
Name:

Directions: Work on this sheet (on both sides, if
needed) only; do not turn in any supplementary
sheets of paper. There is actually plenty of room for
your answers, as long as you organize yourself BEFORE
starting writing. In order to get full credit, SHOW
YOUR WORK.

1. Suppose our memory system on p.19 of the printed
lecture notes on digital design were to be of size 32x8 in-
stead of 8x4, but still using the same 4x2 chips as building
blocks.

(a) (5) How many chips would we need?

(b) (5) How many data lines would we need in the bus?

(c) (10) Fill in the blank with the correct count: Each
word of system memory (e.g. each C variable of type
int) would be stored in chips.

2. Look at the table at the bottom of p.547 in Patterson
and Hennessy. Suppose after the access to word 18, we
then have accesses to words 19 and 20.

(a) (5) Will the accesses to 19 and 20 produce a hit or
miss?

(b) (5) Fill in the blank: The sequence of accesses to 18,
19 and 20 is an example of locality.

3. Look at Figure 4.18 of Patterson and Hennessy.

(a) (5) How many wires are in the line labeled Binvert?
How many in Operation?

(b) (5) What is the numerical value on the green Carryin
at the very top of the figure? Give a clear explanation
for this.

4. (10) On p.12 of the printed lecture notes on storage
of program variables, it was stated that most compilers
(on 32-bit machines) would leave a gap between the two
consecutive structs U and V in the example:

struct S {
int X;
char A,B;

};
...
...
struct S U,V;

(Assume that storage is in “nonreverse order.”) Write a
short (but complete) C program to test this, using the
above example. Your program must end its output by
reporting either “gap between structs” or “no gap”, ac-
cording to whatever its findings are.

5. We need to build a circuit whose inputs are u, x and
y, and whose output is r. If u = 1, then r will be equal to
x, and otherwise r will be equal to y.

(a) (5) Write a boolean equation (this term is introduced
on p.1 of our digital logic notes) that expresses r in
terms of u, x and y.

(b) (5) Show how to use the MUX on p.4 of the notes
to produce r from u, x and y. Use the same notation
for the MUX inputs (A, D1, D0) and output (Z) as
on p.4. We will set r to Z. State what A, D1 and D0
should be set to.

6. (10) Look at the simple CPU on p.21 of the digital
logic notes. Though the connections are not shown in
the figure, the clock will be connected to one or more
of the components shown. Give a complete list of such
components.

7. Look at the cache on p.546 of Patterson and Hennessy.
Let wa denote the word address of the item we hope to
find in the cache, and let ln denote the line number in
the cache at which we will look for this item. Instead of
using the mapping

ln = wa mod 8

as our index into the cache, in this problem we will con-
sider alternative mappings, of the type

ln = (k wa) mod 8

(The original design on p.546 has k = 1.) To make mat-
ters simple, we will use all 5 bits of wa as the tag (even
though this may be wasteful).

(a) (10) Why would it be very undesirable to use k = 4?
Be very specific and clear in your answer.

(b) (10) Give a value for k, other than 1, which would
not have the disadvantage of k = 4.

8. (10) Consider the cache on p.557 of Patterson and
Hennessy. Suppose we have a program which includes a
declaration

int x[1000];

1



and suppose the address of x[0] is 32. If an access to
x[50] causes a cache miss, which other elements of x—if
any—will be brought into the cache besides x[50]?

Solutions:

1.a. 32/4 x 8/2 = 32.

1.b. 8.

1.c. 4.

2.a. Miss, miss.

2.b. Spatial.

3.a. 1,2.

3.b. It’s 0 unless we want to computer a-b, in which case
it’s 1; see Patterson and Hennessy.

4.

struct S {
int X; char A,B;

}

struct S X,Y;

main()

{ if ((int) &V - (int) &U > 6) printf("gap\n");
else printf("no gap\n");

}

5.a. r = u x + u y.

5.b. A = u, D1 = x, D0 = y.

6. R, N/Z, IR, PC, memory.

7.a. We would not use all of the cache.

7.b. Any number relatively prime to 8. (Credit not al-
lowed unless get part (a) correct.)

8. x[50] will be 50 x 4 = 200 bytes from x[0], thus at 232.
Block size is 16, so x[50] will start in the 232 mod 16 =
8th byte of its block (counting the beginning byte of the
block as the 0th). Since each x[i] is 4 bytes, that means
x[48] is at byte 0 of the block, and so on, with x[51] being
the last element of x in this block.

2


