
Digital Design for Multiplication

Norman Matloff

October 15, 2003
c©2003, N.S. Matloff

1 Overview

A cottage industry exists in developing fast digital logic to perform arithmetic computations. Fast addition,
for example, can be accomplished viacarry lookahead adders. Multiplication, which presents much more
of a challenge than addition, is our focus here. A plethora of different digital algorithms for multiplication
have been developed. As a sampling of them, we present two such methods here.

2 Example

Consider for example the multiplication of two 4-bit strings using the “pencil and paper" method:

1011
x1101
-----

1011
0000

1011
1011
-------

10001111

The four rows

1011
0000

1011
1011

are calledpartial products . To sum them, we could use three 8-bit adders. The first adder would compute

1011
+0000
------

01011

1



and the second adder would compute

1011
+1011
------
100001

(The inputs to these adders would simply copy 1011 or 0000 to the appropriate places.) The third adder
would compute the sum of the outputs of the first two adders. The first two additions would be done
simultaneously with each other. If we using registers or some other method, we could even dispense with
the third adder, reusing the first adder for the third addition.

If we wish to multiply two 8-bit strings, we would have eight rows of partial products, and would again sum
them simultaneously in pairs, using four adders. We would then have four sums, and would break them into
two pairs to be summed, etc. In general, to multiply two n-bit strings, we would have anO(log2n)-stage
process.

This, however, would be slow, even using carry lookahead adders, and even accounting for the fact that we
are doing a number of things in parallel. So, how can we speed up the process?

3 Direct Simultaneous Computation

This method is similar to the idea of carry lookahead. In the latter, we anticipate the carries, instead of
waiting for them to propagate. The same is true here. Instead of waiting for sums and carries, we use a
formula which will allow us to compute things ahead of time.

We could actually try to derive a formula, as in the case of carry lookahead, but it is easier simply to write
down the truth table and then simplify the sum-of-products expression implied by the table, using Karnaugh
or other methods.1 Here is how to do it for 2-bit strings.

Denote the multiplicand, multiplier and product by(A1, A0), (B1, B0) and(P3, P2, P1, P0), respectively.
Then the truth table is shown in Table 1. For example, the row in Table 2 corresponds to3× 2 = 6.

Now remember, thePi here are the output functions, each of which will need to be implemented in digital
logic. We can see, for instance, that

P2 = A1Ā0B1B̄0 + A1Ā0B1B0 + A1A0B1B̄0

Table 3 shows the corresponding Karnaugh map. From that, you can see that the simplification forP2 is

P2 = A1B1B̄0 + A1Ā0B1

The complete set of simplified expressions for the product bits is

1Our example here will be small enough to be able to use Karnaugh, but for larger bit strings we would need to use more
advanced circuit simplification methods.

2



A1 A0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 1: Truth Table for 2-Bit Multiplication

1 1 1 0 0 1 1 0

Table 2: Table Entry for3× 2 = 6

B1, B0

A1, A0
00 01 11 10

00 0 0 0 0
01 0 0 0 0
11 0 0 0 1
10 0 0 1 1

Table 3: Karnaugh Map forP2

3



P0 = A0B0,

P1 = Ā1A0B1 + A1A0B̄0 + A1B̄1B0 + A1Ā0B0,

P2 = A1B1B̄0 + A1Ā0B1,

P3 = A1A0B1B0

4 The Carry-Save Method

In the example in Section 2, one problem is that we were only adding two partial products at a time. One
way to speed things up would be to add three partial products—or at least three items of some kind—at a
time. This is the goal of thecarry-save methodof multiplication.2

Where will we get an adder capable of adding three summands? Actually, we already have one, in the form
of Full Adder (FA) components. If you recall, an FA has three inputs, rather than two: It not only has inputs
for the two bits to be added together, but also a third input which is meant for the carry-in from the previous
bit. Then as long as we can deal with carries in some alternative way, we can use the carry-in input for
our third summand. Then for example we could use a block of eight FAs as a device for summing three
summands—as long as we find some way to deal with carries, since we’re using the carry-in inputs for one
of the summands instead of for carries.

Well, then, howdo we handle the carries? The answer is to postpone adding them. To see how this is done,
consider the following example, done using the ordinary “pencil and paper” way:

11
0111

+1010
-----
10001

where the 11 row consists of carries. Now, here is another way to do it, in which we generate carries but
postpone using them:

0111
+1010
-----

1101 bitwise sums
0010 bitwise carries
-----
10001

Note the line labeled “bitwise carries.” In it, each bit shows the carry that would result from the addition
of the two bits in the previous bit position. For example, the rightmost 0 in the 0010 bitwise carries string
above is the carry from the rightmost bit position in the original sum, as seen underscored by asterisks:

2It can also be used for addition.

4



0111
^*

+1010
^*

-----
0010 bitwise carries

^*

Similarly, the 1 in the bitwise carries string is the carry resulting from the second-to-the-right bit position,
as underscored with carats.

Now, how do we make use of this carry postponement? To see how, think of multiplying two 6-bit strings.
That produces six partial products, which we will call Partial1, Partial2, ..., Partial6. Since we want to make
use of our ability to add groups of three terms, we will alway add three terms at a time in the following steps:

• add together Partial1, Partial2 and Partial3, resulting in a sum we will call Sum1 and a carry string
called Carry1

• add Partial4, Partial5 and Partial6, producing Sum2 and Carry2

• add Sum1, Carry1 and Sum2, producing Sum3 and Carry3

• add Carry2, Sum3 and Carry3, producing Sum4 and Carry4

• add Sum4 and Carry4 using conventional techniques

Clearly, the order used here is not unique. Also, various steps can be taken to get the best performance; e.g.
as much parallel computation as possible should be done.

5


