
Environnments and R’s Reference Classes

Overview

A saying people sometimes use to summarize the philosophy of R is, "Every
thing is an object, and every action is a function." I like to add, “And functions
are objects.” :-)

So, for instance, the ls() function is an object, and addition is a function (and
thus an object):

> 3 + 8
[1] 11
> `+`(3,8) # + is actually a function!
[1] 11
> a <- list(u = 1, v = 12)
> a$v
[1] 12
> `$`(a,v) # $ is actually a function!
[1] 12

However, R’s class nature has traditionally been rather different from what
C/C++/Java/Python programmers are used to.

S3 Classes

The classic R class structure is S3, taken from the old S language. It packages
various data items into an object, thus featuring the encapsulation tenet of the
OOP philosophy. But class functions are not packaged inside the class. Instead,
the notion of generic functions and function call dispatch are used to achieve
polymorphism, which means that the same function will work in different ways
on different types of objects. Polymorphism is one of the core tents of the
object-oriented programming philosophy.

Say for example we create a new class cls. We probably would want users to be
able to nicely print out instances of this class, which we do by writing a function
print.cls(). Then if x is an instance of the class, typing

> print(x)

will result in the R interpreter dispatching this call to the actual call print.cls(x).

We say that print() is a generic function. Other common examples are plot()
and summary().

An S3 object is simply an R list, with a class attribute tacked on.

> l <- list(u=3, v=8)
> class(l) <- 'cls'

1

> l
$u
[1] 3

$v
[1] 8

attr(,"class")
[1] "cls"
> l$v
[1] 8
> l$v <- 88
> l$v
[1] 88

Since S3 classes are lists, the ‘$’ symbol is used to delineate members.

S4 Classes

Some people felt that S3 classes have two flaws: (a) They don’t locate functions
physically within the class (violating the encapsulation tenet), and (b) they
are not “safe,” in that more members of the class can be added later, possibly
by accidents such as misspelling. S4 classes addresses those concerns, giving
“C++-style” clases for those who want them. (Many, actually most, of us stuck
to S3.)

S4 objects are created as in C++ and Java, using new(). Class member
delineation is via the ‘@’ symbol.

Environnments

An R environment is a collection of objects, working something like a list.

We speak of the top-level environment. When you are working at the interactive
prompt ‘>’, that environment, named .GlobalEnv, consists of the objects you
created at that level. (If you have an .Rprofile startup file, it’s run when you
start R, so whatever is created there is also part of this top-level environment.)

Use in function calls

If you create a function, say f(), at the top-level, its environment will be the
top-level one. Within the call, an environment is temporarily created for that
call, consisting of the arguments, local variables, and a pointer to the parent
environment.

2

This then occurs recursively, for functions defined within functions, and so on.
E.g.,

> f <- function(x) {z <- (x+y)^2; g <- function(w) w*z*y; g(5)}
> y <- 6
> f(3)
[1] 2430

What happened? Here y was in the environment of f(). When x+y was evalu-
ated, the current environment consisted of x and a pointer to the environment
of f(). which included y. Thus y was found and z was computed, and z, a new
local, was added to the current environment, which now consisted of x, z and
the pointer to the top-level environment.

Next, g() was created, a new local, and added to the current environment, now
consisting of x, z, g and a pointer to the top-level. Then during the call to g(),
the current environment consisted of w, plus a pointer to the environment of
f()’s call; so, all of w, y and z were available.

Accessing Other Environnments

In the above example, we call the top level the enclosing or parent environment
to the environment in effect during the call to f(). The upward pointer can be
followed using parent.frame():

> h <- function(x) {print(ls()); print(ls(envir=parent.frame()))}
> h(5)
[1] "x"
[1] "a" "bld" "d" "dbb"
[5] "dbcurr" "dbl" "dbsrci" "dbtb"
[9] "e" "evalr" "f" "fedit"

[13] "g" "lsp" "odf" "pr2file"
[17] "relib" "srcname" "y"

The first ls() call just printed the current environment, i.e. just x. But the
second went to the parent environment. I had a lot of stuff in my top-level
environment, but you can see y there.

We can assign things up the chain using the ‘<<-’ operator, but the assign()
function is more specific.

> h <- function(x) assign('q',(x+y)^2,envir=parent.frame())
> h(18)
> q
[1] 576

The get() function fetches something for us from another environment.

3

Making our own environments

It’s useful to form environments apart from function call uses. We can create an
environment via the new.env() function, as you’ll see below.

As a functional language, in R there are (almost) no side effects. The latter means
that in a call k(v), the actual argument corresponding to a formal argument
v will not change, even if v changes within the function. (The v within the
function is just a local copy.) If one does want the original v to change, one
must reassign to it from the return value of the function.

An exception to that is R environments.

> d <- list(x = 3, w = 1:5)
> f <- function(obj) obj$x <- 12
> f(d)
> d$x # still 3, no change
[1] 3
> e <- new.env()
> e$x <- 3
> e$w <- 1:5
> f(e)
> e$x # not 3 anymore, changed to 12
[1] 12

Environnments as a Place for Globals

Many R specialists disdain global variables, considering them “unsafe.” I disagree
– careful use of globals can make code simpler and clearer, thus “safer” – but
those who dislike globals would say "OK, if you must use globals, don’t use ‘<<-’.
Instead, put all your globals in an environment, say globals.

Their objection to ‘<<-’ is that one may accidentally have a variable of the same
name at an intermediate level, even though we want the top level. Then we
would be assigning to ther intermediate one, not the top one as desired. They
also believe that packaging the globals into one container is clearer. Again, the
latter is the principle of encapsulation.

Reference Classes

At any rate, environments give us the ability to have list-like structures while
not being restricted by the no-side-effects functional programming ethos.

Reference classes are then essentially S4 classes but stored as environments
rather than lists. A function can then change the element of such a class, without

4

having to reassign, and most important, without having to create a new copy of
the whole class instance.

Say we have a list z with element u and v, vector of length 3 and 100 million,
respectively. If our function changes only u, a new copy of z would be created,
meaning memory must be allocated and copied to, very time consuming. With
an environment, that would not occur.

(Note though that it is still the case that with any vector x, doing something
like x[5] <- 12 risks reallocation of x.)

A good starting example of using reference classes is this implementation of a
queue data structure.

5

http://www.r-bloggers.com/implementing-a-queue-as-a-reference-class/

	Environnments and R's Reference Classes
	Overview
	S3 Classes
	S4 Classes
	Environnments
	Use in function calls
	Accessing Other Environnments
	Making our own environments
	Environnments as a Place for Globals

	Reference Classes

