Name:

Directions: Work on this sheet (both sides, if
needed) only; do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize your-
self BEFORE starting writing. In order to get full
credit, WRITE LEGIBLY (oo points off for illegi-
ble handwriting!), and SHOW YOUR WORK.

1. (10) Alter equation (9), p.5 of the digital logic
handout to show the formula for Z6.

2. Look at the figure on p.19 of the digital logic
handout.

(a) (10) Fill in the blank with an official component
term from our course: Each line leading from a
DCDR to a register is connected specifically to

a(n)

(15) Look at the MUX. Let U equal 1 if the
upper-right input is selected, 0 if the lower-right
one is selected. U is produced as a result of run-
ning the top inputs, which we will denote by Op-
Code0, OpCodel, OpCode2, OpCode3, N and
Z, through some combinational logic. Show this
logic by writing U as a boolean expression of Op-
Code0 etc.; use sum-of-products form.

3. (10) Equation (8) on p.4 of the digital design
handout could be written in the equivalent form
A1(A0D3 + A0D2) + A1(A0D1 + A0DO). Fill in
the blank with an official acronym from our course:
The advantage of the form in equation (8) over this
other form is that (8) is easy to implement as a(n)

4. (15) Design a 1-bit ripple counter with asyn-
chronous clear, defined as follows: It has two 1-bit
inputs, named PULSE and CLEAR, and a 1-bit out-
put named MOD2. MOD?2 is a count of the number
of pulses mod 2.

You are allowed to use only a D flip-flop and AND,
OR and NOT gates in your design, no other compo-
nents. The inputs to the DFF will be named D and
CLK, and the outputs Q and Q.

Give your answer in terms of boolean equations, not
as a picture. (Of course, you will probably want to
draw a picture on scratch paper to help your think-
ing.) Specifically, your answer should consist of three
boolean equations, whose left-hand sides are “MOD?2
=",“D =" and “CLK =7, and whose right-hand
sides are boolean expressions in PULSE, CLEAR, Q
and Q.

5. Consider the 32-word memory system and 8-word
cache described on pp.546-548 of Patterson and Hen-

nessy, except that block/line size is now 4 words in-
stead of 1. Assume 8-bit words.

(a) (10) How many lines will the cache have?

(b) (10) Suppose the cache is initially empty, and
then it is presented with the sequence of memory
references 3,4,5,6,3,12. How many misses will oc-
cur? Which reference will produce the SECOND
miss? (Both read misses and write misses count
as misses.)

(10) What is the total number of bits (of all
types) stored in this cache? In other words, if we
were to build this cache from flip-flops (including
packaged sets of flip-flops such as SRAMs), how
many flip-flops would be in the cache?

6. (10) Consider the following C code:

for (i = 0; i < 10; i++) A{
tmp = 0;
for (j = 0; j < 3; j++)

tmp += x[4xi+j];
x[4*i+3] += tmp;

where x is an int array.

Assume: separate instruction and data caches; no
cache misses due to instruction fetches during the ex-
ecution of the above code; the compiler has stored the
variables i, j and tmp in registers rather than in mem-
ory; the data cache consists of just 1 line; line size is 4
words; x[0] is the first word in its memory block (i.e.
its address is an even multiple of 4 times the word
size); the data cache is initially empty. State the
numbers of memory accesses which would be made
under write-through and write-back schemes. (Both
reads and writes count as memory accesses.)

Solutions:
1. Z6 = X2X1X0.
2.

(a) Tri-state buffer.

(b)

U = N(OC00C10C20C3)+Z(0C00C10C20C3)+0C00:

3. PLA.

4. MOD2 = Q,D = CLEAQ,CLK = CLEAR +
PULSE.

5.

(a) 8/4 = 2 lines.



(b) At the first reference to 3, which is a miss since
the cache is empty, the block containing 3 is
brought in, which consists of memory locations,
0, 1, 2 and 3. The next reference, 4, is still not
in the cache; this is the second miss, and 4’s
block—4, 5, 6 and 7—is brought in. The next
four references—5, 6 and 3—will then be hits.
The reference to 12 will then be a miss, the third.

(¢) Since the memory consists of 32 words, the ad-
dress size is 5 bits. Of these, the least-signifcant
2 bits give the Word Offset within the block/line,
since there are 4 words per block/line. The next
least-significant bit is the line number, i.e. the
Index (we only need 1 bit for this since there are
only 2 lines). The remaining 5 - 2 - 1 = 2 bits
form the Tag. Then there is 1 Valid bit per line,
and 4 Data items per line. Thus each line con-
sists of 2 + 1 + 4 (8) = 35 bits, thus a total of
70 for the entire cache.

6. First, consider write-through, when i = 0. The
read of | x[0] when j = 0 produces a cache miss; this
means that the block containing | x[0]—x[0], x[1], x[2]
and x[3]—must be brought in; this is already 4 mem-
ory accesses. When j = 1 and j = 2, we have two more
reads but they are cache hits, thus no more memory
accesses. However, the final statement within the “i”
loop,

x[4*%i+3] += tmp;

generates both a read and a write of x[3]. These are
cache hits, but the write must be written-through,
thus another access to memory. Thus, for each value
of i, we will have 5 memory accesses, for a total of 50.

The write-back case is similar. There will still be 4
read memory accesses per value of i. However, the
write-back involves writing back the entire block of 4
words, so there will be 4 write memory accesses per
value of i. So, with a write-back design, we will have
80 memory accesses in all.




