Name: ________________

Directions: **Work only on this sheet** (on both sides, if needed). **MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.**

Important note: Remember that in problems calling for R code, you are allowed to use any built-in R function, e.g. `choose()`, `pnorm()`, etc.

1. Consider the class enrollment size example, starting on p.97. Suppose the distribution of enrollment size is Poisson, rather than approximate normal. Assume the mean is again 28.8.

 (a) (20) Find $\text{Var}(N)$.
 (b) (20) Find $F_N(26)$.
 (c) (15) Find $P(N \geq 30 | N \geq 25)$.

2. Consider the network intrusion example on p.97.

 (a) (15) Let $Y = Z^2$. Name the parametric family of densities that Y's density belongs to, including the parameter values, if any.

 (b) (15) Let G denote the indicator random variable for the event $X \geq 535$. Find $\text{Var}(G)$.

3. (15) Suppose R didn’t include the `sample()` function. We could use the code below instead. Here’s an example of usage:

   ```R
   x <- sample(c(1,6,8), 1000, c(0.2, 0.5, 0.3))
   sum(x==1)  # 224
   sum(x==6)  # 495
   sum(x==8)  # 281
   ```

 Here we generate 1000 numbers from 1,2,3, with probability 0.2, 0.5 and 0.2, respectively, and then count the numbers of 1s, 6s and 8s we get.

 The built-in R function `cumsum()` finds cumulative sums, e.g.

   ```R
   cumsum(c(3,8,1))
   # [1] 3 11 12
   ```

   ```R
   # what we'd do if there were no sample()
   # ftn in R: sample n items (with replacement) from the vector nums, with probabilities given by prob;
   # the vectors nums and prob must have the same length (not checked here);
   # not claimed efficient
   sample_one_item <- function(nums, cumulprob) {
     u <- runif(1)
     le <- length(cumulprob)
     for (j in 1:(le - 1)) {
       if (BLANKa BLANKb}
     }
   }
   ```
Solutions:

1.a Since N has a Poisson distribution, Var(N) = E(N) = 28.8.

1.b For a Poisson random variable M, \(\lambda = EM \), so answer is

\[
ppois(26, 28.8)
\]

1.c (4.50) still holds, and evaluates to

\[
\frac{(1 - ppois(29, 28.8))}{(1 - ppois(24, 28.8))}
\]

2.a Chi-square, 1 degree of freedom.

2.b From Section 3.6:

\[
Var(G) = P(G = 1) \cdot [1 - P(G = 1)] = 0.01 \cdot 0.99
\]

3.

```r
# what we'd do if there were no sample() ftn in R; sample n items (with
# replacement) from the vector nums, with probabilities given by prob;
# the vectors nums and prob must have the same length (not checked here);
# not claimed efficient
samp <- function(nums, n, prob) {
  samps <- vector(length=n)
  cumulprob <- cumsum(prob)
  for (i in 1:n)
    samps[i] <- sample_one_item(nums, cumulprob)
  return(samps)
}

sample_one_item <- function(nums, cumulprob) {
  u <- runif(1)
  lc <- length(cumulprob)
  for (j in 1:(lc-1)) {
    if (u < cumulprob[j]) return(nums[j])
  }
  return(nums[lc])
}
```
