
Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.

1. In this problem you will enhance the textfile class on
p.22.

First, you will add a member variable tfiles, a list of
pointers to all the files for which textfile instances cur-
rently exist.

Second, you will add method named cat(), which has
just a single argument, whose name is outflname. This
function will concatenate all the files in tfiles, outputting
the result to a new file whose name is given by out-
flname. Use the open-for-writing form of open(), which
just involves adding ’w’ as a second argument, and write-
lines(), which works as the opposite of readlines() ex-
cept that now there is an argument, the outfile name. You
should also use the close() method for files. You can read
examples on p.52 if you wish, but it’s not necessary, as
all the information is above.

If for example file a consists of

abc
de
f

and file b consists of

8
168

then the concatenated file contents are

abc
de
f
8
168

PLEASE WRITE YOUR SOLUTION AS FOL-
LOWS: Simply write the new lines that must be added;
don’t copy down the entire existing textfile class code.
So, write something like, “In between lines 5 and 6, insert
the following code...”

2. Consider the unit square S in the plane, with lower-left
corner at (0,0) and upper-right corner at (1,1). We are
interested in distances from points in this square to (1,0).
There also is a smaller rectangle R, of width 2w and height
h, with lower left point (0.5-w,0) to and upper-right point
(0.5+w,h) (sides parallel to the outer square).

We are interested in the minimum travel distance to (1,0)
for each point in S that is not in R, under the constraint
that travel is not allowed within R. Note (see the func-
tion d() below) that we are using “Manhattan street dis-
tance,” which means paths consist only of vertical and
horizontal segments.

Say for instance w = 0.25 and h = 0.50, and we are con-
sidering the point (0.20,0.10). The shortest path to (1,0)
consists first of going to (0.25,0.50), then along the top of
R, and then to (1,0), for a total distance of 0.05 + 0.40
+ 0.50 + 0.50 + 0.25.

We set up an nxn grid of points within S [(0,0) through
(n−1

n , n−1
n), and for each one wish to compute the length

of the shortest path to (1,0). For points in R, we define
this distance to be -1.0.

The function getdists(w,h,n) below returns the n2 dis-
tances in a list of lists (i.e. two-dimensional “array”). Fill
in the details.

import math

de f d(x , y , x1 , y1) :
r e turn abs (x1−x) + abs (y1−y)

re tu rns the minimum d i s t anc e
from (x , y) to (1 , 0) (or r e tu rn s −1.0)
de f c a l c d i s t t o 1 0 (x , y ,w, h) :

i n s e r t 1 or more l i n e s here
. . .

de f g e t d i s t s (w, h , n) :
i n s e r t 1 or more l i n e s here
. . .
r e turn d i s t s

IMPORTANT NOTE: Don’t worry whether boundary
lines of R count as part of R or not.

1

Solutions:

1.

1 c l a s s t e x t f i l e :
2 n t f i l e s = 0 # count o f number o f t e x t f i l e o b j e c t s
3 f l s = []
4 de f i n i t (s e l f , fname) :
5 t e x t f i l e . n t f i l e s += 1
6 t e x t f i l e . f l s . append (s e l f)
7 s e l f . name = fname # name
8 s e l f . fh = open (fname) # handle f o r the f i l e
9 s e l f . l i n e s = s e l f . fh . r e a d l i n e s ()

10 s e l f . n l i n e s = len (s e l f . l i n e s) # number o f l i n e s
11 s e l f . nwords = 0 # number o f words
12 s e l f . wordcount ()
13
14 de f wordcount (s e l f) :
15 ” f i n d s the number o f words in the f i l e ”
16 s e l f . nwords = \
17 reduce (lambda x , y : x+y , map(lambda l i n e : l en (l i n e . s p l i t ()) , s e l f . l i n e s))
18 de f grep (s e l f , t a r g e t) :
19 ” p r i n t s out a l l l i n e s conta in ing t a r g e t ”
20 l i n e s = f i l t e r (lambda l i n e : l i n e . f i n d (t a r g e t) >= 0 , s e l f . l i n e s)
21 p r i n t l i n e s
22 de f cat (outf lname) :
23 o f l = open (outflname , ’w’)
24 l n s = []
25 f o r f l in t e x t f i l e . f l s :
26 l n s += f l . l i n e s
27 o f l . w r i t e l i n e s (l n s)
28 o f l . c l o s e ()
29 cat = stat icmethod (cat)

2.

de f d(x , y , x1 , y1) :
r e turn abs (x1−x) + abs (y1−y)

de f c a l c d i s t t o 1 0 (x , y ,w, h) :
i f x > 0 .5 − w and x < 0 .5 + w and y < h : re turn −1.0
i f x < 0 .5 − w and y < h :

re turn d(x , y ,0.5−w, h) + 2∗w + h + (0.5−w)
return d(x , y , 1 , 0)

de f g e t d i s t s (w, h , n) :
d i s t s = []
f o r i in range (n) :

r o w o f d i s t s = []
f o r j in range (n) :

tmp = c a l c d i s t t o 1 0 (f l o a t (i)/n , f l o a t (j)/n ,w, h)
r o w o f d i s t s . append (tmp)

d i s t s . append (r o w o f d i s t s)
re turn d i s t s

2

