely eliminate our old ACK class. Moreover, the code looks more natural
now, as a timeout could be thought of as “interrupting” the node.

4 Interthread Synchronization

In our introductory SimPy document, in cases in which one thread needed to wait for some other thread to
take some action,3 we made use of passivate() and reactivate(). Those can be used in general, but more
advanced constructs would make our lives easier.

For example, suppose many threads are waiting for the same action to occur. The thread which triggered
that action would then have to call reactivate() on all of them. Among other things, this would mean we
would have to have code which kept track of which threads were waiting. We could do that, but it would be
nicer if we didn’t have to.

In fact, actions like yield waitevent alleviate us of that burden. This makes our code easier to write and
maintain, and easier to read.

4.1 Example: Yet Another Machine Breakdown Model

Below is an example, again modeling a machine repair situation. It is similar to MachRep3.py from our
introductory document, but with R machines instead of two, and a policy that the repairperson is called if
the number of operating machines falls below K.

3I’ve used the word action here rather than event, as the latter term refers to items in SimPy’s internal event list, generated by
yield hold operations. But this won’t completely remove the confusion, as the SimPy keyword waitevent will be introduced below.
But again, that term will refer to what I’m describing as actions here. The official SimPy term is a SimEvent.

10

1 #!/usr/bin/env python
2

3 # MachRep4.py
4

5 # SimPy example: R machines, which sometimes break down. Up time is
6 # exponentially distributed with rate UpRate, and repair time is
7 # exponentially distributed with rate RepairRate. The repairperson is
8 # summoned when fewer than K of the machines are up, and reaches the
9 # site after a negligible amount of time. He keeps repairing machines

10 # until there are none that need it, then leaves.
11

12 # usage: python MachRep4.py R UpRate RepairRate K MaxSimTime
13

14 from SimPy.Simulation import *
15 from random import Random,expovariate
16

17 class G: # globals
18 Rnd = Random(12345)
19 RepairPerson = Resource(1)
20 RepairPersonOnSite = False
21 RPArrive = SimEvent()
22

23 class MachineClass(Process):
24 MachineList = [] # list of all objects of this class
25 UpRate = None # reciprocal of mean up time
26 RepairRate = None # reciprocal of mean repair time
27 R = None # number of machines
28 K = None # threshold for summoning the repairperson
29 TotalUpTime = 0.0 # total up time for all machines
30 NextID = 0 # next available ID number for MachineClass objects
31 NUp = 0 # number of machines currently up
32 # create an event to signal arrival of repairperson
33 def __init__(self):
34 Process.__init__(self)
35 self.StartUpTime = None # time the current up period started
36 self.ID = MachineClass.NextID # ID for this MachineClass object
37 MachineClass.NextID += 1
38 MachineClass.MachineList.append(self)
39 MachineClass.NUp += 1 # start in up mode
40 def Run(self):
41 from SimPy.Simulation import _e
42 while 1:
43 self.StartUpTime = now()
44 yield hold,self,G.Rnd.expovariate(MachineClass.UpRate)
45 MachineClass.TotalUpTime += now() - self.StartUpTime
46 MachineClass.NUp -= 1
47 # if the repairperson is already onsite, just request him;
48 # otherwise, check whether fewer than K machines are up
49 if not G.RepairPersonOnSite:
50 if MachineClass.NUp < MachineClass.K:
51 G.RPArrive.signal()
52 G.RepairPersonOnSite = True
53 else: yield waitevent,self,G.RPArrive
54 yield request,self,G.RepairPerson
55 yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
56 MachineClass.NUp += 1
57 # if no more machines waiting for repair, dismiss repairperson
58 if G.RepairPerson.waitQ == []:
59 G.RepairPersonOnSite = False
60 yield release,self,G.RepairPerson
61

62 def main():
63 initialize()
64 MachineClass.R = int(sys.argv[1])
65 MachineClass.UpRate = float(sys.argv[2])
66 MachineClass.RepairRate = float(sys.argv[3])
67 MachineClass.K = int(sys.argv[4])
68 for I in range(MachineClass.R):

11

69 M = MachineClass()
70 activate(M,M.Run())
71 MaxSimtime = float(sys.argv[5])
72 simulate(until=MaxSimtime)
73 print ’proportion of up time was’, \
74 MachineClass.TotalUpTime/(MachineClass.R*MaxSimtime)
75

76 if __name__ == ’__main__’: main()

Here we make use of a new SimPy class, SimEvent:

RepairPersonOnSite = False
RPArrive = SimEvent()

We also set up a variable RepairPersonOnSite to keep track of whether the repairperson is currently avail-
able; more on this point below.

Here is the core code, executed when a machine goes down:

MachineClass.NUp -= 1
if not G.RepairPersonOnSite:

if MachineClass.NUp < MachineClass.K:
G.RPArrive.signal()
G.RepairPersonOnSite = True

else: yield waitevent,self,G.RPArrive
yield request,self,G.RepairPerson

If the repairperson is on site already, then we go straight to the yield request to queue up for repair. If
the repairperson is not on site, and the number of working machines has not yet dropped below K, our
machine executes yield waitevent on our action G.RPArrive, which basically passivates this thread. If on
the other hand our machine’s failure does make the number of working machines drop below K, we execute
the signal() function, which reactivates all the machines which had been waiting.

Again, all of that could have been done via explicit passivate() and reactivate() calls, but it’s much more
convenient to let SimPy do that work for us, behind the scenes.

One of the member variables of SimEvent is occurred, which of course is a boolean variable stating whether
the action has occurred yet. Note that as soon as a wait for an event finishes, this variable reverts to False.
This is why we needed a separate variable above, G.RepairPersonOnSite.

4.2 Which Comes First?

In general thread terminology, we say that we post a signal when we call signal(). One of the issues to
resolve when you learn any thread system concerns what happens when a signal is posted before any waits
for it are executed. In many thread systems, that posting will be completely ignored, and subsequent waits
will thus last forever, or at least until another signal is posted. This obviously can cause bugs and makes
programming more difficult.

In SimPy it’s the opposite: If a signal is posted first, before any waits are started, subsequent waits will
return immediately. That was not an issue in this program, but it’s important to keep in mind in general.

12

4.3 Waiting for Whichever Action Comes First

You can also use yield waiteventj to wait for several actions, producing a “whichever comes first” operation.
To do this, instead of using the form

yield waitevent,self action name

use

yield waitevent,self tuple or list of action names

Then whenever a signal is invoked on any one of the specified actions occurs, all actions queued will be
reactivated.

4.4 The yield queueevent Operation

This works just like yield waitevent, but when the signal is invoked, only the action at the head of the queue
will be reactivated.

5 Advanced Use of the Resource Class

The default queuing discipline, i.e. priority policy, for the Resource class is First Come, First Served
(FCFS). The alternative is to assign different priorities to threads waiting for the resource, which you do by
the named argument qType. For example,

R = Resource(8,qType=PriorityQ)

creates a resource R with eight service units, the queue for which has priorities assigned. The priorities are
specified in the yield request statement. For instance,

yield request,self,R,88

requests to use the resource R, with priority 88. The priorities are user-defined.

5.1 Example: Network Channel with Two Levels of Service

Below is an example of a model in which we use the non-FCFS version of Resource. Here we have a
shared network channel on which both video and data are being transmitted. The two types of traffic act in
complementary manners:

• We can tolerate a certain percentage of lost video packets, as small loss just causes a bit of jitter on
the screen. But we can’t have any noticeable delay.

• We can tolerate a certain increase in delay for data packets. We won’t care about or even notice a
small increase in delay. But we can’t lose packets.

13

Accordingly,

• We discard video packets that are too “old,” with threshold being controlled by the design parameter
L explained in the comments in the program below.

• We don’t discard data packets.

For a fixed level of data traffic, we can for example use simulation to study the tradeoff arising from our
choice of the value of L. Larger L means more lost video packets but smaller delay for data, and vice versa.

Here is the program:

1 #!/usr/bin/env python
2

3 # QoS.py: illustration of non-FCFS priorities in Resource class
4

5 # Communications channel, shared by video and data. Video packets
6 # arrive every 2.0 amount of time, and have transmission time 1.0. Data
7 # packet interarrivals are exponentially distributed with rate DArrRate,
8 # and their transmission time is uniformaly distributed on {1,2,3,4,5}.
9 # Video packets have priority over data packets but the latter are not

10 # pre-emptable. A video packet is discarded upon arrival if it would be
11 # sent L or more amount of time late.
12

13 # usage: python QoS.py DArrRate L MaxSimTime
14

15 from SimPy.Simulation import *
16 from random import Random,expovariate
17

18 class G: # globals
19 Rnd = Random(12345)
20 Chnl = None # our one channel
21 VA = None # our one video arrivals process
22 DA = None # our one video arrivals process
23

24 class ChannelClass(Resource):
25 def __init__(self):
26 # note arguments to parent constructor:
27 Resource.__init__(self,capacity=1,qType=PriorityQ)
28 # if a packet is currently being sent, here is when transmit will end
29 self.TimeEndXMit = None
30 self.NWaitingVid = 0 # number of video packets in queue
31

32 class VidJob(Process):
33 def __init__(self):
34 Process.__init__(self)
35 def Run(self):
36 Lost = False
37 # if G.Chnl.TimeEndXMit is None, then no jobs in the system
38 # now, so this job will start right away (handled below);
39 # otherwise:
40 if G.Chnl.TimeEndXMit != None:
41 # first check for loss
42 TimeThisPktStartXMit = G.Chnl.TimeEndXMit + G.Chnl.NWaitingVid
43 if TimeThisPktStartXMit - now() > VidArrivals.L:
44 Lost = True
45 VidArrivals.NLost += 1
46 return
47 G.Chnl.NWaitingVid += 1
48 yield request,self,G.Chnl,1 # higher priority
49 G.Chnl.NWaitingVid -= 1
50 G.Chnl.TimeEndXMit = now() + 0.999999999999
51 yield hold,self,0.999999999999 # to avoid coding "ties"

14

52 G.Chnl.TimeEndXMit = None
53 yield release,self,G.Chnl
54

55 class VidArrivals(Process):
56 L = None # threshold for discarding packet
57 NArrived = 0 # number of video packets arrived
58 NLost = 0 # number of video packets lost
59 def __init__(self):
60 Process.__init__(self)
61 def Run(self):
62 while 1:
63 yield hold,self,2.0
64 VidArrivals.NArrived += 1
65 V = VidJob()
66 activate(V,V.Run())
67

68 class DataJob(Process):
69 def __init__(self):
70 Process.__init__(self)
71 self.ArrivalTime = now()
72 def Run(self):
73 yield request,self,G.Chnl,0 # lower priority
74 XMitTime = G.Rnd.randint(1,6) - 0.000000000001
75 G.Chnl.TimeEndXMit = now() + XMitTime
76 yield hold,self,XMitTime
77 G.Chnl.TimeEndXMit = None
78 DataArrivals.NSent += 1
79 DataArrivals.TotWait += now() - self.ArrivalTime
80 yield release,self,G.Chnl
81

82 class DataArrivals(Process):
83 DArrRate = None # data arrival rate
84 NSent = 0 # number of video packets arrived
85 TotWait = 0.0 # number of video packets lost
86 def __init__(self):
87 Process.__init__(self)
88 def Run(self):
89 while 1:
90 yield hold,self,G.Rnd.expovariate(DataArrivals.DArrRate)
91 D = DataJob()
92 activate(D,D.Run())
93

94 # def ShowStatus():
95 # print ’time’, now()
96 # print ’current xmit ends at’, G.Chnl.TimeEndXMit
97 # print ’there are now’,len(G.Chnl.waitQ), ’in the wait queue’
98 # print G.Chnl.NWaitingVid, ’of those are video packets’
99

100 def main():
101 initialize()
102 VidArrivals.L = float(sys.argv[1])
103 DataArrivals.DArrRate = float(sys.argv[2])
104 G.Chnl = ChannelClass()
105 G.VA = VidArrivals()
106 activate(G.VA,G.VA.Run())
107 G.DA = DataArrivals()
108 activate(G.DA,G.DA.Run())
109 MaxSimtime = float(sys.argv[3])
110 simulate(until=MaxSimtime)
111 print ’proportion of video packets lost:’, \
112 float(VidArrivals.NLost)/VidArrivals.NArrived
113 print ’mean delay for data packets:’, \
114 DataArrivals.TotWait/DataArrivals.NSent
115

116 if __name__ == ’__main__’: main()

15

We have chosen to make a subclass of Resource for channels. In doing so, we do have to be careful when
our subclass’ constructor calls Resource’s constructor:

Resource.__init__(self,capacity=1,qType=PriorityQ)

The named argument capacity is the number of resource units, which is 1 in our case. I normally don’t
name it in my Resource calls, as it is the first argument and thus doesn’t need to be named, but in this case
I’ve used the name for clarity. And of course I’ve put in the qType argument.

Here is where I set the priorities:

yield request,self,G.Chnl,1 # video
...
yield request,self,G.Chnl,0 # data

I chose the values 1 and 0 arbitrarily. Any values would have worked, as long as the one for video was
higher, to give it a higher priority.

Note that I have taken transmission times to be 0.000000000001 lower than an integer, so as to avoid “ties,”
in which a transmission would end exactly when messages might arrive. This is a common issue when yield
hold times are integers.

5.2 Example: Call Center

This program simulates the operation of a call-in advice nurse system, such as the one in Kaiser Permanente.
The key issue here is that the number of servers (nurses) varies through time, as the policy here is to take
nurses off the shift when the number of callers is light, and to add more nurses during periods of heavy
usage.

1 #!/usr/bin/env python
2

3 # CallCtr.py: simulation of call-in advice nurse system
4

5 # patients call in, with exponential interarrivals with rate Lambda1;
6 # they queue up for a number of advice nurses which varies through time
7 # (initially MOL); service time is exponential with rate Lambda2; if the
8 # system has been empty (i.e. no patients in the system, either being
9 # served or in the queue) for TO amount of time, the number of nurses

10 # is reduced by 1 (but it can never go below 1); a new TO period is then
11 # begun; when a new patient call comes in, if the new queue length is
12 # at least R the number of nurses is increased by 1, but it cannot go
13 # above MOL; here the newly-arrived patient is counted in the queue
14 # length
15

16 # usage:
17

18 # python CallCtr.py MOL, R, TO, Lambda1, Lambda2, MaxSimtime, Debug
19

20 from SimPy.Simulation import *
21 from random import Random,expovariate
22 import sys
23 import PeriodicSampler
24

25 # globals
26 class G:

16

27 Rnd = Random(12345)
28 NrsPl = None # nurse pool
29

30 class NursePool(Process):
31 def __init__(self,MOL,R,TO):
32 Process.__init__(self)
33 self.Rsrc = Resource(capacity=MOL,qType=PriorityQ) # the nurses
34 self.MOL = MOL # maximum number of nurses online
35 self.R = R
36 self.TO = TO
37 self.NrsCurrOnline = 0 # current number of nurses online
38 self.TB = None # current timebomb thread, if any
39 self.Mon = Monitor() # monitors numbers of nurses online
40 self.PrSm = PeriodicSampler.PerSmp(1.0,self.Mon,self.MonFun)
41 activate(self.PrSm,self.PrSm.Run())
42 def MonFun(self):
43 return self.NrsCurrOnline
44 def Wakeup(NrsPl,Evt): # wake nurse pool manager
45 reactivate(NrsPl)
46 # state the cause
47 NrsPl.WakingEvent = Evt
48 if G.Debug: ShowStatus(Evt)
49 def StartTimeBomb(self):
50 self.TB = TimeBomb(self.TO,self)
51 activate(self.TB,self.TB.Run())
52 def Run(self):
53 self.NrsCurrOnline = self.MOL
54 # system starts empty, so start timebomb
55 self.StartTimeBomb()
56 # this thread is a server, usually sleeping but occasionally being
57 # wakened to handle an event:
58 while True:
59 yield passivate,self # sleep until an event occurs:
60 if self.WakingEvent == ’arrival’:
61 # if system had been empty, cancel timebomb
62 if PtClass.NPtsInSystem == 1:
63 self.cancel(self.TB)
64 self.TB = None
65 else: # check for need to expand pool
66 # how many in queue, including this new patient?
67 NewQL = len(self.Rsrc.waitQ) + 1
68 if NewQL >= self.R and self.NrsCurrOnline < self.MOL:
69 # bring a new nurse online
70 yield release,self,self.Rsrc
71 self.NrsCurrOnline += 1
72 continue # go back to sleep
73 if self.WakingEvent == ’departure’:
74 if PtClass.NPtsInSystem == 0:
75 self.StartTimeBomb()
76 continue # go back to sleep
77 if self.WakingEvent == ’timebomb exploded’:
78 if self.NrsCurrOnline > 1:
79 # must take 1 nurse offline
80 yield request,self,self.Rsrc,100
81 self.NrsCurrOnline -= 1
82 self.StartTimeBomb()
83 continue # go back to sleep
84

85 class TimeBomb(Process):
86 def __init__(self,TO,NrsPl):
87 Process.__init__(self)
88 self.TO = TO # timeout period
89 self.NrsPl = NrsPl # nurse pool
90 self.TimeStarted = now() # for debugging
91 def Run(self):
92 yield hold,self,self.TO
93 NursePool.Wakeup(G.NrsPl,’timebomb exploded’)
94

17

95 class PtClass(Process): # simulates one patient
96 SrvRate = None # service rate
97 NPtsInSystem = 0
98 Mon = Monitor()
99 def __init__(self):

100 Process.__init__(self)
101 self.ArrivalTime = now()
102 def Run(self):
103 # changes which trigger expansion or contraction of the nurse pool
104 # occur at arrival points and departure points
105 PtClass.NPtsInSystem += 1
106 NursePool.Wakeup(G.NrsPl,’arrival’)
107 # dummy to give nurse pool thread a chance to wake up, possibly
108 # change the number of nurses, and reset the timebomb:
109 yield hold,self,0.00000000000001
110 yield request,self,G.NrsPl.Rsrc,1
111 if G.Debug: ShowStatus(’service starts’)
112 yield hold,self,G.Rnd.expovariate(PtClass.SrvRate)
113 yield release,self,G.NrsPl.Rsrc
114 PtClass.NPtsInSystem -= 1
115 Wait = now() - self.ArrivalTime
116 PtClass.Mon.observe(Wait)
117 NursePool.Wakeup(G.NrsPl,’departure’)
118

119 class ArrivalClass(Process): # simulates patients arrivals
120 ArvRate = None
121 def __init__(self):
122 Process.__init__(self)
123 def Run(self):
124 while 1:
125 yield hold,self,G.Rnd.expovariate(ArrivalClass.ArvRate)
126 Pt = PtClass()
127 activate(Pt,Pt.Run())
128

129 def ShowStatus(Evt): # for debugging and code verification
130 print
131 print Evt, ’at time’, now()
132 print G.NrsPl.NrsCurrOnline, ’nurse(s) online’
133 print PtClass.NPtsInSystem, ’patient(s) in system’
134 if G.NrsPl.TB:
135 print ’timebomb started at time’, G.NrsPl.TB.TimeStarted
136 else: print ’no timebomb ticking’
137

138 def main():
139 MOL = int(sys.argv[1])
140 R = int(sys.argv[2])
141 TO = float(sys.argv[3])
142 initialize()
143 G.NrsPl = NursePool(MOL,R,TO)
144 activate(G.NrsPl,G.NrsPl.Run())
145 ArrivalClass.ArvRate = float(sys.argv[4])
146 PtClass.SrvRate = float(sys.argv[5])
147 A = ArrivalClass()
148 activate(A,A.Run())
149 MaxSimTime = float(sys.argv[6])
150 G.Debug = int(sys.argv[7])
151 simulate(until=MaxSimTime)
152 print ’mean wait =’,PtClass.Mon.mean()
153 print ’mean number of nurses online =’,G.NrsPl.Mon.mean()
154

155 if __name__ == ’__main__’: main()

Since the number of servers varies through time, we cannot use the SimPy Resource class in a straightfor-
ward manner, as that class assumes a fixed number of servers. However, by making use of that class’ priori-
ties capability, we can achieve the effect of a varying number of servers. Here we make use of an idea from
a page on the SimPy Web site, http://simpy.sourceforge.net/changingcapacity.htm.

18

http://simpy.sourceforge.net/changingcapacity.htm

The way this works is that we remove a server from availability by performing a yield request with a very
high priority level, a level higher than is used for any real request. In our case here, a real request is done
via the line

yield request,self,G.NrsPl.Rsrc,1

with priority 1. By contrast, in order to take one nurse off the shift, we perform

yield request,self,self.Rsrc,100
self.NrsCurrOnline -= 1

The high priority ensures that this bogus “request” will prevail over any real one, with the effect that the
nurse is taken offline. Note, though, that existing services are not pre-empted, i.e. a nurse is not removed
from the shift in the midst of serving someone.

Note the necessity of the line

self.NrsCurrOnline -= 1

The n member variable of SimPy’s Resource class, which records the number of available resource units,
would not tell us here how many nurses are available, because some of the resource units are held by the
bogus “requests” in our scheme here. Thus we need a variable of our own, NrsCurrOnline.

As you can see from the call to passivate() in NursePool.Run(), the thread NursePool.Run() is mostly
dormant, awakening only when it needs to add or delete a nurse from the pool. It is awakened for this purpose
by the patient and “timebomb” classes, PtClass and TimeBomb, which call this function in NursePool:

def Wakeup(NrsPl,Evt):
reactivate(NrsPl)
NrsPl.WakingEvent = Evt

It wakes up the NursePool thread, which will then decide whether it should take action to change the size
of the nurse pool, based on the argument Evt.

For example, when a new patient call arrives, generated by the ArrivalClass thread, the latter creates a
PtClass thread, which simulates that one patient’s progress through the system. The first thing this thread
does is

NursePool.Wakeup(G.NrsPl,’arrival’)

so as to give the NursePool thread a chance to check whether the pool should be expanded.

We also have a TimeBomb class, which deals with the fact that if the system is devoid of patients for a long
time, the size of the nurse pool will be reduced. After the given timeout period, this thread awakenens the
NursePool thread with the event ’timebomb exploded’.

By the way, since activate() requires that its first argument be a class instance rather than a class, we are
forced to create an instance of NursePool, G.NrsPl, even though we only have one nurse pool. That leads to

19

the situation we have with the function NursePool.Wakeup() being neither a class method nor an instance
method.

Note the use of monitors, including in our PeriodicSampler class.

I have included a function ShowStatus() to help with debugging, and especially with verification of the
program. Here is some sample output:

timebomb exploded at time 0.5
6 nurse(s) online
0 patient(s) in system
timebomb started at time 0

arrival at time 0.875581049552
5 nurse(s) online
1 patient(s) in system
timebomb started at time 0.5

service starts at time 0.875581049552
5 nurse(s) online
1 patient(s) in system
no timebomb ticking

departure at time 1.19578373243
5 nurse(s) online
0 patient(s) in system
no timebomb ticking

timebomb exploded at time 1.69578373243
5 nurse(s) online
0 patient(s) in system
timebomb started at time 1.19578373243

timebomb exploded at time 2.19578373243
4 nurse(s) online
0 patient(s) in system
timebomb started at time 1.69578373243

timebomb exploded at time 2.69578373243
3 nurse(s) online
0 patient(s) in system
timebomb started at time 2.19578373243

timebomb exploded at time 3.19578373243
2 nurse(s) online
0 patient(s) in system
timebomb started at time 2.69578373243

timebomb exploded at time 3.69578373243
1 nurse(s) online
0 patient(s) in system
timebomb started at time 3.19578373243

20

	Overview
	 Use of SimPy's cancel() Function
	Example: Network Timeout
	Example: Machine with Breakdown

	Job Interruption
	Example: Machine Breakdown Again
	Example: Network Timeout Again

	Interthread Synchronization
	Example: Yet Another Machine Breakdown Model
	Which Comes First?
	Waiting for Whichever Action Comes First
	The yield queueevent Operation

	Advanced Use of the Resource Class
	Example: Network Channel with Two Levels of Service
	Example: Call Center

