
Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (15) In class we discussed a way to make Python
threads essentially non-preemptible. The key element of
this would involve calling which function?

2. (20) Write a Perl module Mean.pm which will serve
as a class to be used with tie. Its main use is to store an
integer-valued variable, but on request, which is signaled
by a nominal assignment of 0, the mean of all values as-
signed to the variable so far will be printed out. (The 0
itself is not actually assigned, i.e. the value of the variable
will not become 0.) For example:

this is TestMean.pl
use Mean;
...
$x = 1;
$y;
tie $y,’Mean’;
$y = 6;
$y = $y + 2;
$y = $x;
$y = 0; # prints out 5
$y = 10;
print $y, "\n"; # prints 10
$y = 0; # prints out 6.25
...

Write the entire code for the module Mean.pm. BE
LEGIBLE.

3. Consider the SimPy program MachRep3.py.

(a) (10) Suppose we were to add a class variable Tot-
WaitToCallRepair to the class Machine, which
would represent the total time that all machines have
waited for a call to the repairperson. If for instance
machine 1 goes down while machine 0 is up, ma-
chine 1 must wait for machine 0 to fail before the
repairperson is called. We are interested in the to-
tal of all such wait times, and will print that total
out when the simulation is finished. Add exactly two
(2) lines, no more, to the code in Machine.Run()
which will be used to compute that total. TotWait-
ToCallRepair is “given,” and thus a line “declar-
ing” it would not count, but “declarations” for any
other variables would count. Note that your answer
consists both of the two lines to be added AND spec-
ification of WHERE in the existing code the two new
lines should be inserted.

(b) (10) (Do not assume anything from part (a).) Here
we want to find the total amount of time during

which both machines are up simultaneously. Add
just three (3) lines (where for instance if a: x = 0
counts as one line) to accomplish this, showing both
the lines to be added and where to add them. Note
that any “declaration” lines count.

(c) (15) (Do not continue to assume anything from parts
(a) and (b).) Consider a variation in which we have
Machine.NMach machines, and the repairper-
son is called whenever at least Machine.MinCall
machines are down. We’ll have a variable Ma-
chine.WaitingCall, which will be a list of IDs of
the machines currently down, waiting for the repair-
person to be called (waiting due to there being fewer
than Machine.MinCall machines down). Rewrite
the large if-elif section in Machine.Run() (starting
with the if and ending just before yield request...)
to reflect these changes. Do not make use of Re-
pairPerson.n. Be Pythonic. BE LEGIBLE.

4. This question compares PerlDSM to the material we
learned about Python threads.

(a) (10) Fill in the blank with a term from our course:
In PerlDSM’s server code, the variable @Lock-
Queue is used to avoid the problem we termed

in our unit on Python threads.

(b) (10) One of the PerlDSM examples, Primes.pl, used
basically the same algorithm as the prime-finding ex-
ample in our unit on Python threads. Note for ex-
ample that the variable $NextI in Primes.pl corre-
sponds to the variable nexti in our Python example.
Both variables are guarded with locks. (Note: Your
answer will not depend on whether the PerlDSM
or Python version is run.) Suppose we had forgot-
ten to put in the “unlock” operation, e.g. nex-
tilock.release() in the Python case. Then which
of the following would occur? (i) The program may
produce wrong answers. (ii) The program will pro-
duce correct answers, but possibly with some wasted
effort. (iii) The program will produce correct an-
swers, with no wasted effort. (iv) The program will
hang, i.e. never finish.

Solutions:

1. sys.setcheckinterval()

2.

Mean.pm

package Mean;

sub TIESCALAR {

my $class = @_[0];

my $r = {value=>0, n=>0, sum=>0};

bless $r, $class;

return $r;

1

}

sub FETCH {

my $r = shift;

return $r->{value};

}

sub STORE {

my $r = shift;

my $newval = shift;

if ($newval != 0) {

$r->{value} = $newval;

$r->{n}++;

$r->{sum} += $newval;

}

else {

print $r->{sum}/$r->{n}, "\n";

}

}

1;

3.a.

if Machine.NUp == 1:

StartWait = now()

yield passivate,self

Machine.TotWaitToCallRepair += now() - StartWait

3.b.

(Total2Up, Start2Up) = (0.0,0.0)

...

if Machine.NUp == 1:

Machine.Total2Up += now() - Machine.Start2Up

yield passivate,self

...

Machine.NUp += 1

if Machine.NUp == 2: Machine.Start2Up = now()

yield release,self,RepairPerson

3.c.

if Machine.NMach - Machine.NUp < Machine.MinCall:

Machine.WaitingCall.append(self.ID)

yield passivate,self

else:

for Mch in Machine.WaitingCall:

reactivate(M[Mch])

Machine.WaitingCall = []

4.a. busy wait

4.b. (iv)

2

