Lifting the Curtain on Machine Learning

Norm Matloff
University of California at Davis

SatRday
UCLA, April 6, 2019

These slides will be available at http://heather.cs.ucdavis.edu/satrday.pdf

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

Lifting the

Davis

Outline of Talk

- Introduce 2 R packages.

Lifting the

Outline of Talk

- Introduce 2 R packages.
- polyreg
- prVis

Lifting the

Outline of Talk

- Introduce 2 R packages.
- polyreg
- prVis
- Both are "machine learning (ML) alternatives."

Lifting the

Outline of Talk

- Introduce 2 R packages.
- polyreg
- prVis
- Both are "machine learning (ML) alternatives."
- Taking a critical look at certain aspects of ML:

Outline of Talk

Norm Matloff University of California at Davis

- Introduce 2 R packages.
- polyreg
- prVis
- Both are "machine learning (ML) alternatives."
- Taking a critical look at certain aspects of ML:
- neural networks (NNs)
- t-sne (a "nonlinear PCA")

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Lifting the

Sources of Confusion

- The press tends to present the message AI

Lifting the

Sources of Confusion

- The press tends to present the message $\mathrm{Al}=$ machine learning

Lifting the

Sources of Confusion

- The press tends to present the message $\mathrm{AI}=$ machine learning $=$ neural networks

Sources of Confusion

Norm Matloff University of California at Davis

- The press tends to present the message $\mathrm{Al}=$ machine learning $=$ neural networks
- Not true, of course, but the NN people have a knack for getting into the press. :-)

Sources of Confusion

Norm Matloff University of California at Davis

- The press tends to present the message $\mathrm{Al}=$ machine learning $=$ neural networks
- Not true, of course, but the NN people have a knack for getting into the press. :-)
- The very term machine learning already sounds science fiction-ish,

Sources of Confusion

Norm Matloff

- The press tends to present the message $\mathrm{Al}=$ machine learning $=$ neural networks
- Not true, of course, but the NN people have a knack for getting into the press. :-)
- The very term machine learning already sounds science fiction-ish, and neural networks really does.

Lifting the

Norm Matloff University of California at Davis

Sources of Confusion (cont'd)

The NN/ML people tend to invent their own terminology. E.g

statistics-ese	ML-ese
observations	cases
predictors	features
covariates	side information
β_{0} /intercept	bias
prediction	inference
inference	statistics

Lifting the
Curtain on
Machine
Learning
Norm Matloff University of California at Davis

Lifting the
Curtain on
Machine
Learning
Norm Matloff University of California at

Davis

Goals

So, our goals are:

Lifting the

Goals

So, our goals are:

- Show what NNs are actually doing.

Goals

So, our goals are:

- Show what NNs are actually doing.
- Suggest a more straightforward alternative to NNs,

Goals

Norm Matloff University of California at Davis

So, our goals are:

- Show what NNs are actually doing.
- Suggest a more straightforward alternative to NNs, that performs as well or better than NNs yet it is simpler and easier to use.

Goals

So, our goals are:

- Show what NNs are actually doing.
- Suggest a more straightforward alternative to NNs, that performs as well or better than NNs yet it is simpler and easier to use.
- Present a "spinoff" visualization package that serves as an alternative to a popular ML one.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at

Davis

Neural Networks

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at

Davis

- Series of layers:

Neural Networks

Lifting the

- Series of layers:

- input (predictors);

Lifting the

Neural Networks

- Series of layers:
- input (predictors);
- output (prediction);

Neural Networks

Norm Matloff University of California at Davis

- Series of layers:
- input (predictors);
- output (prediction);
$-\geq 1$ hidden layers in between.

Lifting the

Neural Networks

- Series of layers:
- input (predictors);
- output (prediction);
- ≥ 1 hidden layers in between.
- Each hidden layer consists of a few/many units (neurons).

Neural Networks

- Series of layers:
- input (predictors);
- output (prediction);
- ≥ 1 hidden layers in between.
- Each hidden layer consists of a few/many units (neurons).
- Inputs to layer $i=$ linear combination of outputs from layer $i-1$.

Neural Networks

- Series of layers:
- input (predictors);
- output (prediction);
- ≥ 1 hidden layers in between.
- Each hidden layer consists of a few/many units (neurons).
- Inputs to layer $i=$ linear combination of outputs from layer $i-1$.
- Outputs of each layer run through an activation function, e.g. logistic, to allow for nonlinearity.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Example: UCI Vertebrae Data

Lifting the

Example: UCI Vertebrae Data

- 6 predictors (various med.), V1, V2,..., V6.
- Predict one of 3 classes, DH, NO, SL. (E.g. $\mathrm{NO}=$ normal.)

Example: UCI Vertebrae Data

Norm Matloff University of California at Davis

- 6 predictors (various med.), V1, V2,..., V6.
- Predict one of 3 classes, DH, NO, SL. (E.g. $\mathrm{NO}=$ normal.)
- Many R packages, e.g. kerasformula, MXNet.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

Closeup: 2nd Neuron in 2nd Layer

Input to this neuron: ... $+0.94 \mathrm{~V} 2-0.62 \mathrm{~V} 3-0.38 \mathrm{~V} 4+\ldots$ This neuron then feeds that lin. comb. into logistic, which is then input to all neurons in next layer, with weights $3.79,4.31$ and 7.56 .

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

History of NNs

History of NNs

Norm Matloff

- Treated largely as a curiosity through the 1990s.
- Then in the 2000s, "NN+" models, e.g. CNN, won a number of major competitions, a huge boost to their popularity.
- But also many dismiss them as hype.
- Some say NNs work poorly on their data; others counter, "You're not using them right."

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

Contributions of Our Work

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $N N=P R$

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $N N=P R$
- We use this to speculate and then confirm a surprising multicollinearity property of NNs.

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $\mathrm{NN}=\mathrm{PR}$
- We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- $N N=P R$ suggests that one might simply fit a polynomial model in the first place, bypassing NNs.

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $\mathrm{NN}=\mathrm{PR}$
- We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- $N N=P R$ suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
- Thus avoid NN's problems, e.g. choosing numerous hyperparameters, nonconvergence and so on.

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $\mathrm{NN}=\mathrm{PR}$
- We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- $N N=P R$ suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
- Thus avoid NN's problems, e.g. choosing numerous hyperparameters, nonconvergence and so on.
- Tried many datasets. In all cases, PR meets or beats NNs in predictive accuracy.

Contributions of Our Work

https://arxiv.org/abs/1806.06850

- We present an informal argument that NNs - in essence - actually are polynomial regression (PR). Acronym: $\mathrm{NN}=\mathrm{PR}$
- We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- $N N=P R$ suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
- Thus avoid NN's problems, e.g. choosing numerous hyperparameters, nonconvergence and so on.
- Tried many datasets. In all cases, PR meets or beats NNs in predictive accuracy.
- Developed many-featured R pkg., polyreg.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Notation and Acronyms

Lifting the

Notation and Acronyms

- n cases; p predictors
- polynomials of degree d
- PR: polynomial regression
- $N N=P R$: Neural Networks Are Essentially Polynomial Regression

Lifting the
Curtain on
Machine
Learning

polyreg

Norm Matloff University of California at Davis

polyreg

- R package.

polyreg

Norm Matloff University of California at Davis

- R package.
- Motivated by NN=PR: use PR instead of NNs.

polyreg

Norm Matloff University of California at Davis

- R package.
- Motivated by NN=PR: use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.

polyreg

Norm Matloff University of California at Davis

polyreg

Norm Matloff University of California at Davis

polyreg

Norm Matloff

- R package.
- Motivated by NN=PR: use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables. (Not so easy. Must skip, e.g., powers of dummy variables.)
- Has dimension reduction options.
- github.com/matloff/polyreg

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Key polyreg functions

Key polyreg functions

```
polyFit(function (xy, deg, maxInteractDeg = deg,
        use = "Im", pcaMethod = NULL, pcaLocation =
        "front", pcaPortion = 0.9, glmMethod = "one",
        return_xy = FALSE, returnPoly = FALSE)
predict.polyFit(object, newdata, ...)
```

E.g. if choose dimension reduction by PCA in polyFit(), predict() will automatically take care of it.
Various other dim. reduction, helper functions.

Lifting the
Curtain on Machine
Learning

Norm Matloff

 University of California at DavisLifting the
Curtain on Machine
Learning
Norm Matloff University of California at Davis

$N N=P R$

- Consider toy example:

Lifting the

$N N=P R$

- Consider toy example:
- Activation function $a(t)=t^{2}$.

Lifting the

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.

Lifting the

$N N=P R$

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.

$N N=P R$

Norm Matloff University of California at Davis

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.

$N N=P R$

Norm Matloff University of California at Davis

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.
- Etc.

$N N=P R$

Norm Matloff University of California at Davis

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.
- Etc.
- Polynomial regression!

$N N=P R$

Norm Matloff University of California at Davis

NN =PR: General Activation
 Functions

Lifting the

NN=PR: General Activation Functions

- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.

NN=PR: General Activation Functions

- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.
- What about transcendental $a()$?
 \title{
NN=PR: General Activation
 \title{
NN=PR: General Activation Functions
} Functions
}
- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.
- What about transcendental $a()$? Computer implementatations often use a Taylor series rep., i.e. a polynomial!

NN=PR: General Activation Functions

- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.
- What about transcendental a()? Computer implementatations often use a Taylor series rep., i.e. a polynomial!
- What about reLU? Same analysis, but now have piecewise polynomials, so $\mathrm{NN}=$ PPR.
 \title{
NN=PR: General Activation
 \title{
NN=PR: General Activation Functions
} Functions
}
- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.
- What about transcendental a()? Computer implementatations often use a Taylor series rep., i.e. a polynomial!
- What about reLU? Same analysis, but now have piecewise polynomials, so NN=PPR.
- Even without Taylor series etc.] any reasonable activation function is "close" to a polynomial.
 \title{
NN=PR: General Activation
 \title{
NN=PR: General Activation Functions
} Functions
}
- Clearly this analysis for $a(t)=t^{2}$ extends to any polynomial activation function.
- What about transcendental a()? Computer implementatations often use a Taylor series rep., i.e. a polynomial!
- What about reLU? Same analysis, but now have piecewise polynomials, so NN=PPR.
- Even without Taylor series etc.] any reasonable activation function is "close" to a polynomial.
- Hence $N N=P R$.

Lifting the

Norm Matloff University of California at Davis

Implications of $\mathrm{NN}=\mathrm{PR}$

Lifting the

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Implications of $\mathrm{NN}=\mathrm{PR}$

Norm Matloff

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Possible drawbacks/remedies of PR:

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Possible drawbacks/remedies of PR:

- Large memory requirement.

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Possible drawbacks/remedies of PR:

- Large memory requirement. Maybe use R's bigmemory package (with backing store).

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Possible drawbacks/remedies of PR:

- Large memory requirement. Maybe use R's bigmemory package (with backing store).
- Run time (worse than NN????).

Implications of $\mathrm{NN}=\mathrm{PR}$

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NN=PR, and use PR instead of NNs!
- No dealing with numerous hyperparameters.
- No convergence issues.
- No "fake minima" (NN iteration settles on a local min).

Possible drawbacks/remedies of PR:

- Large memory requirement. Maybe use R's bigmemory package (with backing store).
- Run time (worse than NN????). C code, and/or GPU.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Lifting the

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.

Lifting the

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.

Some of Our Experimental Results

Norm Matloff

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).

Some of Our Experimental Results

Norm Matloff

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).
- No data cleaning.

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).
- No data cleaning.
- In every single dataset, PR matched or exceeded the accuracy of NNs.

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).
- No data cleaning.
- In every single dataset, PR matched or exceeded the accuracy of NNs.
- Warning: Beware of "p-hacking" effects. Don't take timings rankings overly seriously.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Programmer/Engineer Wages

Lifting the

Programmer/Engineer Wages

setting	accuracy
PR, 1	25595.63
PR, 2	24930.71
PR, 3,2	24586.75
PR, 4,2	$\mathbf{2 4 5 7 0 . 0 4}$
KF, default	27691.56
KF, layers 5,5	26804.68
KF, layers 2,2,2	27394.35
KF, layers 12,12	27744.56

Lifting the Curtain on Machine
Learning

Prog./Eng. Occupation

Norm Matloff University of California at Davis

Lifting the

Prog./Eng. Occupation

setting	accuracy
PR, 1	0.3741
PR, 2	$\mathbf{0 . 3 8 4 5}$
KF, default	0.3378
KF, layers 5,5	0.3398
KF, layers 500	0.3401
KF, layers 5,5; dropout 0.1	0.3399
KF, layers 256,128; dropout 0.8	0.3370

Lifting the

Norm Matloff University of California at Davis

Million Song Data, predict year

Lifting the

Million Song Data, predict year

Norm Matloff University of California at Davis

setting	accuracy
PR, 1, PCA	7.7700
PR, 2, PCA	7.5758
KF, default	8.4300
KF, layers 5,5	7.9381
KF, layers 2,2	8.1719
DN, layers 2,2	7.8809
DN, layers 3,2	7.9458
DN, layers 3,3	7.8060
DN, layers 2,2,2	8.7796

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

UCI Forest Cover Data, predict

 typeLifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

UCI Forest Cover Data, predict type

setting	accuracy
PR, 1	0.69
PR, 3	$\mathbf{0 . 8 0}$
KF, layers 5,5	0.72
reader report, NN	0.75

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

NYC Taxi Data, predict trip time

NYC Taxi Data, predict trip time

setting	accuracy
PR, 1	$\mathbf{5 8 0 . 6 9 3 5}$
PR, 2	591.1805
DN, layers 5,5	592.2224
DN, layers 5,5,5	623.5437
DN, layers 2,2,2	592.0192

Note: Sorely needs data cleaning.

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

What about Image Classification?

Lifting the Curtain on Machine Learning

What about Image Classification?

- A work in progress.

Lifting the

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.

Lifting the

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR?

Lifting the

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN.

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- " C " is standard old-fashioned image ops, not NN -

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- "C" is standard old-fashioned image ops, not NN tiling, filtering etc.

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- "C" is standard old-fashioned image ops, not NN tiling, filtering etc.
- So in principle PR should perform as well.

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- "C" is standard old-fashioned image ops, not NN tiling, filtering etc.
- So in principle PR should perform as well.
- But so far we have not had a chance to do much with "C."

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- "C" is standard old-fashioned image ops, not NN tiling, filtering etc.
- So in principle PR should perform as well.
- But so far we have not had a chance to do much with "C."
- Have just done non $=$ " C ", using PCA for dimension reduction.

What about Image Classification?

- A work in progress.
- Source of NN pride, in CNNs.
- What about PR? Should do as well, due to NN=PR.
- MYTH: CNNs do well because of NN. No, they do well because of "C."
- " C " is standard old-fashioned image ops, not NN tiling, filtering etc.
- So in principle PR should perform as well.
- But so far we have not had a chance to do much with "C."
- Have just done non $=$ " C ", using PCA for dimension reduction.
- Respectable, e.g. 98.7% on MNIST, but need to do serious use of "C."

Lifting the
Curtain on
Machine
Learning
Norm Matloff University of California at

Davis

Nonlinear "PCA"

- PCA may be OK for dimension reduction.

Nonlinear "PCA"

- PCA may be OK for dimension reduction.
- But we also want visualization in 2-D.

Nonlinear "PCA"

Norm Matloff

- PCA may be OK for dimension reduction.
- But we also want visualization in 2-D. And nonlinear data is a challenge.

Nonlinear "PCA"

Norm Matloff University of California at Davis

Nonlinear "PCA"

Norm Matloff University of California at Davis

Nonlinear "PCA"

Norm Matloff

- PCA may be OK for dimension reduction.
- But we also want visualization in 2-D. And nonlinear data is a challenge.
- ML favorite is t-sne. Similar but much faster is UMAP.
- Our idea: Form polynomials, then do PCA. Our package: prVis.

Nonlinear "PCA"

Norm Matloff

- PCA may be OK for dimension reduction.
- But we also want visualization in 2-D. And nonlinear data is a challenge.
- ML favorite is t-sne. Similar but much faster is UMAP.
- Our idea: Form polynomials, then do PCA. Our package: prVis.
- github.com/matloff/prVis

Lifting the
Curtain on Machine
Learning

Example: Swiss Roll

Norm Matloff University of California at

Davis

Example: Swiss Roll

Norm Matloff University of California at Davis

- Artificial data, due to D. Surendran.

Example: Swiss Roll

Norm Matloff

- Artificial data, due to D. Surendran.
- Designed to be a mixture of 4 components.

Example: Swiss Roll

Norm Matloff University of California at Davis

- Artificial data, due to D. Surendran.
- Designed to be a mixture of 4 components.
- The Test: Will any of these visualization tools detect that?

Example: Swiss Roll

Norm Matloff University of California at Davis

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

PCA

No clue at all that there are 4 components.

t-sne

Norm Matloff University of California at Davis

3 components? 4? 5? Even 1? Not clear.

Lifting the
Curtain on
Machine
Learning
Norm Matloff
University of California at Davis

Fairly clear there are 4 components.

Lifting the
Curtain on Machine
Learning
Norm Matloff University of California at Davis

Norm Matloff University of California at Davis

prVis - Reveal

Now let's un-pretend, color coding the known components.

Lifting the

prVis - Reveal

Now let's un-pretend, color coding the known components.

Yep!

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

The Team!

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team!

Xi Cheng

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Tiffany Jiang

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Bohdan Khomtchouk

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Pete Mohanty

Lifting the

Norm Matloff University of California at Davis

The Team! (contd.)

Robert Tucker

Lifting the
Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Robin Yancey

Lifting the Curtain on Machine Learning

Norm Matloff University of California at Davis

The Team! (contd.)

Allan Zhao

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Thanks

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at

Davis

Thanks

Thanks to all!

Lifting the
Curtain on
Machine
Learning

Appendix

Norm Matloff University of California at Davis

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Appendix

Backup slides:

Lifting the Curtain on Machine
Learning
Norm Matloff University of California at Davis

Lifting the

Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena?

Lifting the

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.

Multicollinearity in NNs

Norm Matloff University of California at Davis

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NN=PR predicts that the outputs of the NN layers will have multicollinearity, with each layer having great amounts of multicollinearity.

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NN=PR predicts that the outputs of the NN layers will have multicollinearity, with each layer having great amounts of multicollinearity.
- Is it true?

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NN=PR predicts that the outputs of the NN layers will have multicollinearity, with each layer having great amounts of multicollinearity.
- Is it true? Yes!

Lifting the University of California at Davis

Multicollinearity Example:

Lifting the

Multicollinearity Example:

MNIST data, NN via R keras package.

Lifting the

Multicollinearity Example:

MNIST data, NN via R keras package. Use VIF as measure of multicollinearity.

Multicollinearity Example:

MNIST data, NN via R keras package. Use VIF as measure of multicollinearity.

layer	\% VIFs > 10	mean VIF
1	0.0078125	4.3537
2	0.9921875	46.84217
3	1	5.196113×10^{13}

