DES.R

e e el el el
W J oy Ul WN PP O W

DN DN DN
S w N e O

W wwbhNNND
NP O WOow-Jdo

BB WW W W W W
o U WDNDE O WO Jo U

g Or 01 01 O W
S w N O

oy Oy Oy U1 U1 U1 U1
NP O WOow-Jdo

()}
w

O J oy Ul WN B

=
NeJ
e

N
o

w
w

=
¢4}

o
o

oS S e SR Sk e e oE e o SR S 3= oE o

S oo S e o o b e o SR SR e e SR S e o oE

+=

e e

S oo S e e SR 3E e o

Thu Feb 22 10:58:16 2018 1

DES.R: R routines for discrete—-event simulation (DES), event-oriented
method

March 2017 major changes (updated September 2017)

1. No longer keep the event set in sorted order. Too costly to do
insertion, and anyway earliest event can be determined via which.min(),
a C-level function that should be much faster. (There is also a
provision for an "arrivals event set," for arrivals only, taking
advantage of the ordered nature of pre-generated arrivals.)

2. Similarly, there is no dynamic resizing of the event set. Space is
marked as either free or in use. This requires the user to provide an

upper bound for the maximum number of events, a restriction, but should
result in quite a performance boost.

3. 1In old version, used matrix instead of data frame, as latter was
quite slow, and now back to matrix. Probably should go back to data
frame, maybe data.table, but for now, at least add meaningful column
names and use them.

all data is stored in an R environment variable that will be referrred
to as simlist below; an environment variable is used so that functions

can change their simlist components, rather than reassigning

the simlist will consist of the following components:

currtime: current simulated time

timelim: max simulated time

timelim2: double timelim

evnts: the events list, a matrix, one event per row; timelim2
value in first col means this row is free

reactevent: event handler function, user-supplied; creates

new events upon the occurrence of an old one;
e.g. Jjob arrival triggers either start of
service for the job or queuing it; call form is
reactevent (evnt, simlist)
dbg: 1if TRUE, will print simlist$evnts after each call to
simlist$reactevent (), and enter R browser for
single-stepping etc.

the application code can add further application-specific data to
simlist, e.g. total job queuing time

each event will be represented by a matrix row consisting of columns
for:

occurrence time

event type: user-defined numeric code, e.g. 1 for arrival, 2 for
job completion, etc. (must be numeric as this is a matrix, but
one can of course give names to the codes)

application-specific information, if any

library functions

newsim: create a new simlist
schedevnt: schedule a new event
getfreerow: find a free row in the event set
getnextevnt: pulls the earliest event from the event set,
updates the current simulated time, and
processes this event; usually not called by users
mainloop: as the name implies

DES.R Thu Feb 22 10:58:16 2018 2

64: # cancelevnt: cancel a previously-scheduled event

65: # newqueue: creates a new work queue

66: # appendfcfs: append job to a FCFS queue

67: # delfcfs: delete head of a FCFS queue

68: # exparrivals: convenience function if arrivals can all be
69: # generated ahead of time

70:

71: # event set:

72

73: # matrix in simlist

T4: # one row for each event, rows NOT ordered by event occurrence time
75: # first two cols are event time, event type, then app-specific info,
T6: # if any

77

78: # outline of a typical application:

79:

80: # mysim <- newsim{() create the simlist

81l: # set reactevent in mysim

82: # set application-specific variables in mysim, if any

83: # set the first event(s) in mysimS$Sevnts

84: # mainloop (mysim)

85: # print results

86:

87: # create a simlist, which will be the return value, an R environment;

88: # appcols is the vector of names for the application-specific columns;

89: # maxesize is the maximum number of rows needed for the event set

90: newsim <- function(timelim,maxesize,appcols=NULL, aevntset=FALSE, dbg=FALSE)

91: simlist <— new.env ()
92: simlistS$currtime <- 0.0 # current simulated time
93: simlist$timelim <- timelim
94 : simlist$timelim2 <— 2 * timelim
95: simlistSpassedtime <- function(z) z > simlistStimelim
96: simlist$evnts <-
97: matrix (nrow=maxesize,ncol=2+length (appcols)) # event set
98: colnames (simlistS$Sevnts) <- c(’evnttime’,’evnttype’, appcols)
99: simlistS$evnts[,1] <- simlistS$timelim2
100: simlistS$aevntset <- aevntset
101: if (aevntset) {
102: simlistS$Saevnts <— NULL # will be reset by exparrivals/()
103: simlist$nextaevnt <- 1 # row number in aevnts of next arrival
104: }
105: simlistS$dbg <- dbg
106: simlist
107: 1}
108:

109: # schedule new event in simlist$evnts; evnttime is the time at

110: # which the event is to occur; evnttype is the event type; appdata is
111: # a vector of numerical application-specific data

112: schedevnt <- function(simlist,evnttime,evnttype, appdata=NULL) {

113: evnt <- c(evnttime,evnttype, appdata)

114: # length of evnt must be number of cols in the event set matrix
115: fr <- getfreerow(simlist)

116: simlist$Sevnts[fr,] <- evnt

117: }

118:

119: # find number of the first free row
120: getfreerow <- function(simlist) {

121: evtimes <- simlist$evnts[, 1]

122: tmp <- Position(simlistS$passedtime,evtimes)
123: if (is.na(tmp)) stop('no room for new event’)
124: tmp

125: }

126:

DES.R

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:

Thu Feb 22 10:58:16 2018 3

start to process next event (second half done by application
programmer via call to reactevnt () from mainloop())
getnextevnt <- function(simlist) {

}

i
##
##
##
##
##
i

find earliest event
etimes <— simlistS$Sevnts[,1]
whichnexte <- which.min (etimes)
nextetime <- etimes[whichnexte]
if (simlist$aevntset) {
nextatime <- simlist$aevnts[simlistS$Snextaevnt, 1]
if (nextatime < nextetime) {
oldrow <- simlist$nextaevnt
simlistS$nextaevnt <- oldrow + 1
return (simlistS$aevnts[oldrow,])
}
}
either don’t have a separate arrivals event set, or the next
arrival is later than now
head <- simlistS$evnts[whichnexte,]
simlist$evnts [whichnexte,1l] <- simlist$timelim2
return (head)

no longer used

removes event in row i of event set

delevnt <- function(i,simlist) {
simlistSevnts <- simlist$evnts[-1i,,drop=F]
simlist$evnts([i,1] <- Inf
simlist$emptyrow <- i

}

main loop of the simulation
mainloop <- function(simlist) {

simtimelim <— simlistS$Stimelim
while (TRUE) {
head <- getnextevnt (simlist)
etime <- head[’evnttime’]
update current simulated time
if (etime > simlistS$Stimelim) return()
simlistS$currtime <- etime
process this event (programmer-supplied ftn)
simlistS$Sreactevent (head, simlist)
if (simlist$dbg) {
print ("event occurred:")
print (head)
print ("events list now")
print (simlist$evnts)
browser ()

no longer used; see "March 17" at top of this file

binary search of insertion point of y in the sorted vector x; returns
the position in x before which y should be inserted, with the value
length(x)+1 if y is larger than x[length(x)]; this could be replaced
by faster C code
binsearch <- function(x,y) {

n <- length (x)

lo <=1

hi <- n

while (lo+l < hi) {
mid <- floor ((lo+hi)/2)
if (y == x[mid]) return(mid)

DES.R

190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204 :
205:
206:
207 :
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241 :
242:
243:
244
245:
246:
247 :
248:
249:
250:
251:
252:

Thu Feb 22 10:58:16 2018 4

if (y < x[mid]) hi <- mid else lo <- mid
#4# }

#4# if (y <= x[lo]) return(lo)

#4# if (y < x[hi]) return(hi)

return (hi+1)

}

removes the specified event from the schedule list
cancelevnt <- function (rownum, simlist) {
simlist$evnts[rownum,1l] <- simlistS$timelim?2

}

the work queue functions below assume that queues are represented as
matrices, one row per queued job, containing application-specific
information about the job; the matrix is assumed stored in an
environment, with the matrix being named m

+ o S 3

create and return new queue with ncol columns; the queue is an R
environment, with the main component being m, the matrix representing
the queue itself; ncol is up to the user, depending on how many pieces
of information the user wishes to record about a job

newqueue <- function(simlist) {

if (is.null(simlist$Sevnts)) stop(’'no event set’)

g <— new.env ()

gsm <- matrix (nrow=0,ncol=ncol (simlist$evnts))

g9

H o S

}

appends jobtoqueue to the given queue, assumed of the above form;
jobtoqueue is a vector of length equal to the number of columns in
the gqueue matrix

appendfcfs <- function (queue, jobtoqueue) {

if (is.null (queueSm)) {
queue$m <- matrix (jobtoqueue,nrow=1)
return ()

}

queue$m <- rbind(queueS$m, jobtogqueue)

}

deletes and returns head of queue
delfcfs <- function (queue) {
if (is.null (queue$m)) return (NULL)
ghead <- queue$Sm[1,]
queue$m <- queueSm[-1,,drop=F]
ghead
}

in many cases, we have exponential interarrivals that occur
independently of the rest of the system; this function generates all
arrivals at the outset, placing them in a separate arrivals event set
exparrivals <- function(simlist,meaninterarr,batchsize=10000) {

if (!simlistSaevntset)

stop ("newsim() wasn’t called with aevntset TRUE")
es <- simlistS$Sevnts
cn <— colnames (es)

if (cn[3] != Tarrvtime’) stop(’col 3 must be "arrvtime"’)
if (cnf[4] !'= ’jobnum’) stop(’col 3 must be "Jjobnum"’)
erate <- 1 / meaninterarr

s <=0

allarvs <- NULL

while (s < simlistS$timelim) {
arvs <- rexp (batchsize,erate)
s <— s + sum(arvs)

DES.R Thu Feb 22 10:58:16 2018 5

253: allarvs <- c(allarvs,arvs)

254 }

255: # may have overshot the mark

256: cuallarvs <— cumsum(allarvs)

257: allarvs <- allarvs[cuallarvs <= simlistS$timelim]

258: nallarvs <- length(allarvs)

259: if (nallarvs == 0) stop('no arrivals before timelim’)
260: cuallarvs <- cuallarvs[l:nallarvs]

261: maxesize <— nallarvs + nrow(es)

262: newes <- matrix(nrow=maxesize,ncol=ncol (es))

263: nonempty <- l:nallarvs

264: newes [nonempty, 1] <- cuallarvs

265: if (is.null(simlistS$arrvevnt)) stop(’simlist$Sarrvevnt undefined’)
266: newes [nonempty, 2] <- simlistS$Sarrvevnt

267: newes [nonempty, 3] <- newes[nonempty, 1]

268: newes [nonempty,4] <- l:nallarvs

269: newes [-nonempty,1l] <- simlistS$Stimelim?2

270: colnames (newes) <— cn

271: simlist$aevnts <- newes

272: }

273:

