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5.5 Example: Transforming an Adjacency Ma-
trix, R-Callable Code

A typical application might involve an analyst writing most of his code in
R, for convenience, but write the parallel part of the code in C/C++, to
maximize speed. The most common interfaces for this are the R functions
.C(), .Call() and Rcpp. We’ll illustrate that notion here, modifying our
earlier code for transforming an adjacency matrix, in Section 5.4.1.

5.5.1 The Code, for .C()

Code suitable for the .C() interface follows below.

1 // AdjMatXformForR.c
2

3 #include <R.h>
4 #include <omp.h>
5 #include <stdlib.h>
6

7 // transgraph() does this work
8 // arguments:
9 // adjm: the adjacency matrix (NOT assumed symmetric), 1 for edge, 0

10 // otherwise; note: matrix is overwritten by the function
11 // np: pointer to number of rows and columns of adjm
12 // nout: output, number of rows in returned matrix
13 // outm: the converted matrix
14

15 void findmyrange(int n,int nth,int me,int *myrange)
16 { int chunksize = n / nth;
17 myrange[0] = me * chunksize;
18 if (me < nth-1) myrange[1] = (me+1) * chunksize - 1;
19 else myrange[1] = n - 1;
20 }
21

22 void transgraph(int *adjm, int *np, int *nout, int *outm)
23 {
24 int *num1s, // i-th element will be the number of 1s in row i of adjm
25 *cumul1s, // cumulative sums in num1s
26 n = *np;
27 #pragma omp parallel
28 { int i,j,m;
29 int me = omp_get_thread_num(),
30 nth = omp_get_num_threads();
31 int myrows[2];
32 int tot1s;
33 int outrow,num1si;
34 #pragma omp single
35 {
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36 num1s = malloc(n*sizeof(int));
37 cumul1s = malloc((n+1)*sizeof(int));
38 }
39 findmyrange(n,nth,me,myrows);
40 for (i = myrows[0]; i <= myrows[1]; i++) {
41 tot1s = 0; // number of 1s found in this row
42 for (j = 0; j < n; j++)
43 if (adjm[n*j+i] == 1) {
44 adjm[n*(tot1s++)+i] = j;
45 }
46 num1s[i] = tot1s;
47 }
48 #pragma omp barrier
49 #pragma omp single
50 {
51 cumul1s[0] = 0; // cumul1s[i] will be tot 1s before row i of adjm
52 // now calculate where the output of each row in adjm
53 // should start in outm
54 for (m = 1; m <= n; m++) {
55 cumul1s[m] = cumul1s[m-1] + num1s[m-1];
56 }
57 *nout = cumul1s[n];
58 }
59 int n2 = n * n;
60 for (i = myrows[0]; i <= myrows[1]; i++) {
61 outrow = cumul1s[i]; // current row within outm
62 num1si = num1s[i];
63 for (j = 0; j < num1si; j++) {
64 outm[outrow+j] = i + 1;
65 outm[outrow+j+n2] = adjm[n*j+i] + 1;
66 }
67 }
68 }
69 }

We could have a main() function here, but instead will be calling the code
from R, as will be seen shortly.

5.5.2 Compiling and Running

In writing a C file y.c containing a function f() that we’ll call from R, one
can compile using R from a shell command line:

R CMD SHLIB y.c

This produces a runtime-loadable library file. In Linux systems, for in-
stance, the file y.so would be created, with the corresponding file for Win-
dows being y.dll. We then load it from R:
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> dyn . load ( ”y . so ” )

after which can call f() from R in some manner, such as .C() or .Call().
We’ve written the code above to be compatible with the simpler interface,
.C(), which takes the form

> .C( ” f ” , our arguments here )

A more complex but more powerful call form, .Call() is also available, to
be discussed below.

The file y.c must include the R header file:

#include <R.h>

Generally the good thing about compiling via R CMD SHLIB is that we
don’t have to worry where the header file is, or worry about the library
files. But things are a bit more complicated if one’s code uses OpenMP, in
which case we must so inform the compiler. We can do this by setting the
proper environment variable. For C code and the bash shell, for instance,
we would issue the shell command

% export SHLIB OPENMP CFLAGS = �fopenmp

Here is a sample run, again in the R interactive shell, with the C file being
AdjMatXformForR.c:

n <� 5
dyn . load ( ”AdjMatXformForR . so ” )
a <� matrix (sample ( 0 : 1 , nˆ2 , replace=T) , ncol=n)
out <�.C( ” transgraph ” , as . integer ( a ) , as . integer (n ) , integer ( 1 ) ,

integer (2⇤nˆ2))

Compare this last line to the signature of transgraph():

void transgraph(int *adjm, int *np, int *nout, int *outm)

Note the following:

• The return value must be of type void, and in fact return values are
passed via the arguments, in this case nout (the number of rows in
the output matrix) and outm (the output matrix itself).

• All arguments are pointers.
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• Our R code must allocate space for the output arguments.

Concerning that last point, there is no longer reason to have our C code
allocate memory for the output matrix, as it did in Section 5.4. Here we
set up that matrix to have worst-case size before the call, as we did in the
Rdsm version.

So, here is a test run:

> n <- 5

> dyn.load("AdjMatXformForR.so")

> a <- matrix(sample(0:1,n^2,replace=T),ncol=n)

> out <-.C("transgraph",as.integer(a),as.integer(n),integer(1),

+ integer(2*n^2))

> out

[[1]]

[1] 0 0 0 1 0 1 3 0 4 1 3 4 0 0 3 4 1 0 0 4 1 1 0 1 1

[[2]]

[1] 5

[[3]]

[1] 14

[[4]]

[1] 1 1 1 1 2 2 2 3 4 4 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 1 2 4 5 1 4 5 1 2 5 1 2 4

[39] 5 0 0 0 0 0 0 0 0 0 0 0

As you can see, the return value of .C() is an R list, with one element for
each of the arguments to transgraph(), including the output arguments.

Note that by default, all input arguments are duplicated, so that any
changes to them are visible only in the output list, not the original ar-
guments. Here out[[1]] is di↵erent from the input matrix a:

> a
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

[ 1 , ] 1 1 0 1 1
[ 2 , ] 1 0 0 1 1
[ 3 , ] 1 0 0 0 0
[ 4 , ] 0 1 0 0 1
[ 5 , ] 1 1 0 1 1



131

Duplication of the data might impose some slowdown, and can be disabled,
but this usage is discouraged by the R development team.

Our output matrix, out[[4]], is hard to read in its linear form. Let’s display
it as a matrix, keeping in mind that our other output variable, out[[3]],
tells us how many (real) rows there are in our output matrix:

> ( nout <� out [ [ 3 ] ] )
[ 1 ] 14
> o4 <� out [ [ 4 ] ]
> om <� matrix ( o4 , ncol=2)
> om[ 1 : nout , ]

[ , 1 ] [ , 2 ]
[ 1 , ] 1 1
[ 2 , ] 1 2
[ 3 , ] 1 4
[ 4 , ] 1 5
[ 5 , ] 2 1
[ 6 , ] 2 4
[ 7 , ] 2 5
[ 8 , ] 3 1
[ 9 , ] 4 2

[ 1 0 , ] 4 5
[ 1 1 , ] 5 1
[ 1 2 , ] 5 2
[ 1 3 , ] 5 4
[ 1 4 , ] 5 5

5.5.3 Analysis

So, what has changed in this version? Most of the change is due to the
di↵erences between R and C.

Most importantly, the fact that R uses column-major storage for matrices
while C uses row-major order (Section 2.3) means that much of our new
code must “reverse” the old code. For example, the line

outm[2*(outrow+j)+1] = adjm[n*i+j];

in the original code now becomes

int n2 = n * n;
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...

outm[outrow+j+n2] = adjm[n*j+i] + 1;

5.5.4 The Code, for Rcpp

The other major way to call C/C++ code from R is via the .Call() function.
It is considered more advanced than .C(), but is much more complex. That
complexity, though, can be largely hidden from the programmer through
the use of the Rcpp package, and in fact the net result is that the Rcpp
route is actually easier than using .C().

Here is the Rcpp version of our previous code:

1 // AdjRcpp . cpp
2
3 #include <Rcpp . h>
4 #include <omp . h>
5
6 // the func t i on transgraph ( ) does the work
7 // arguments :
8 // adjm : the adjacency matrix (NOT assumed symmetric ) ,
9 // 1 for edge , 0 otherw i s e ; note : matrix i s ove rwr i t t en
10 // by the func t i on
11 // return value : the converted matrix
12
13 // f i n d s the hunk o f rows t h i s thread w i l l p roc e s s
14 void f indmyrange ( int n , int nth , int me, int ⇤myrange )
15 { int chunks ize = n / nth ;
16 myrange [ 0 ] = me ⇤ chunks ize ;
17 i f (me < nth�1) myrange [ 1 ] = (me+1) ⇤ chunks ize � 1 ;
18 else myrange [ 1 ] = n � 1 ;
19 }
20
21 RcppExport SEXP transgraph (SEXP adjm)
22 {
23 int ⇤num1s , // i�th element w i l l be the number o f 1 s in row i o f adjm
24 ⇤cumul1s , // cumulat ive sums in num1s
25 n ;
26 Rcpp : : NumericMatrix xadjm (adjm ) ;
27 n = xadjm . nrow ( ) ;
28 int n2 = n⇤n ;
29 Rcpp : : NumericMatrix outm(n2 , 2 ) ;
30



133

31 #pragma omp p a r a l l e l
32 { int i , j ,m;
33 int me = omp get thread num( ) ,
34 nth = omp get num threads ( ) ;
35 int myrows [ 2 ] ;
36 int t o t 1 s ;
37 int outrow , num1si ;
38 #pragma omp s i n g l e
39 {
40 num1s = ( int ⇤ ) mal loc (n⇤s izeof ( int ) ) ;
41 cumul1s = ( int ⇤ ) mal loc ( ( n+1)⇤s izeof ( int ) ) ;
42 }
43 findmyrange (n , nth ,me , myrows ) ;
44 for ( i = myrows [ 0 ] ; i <= myrows [ 1 ] ; i++) {
45 to t1 s = 0 ; // number o f 1 s found in t h i s row
46 for ( j = 0 ; j < n ; j++)
47 i f ( xadjm ( i , j ) == 1) {
48 xadjm ( i , ( t o t 1 s++)) = j ;
49 }
50 num1s [ i ] = to t1 s ;
51 }
52 #pragma omp ba r r i e r
53 #pragma omp s i n g l e
54 {
55 cumul1s [ 0 ] = 0 ; // cumul1s [ i ] w i l l be to t 1 s be f o r e row i o f xadjm
56 // now c a l c u l a t e where the output o f each row in xadjm
57 // should s t a r t in outm
58 for (m = 1 ; m <= n ; m++) {
59 cumul1s [m] = cumul1s [m�1] + num1s [m�1] ;
60 }
61 }
62 for ( i = myrows [ 0 ] ; i <= myrows [ 1 ] ; i++) {
63 outrow = cumul1s [ i ] ; // cur r ent row with in outm
64 num1si = num1s [ i ] ;
65 for ( j = 0 ; j < num1si ; j++) {
66 outm( outrow+j , 0 ) = i + 1 ;
67 outm( outrow+j , 1 ) = xadjm( i , j ) + 1 ;
68 }
69 }
70 }
71
72 Rcpp : : NumericMatrix outmshort =
73 outm(Rcpp : : Range (0 , cumul1s [ n ]�1) ,Rcpp : : Range ( 0 , 1 ) ) ;
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74 return outmshort ;
75 }

5.5.5 Compiling and Running

We will still run R CMD SHLIB to compile, but we have more libraries
to specify in this case. In the bash shell, we can run

export R_LIBS_USER=/home/nm/R

export PKG_LIBS="-lgomp"

export PKG_CXXFLAGS="-fopenmp -I/home/nm/R/Rcpp/include"

That first command lets R know where our R packages are, in this case the
Rcpp package. The second states we need to link in the gomp library,
which is for OpenMP, and the third both warns the compiler to watch for
OpenMP pragmas and to include the Rcpp header files.

Note that that last export assumes our source code is in C++, as indicated
below by a .cpp su�x to the file name. Since C is a subset of C++, our
code can be pure C but we are presenting it as C++.

We then run

R CMD SHLIB AdjRcpp.cpp

This produces a .so file or equivalent as before. Here is a sample run:

> l ibrary (Rcpp) # don ’ t f o r g e t to do t h i s FIRST
> dyn . load ( ”AdjRcpp . so ” )
> m <� matrix (sample ( 0 : 1 , 1 6 , replace=T) , ncol=4)
> m

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
[ 1 , ] 1 1 1 0
[ 2 , ] 1 1 0 1
[ 3 , ] 1 1 0 0
[ 4 , ] 1 0 0 1
> .Call ( ” transgraph ” ,m)

[ , 1 ] [ , 2 ]
[ 1 , ] 1 1
[ 2 , ] 1 2
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[ 3 , ] 1 3
[ 4 , ] 2 1
[ 5 , ] 2 2
[ 6 , ] 2 4
[ 7 , ] 3 1
[ 8 , ] 3 2
[ 9 , ] 4 1

[ 1 0 , ] 4 4

Sure enough, we do use .Call() instead of .C(). And note that we have
only one argument here, m, rather than five as before, and that the result is
actually in the return value, rather than being in one of the arguments. In
other words, even though .Call() is more complex than .C(), use of Rcpp
makes everything much simpler than under .C(). In addition, Rcpp allows
us to write our C/C++ code as if column-major order were used, consistent
with R. No wonder Rcpp has become so popular!

5.5.6 Code Analysis

The heart of using .Call(), including via Rcpp, is the concept of the SEXP
(“S-expression,” alluding to R’s roots in the s language). In R internals,
a SEXP is a pointer to a C struct containing the given R object and in-
formation about the object. For instance, the internal storage for an R
matrix will consist of a struct that holds the elements of the matrix and
and its numbers of rows and columns. It is this encapsulation of data and
metadata into a struct that enabled us to have only a single argument in
the new version of transgraph():

RcppExport SEXP transgraph (SEXP adjm)

The term RcppExport will be explained shortly. But first, note that both
the input argument, adjm, and the return value are of type SEXP. In other
words, the input is an R object and the output is an R object. In our run
example above,

> .Call ( ” transgraph ” ,m)

the input was the R matrix m, and the output was another R matrix.

The machinery in .Call() here is set up for C, and C++ users (including
us in the above example) need a line like

extern ”C” transgraph ;



136

in the C++ code. The RcppExport term is a convenience for the pro-
grammer, and is actually

#define RcppExport extern ”C”

Now, let’s see what other changes have been made. Consider these lines:

Rcpp : : NumericMatrix xadjm (adjm ) ;
n = xadjm . nrow ( ) ;
int n2 = n⇤n ;
Rcpp : : NumericMatrix outm(n2 , 2 ) ;

Rcpp has its own vector and matrix types, serving as a bridge between
those types in R and corresponding arrays in C/C++. The first line above
creates an Rcpp matrix xadjm from our original R matrix adjm. (Ac-
tually, no new memory space is allocated; here xadjm is simply a pointer
to the data portion of the struct where adjm is stored.) The encapsula-
tion mentioned earlier is reflected in the fact that Rcpp matrices have the
built-in method nrow(), which we use here. Then we create a new n2 ⇥ 2
Rcpp matrix, outm, which will serve as our output matrix. As before, we
are allowing for the worst case, in which the input matrix consists of all 1s.

Rcpp really shines for matrix code. Recall the discussion at the beginning
of Section 5.4.2. In our earlier versions of this adjacency matrix code, both
in the standalone C and R-callable versions, we were forced to use one-
dimensional subscripting in spite of working with two-dimensional arrays,
e.g.

i f ( adjm [ n⇤ i+j ] == 1) {

This was due to the fact that ordinary two-dimensional arrays in C/C++
must have their numbers of columns declared at compile time, whereas
in this application such information is unknown until run time. This is
not a problem with object-oriented structures, such as those in the C++
Standard Template Library (STL) and Rcpp.

So now with Rcpp we can use genuine two-dimensional indexing, albeit
with parentheses instead of brackets:3

i f ( xadjm ( i , j ) == 1) {

Note, though, that Rcpp subscripts follow C/C++ style, starting at 0
rather than 1 for R. The “+1” in

3It is still possible to to one-dimensional indexing, using brackets, but recall that
Rcpp uses column-major order for compatibility with R.
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outm( outrow+j , 1 ) = xadjm( i , j ) + 1 ;

in which we were inserting a certain column number from the adjacency
matrix, was needed to resolve this discrepancy.

Most of the remaining code is unchanged, except for the return value:

Rcpp : : NumericMatrix outmshort =
outm(Rcpp : : Range (0 , cumul1s [ n ]�1) ,Rcpp : : Range ( 0 , 1 ) ) ;

return outmshort ;

As before, we allocated space for outm to allow for the worst case, in which
n2 rows were needed. Typically, there are far fewer than n2 1s in the matrix
adjm, so the last rows in outm are filled with 0s. Here we copy the nonzero
rows into a new Rcpp matrix outmshort, and then return that.

All in all, Rcpp made our code simpler and easier to write: We have
fewer arguments, arguments are in explicit R object form, we don’t need to
deal with row-major vs. column-major order, and our results come back in
exactly the desired R object, rather than as one component of a returned
R list.

5.6 Speedup in C

So, let’s check whether running in C can indeed do much better than R in
a parallel context, as discussed back in Section 1.1.

> n <� 10000
> a <� matrix (sample ( 0 : 1 , nˆ2 , replace=T) , ncol=n)
> system . time ( out <�.C( ” transgraph ” , as . integer ( a ) ,
+ as . integer (n ) , integer ( 1 ) , integer (2⇤n ˆ2 ) ) )

user system e lapsed
5 .692 0 .852 3 .193

Gathering our old timings, the various methods are compared in Table 5.3.

5.7 Run Time vs. Development Time

Inspecting Table 5.3, we see that going from serial R to parallel R cut down
run time by about 72%, while the corresponding figure for OpenMP was
88%. To be sure, the OpenMP version was actually more than twice as


