
Name:

Directions: Work on this sheet (on both sides, if
needed) only; do not turn in any supplementary
sheets of paper. There is actually plenty of room for
your answers, as long as you organize yourself BEFORE
starting writing. In order to get full credit, SHOW
YOUR WORK.

1. (10) Fill in the blank: A special cache
used to store part of the page table is called a(n)

.

2. (10) Is the mythical machine used for examples in
our printed lecture notes on I/O designed for memory-
mapped I/O? State clearly why or why not.

3. (15) Consider the 2-way set-associative example which
begins at the bottom of p.571 of Patterson and Hennessy.
Suppose after the 5 memory accesses shown, we then have
6 more, to memory addresses 4, 1, 3, 1, 0 and 5. How
many misses will these latter 6 accesses produce? Re-
member to show your work.

4. (10) In our printed lecture notes on OSs we discussed
the notion of a system call. State which specific MIPS in-
struction performs this operation, and show the page from
our assigned reading in Patterson and Hennessy where
this is discussed.

5. (10) Fill in the blank: The authors of our text-
book neglected to mention that Dirty bits are needed in
some kinds of caches too, specifically caches which have
a policy.

6. (15) Fill in the blanks (in the first case answering
either “hardware” or “software”): Suppose you receive a
message like “segmentation fault” or “bus error” while
running it program. Such a problem was first discovered
by the while checking the bits
in the .

7. (15) Suppose we are building a set-associative instruc-
tion cache for a machine on which we anticipate mainly
running a particular program which makes highly fre-
quent calls to a few very short functions. State what
implications this has on our choice of degree of set-
associativity (high or low) and block size (large or small).
Explain your answer with great thoroughness.

8. (15) In this problem, you will write a portion of an
OS’s page fault handler for the system shown in Fig.7.22
of Patterson and Hennessy. Assume the OS maintains
the following global variables:

int PTR, // contents of Page Table Reg
FaultVAddr, // virtual memory address

// which produced page fault
EvictVPN, // virtual page number of page

// to be evicted
EvictPPN, // physical page number of page

// to be evicted
EvictDL; // disk location for evicted page

Assume that when the OS is running (system mode),
all addresses issued by the OS are physical, e.g. MOV
AX,[200] really does mean physical location 200. Also
assume that each line of the page table takes up one full
word of memory, right-justified, and that there is no TLB.

Write the portion of the OS which updates the page table.
(Do not include the code for copying the evicted page to
disk and loading the new page.) Write your code in C.

Solutions:

1. TLB.

2. The answer was supposed to be no, but due to a typo
in the handout, I accepted all answers.

3. 5.

4. Page 597, syscall.

5. Write-back.a

6. Hardware; permission; page table.

7. High, small.

8.

FaultVPN = FaultVAddr >> 12;
FaultPgTblEntry = (int *) (PTR + 4*FaultVPN);
*FaultPgTblEntry = EvictPPN + 1 << 19;
EvictPgTblEntry = (int *) (PTR + 4*EvictVPN);
*EvictPgTblEntry = EvictDL;

1


