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• “Everyone has opinions.”

• I’ll present mine.

• Dissent is encouraged. :-)
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The Drivers and Their Result

• Parallel hardware for the masses:

• 4 cores standard, 16 not too expensive
• GPUs
• Intel Xeon Phi, ≈ 60 cores (!), coprocessor, as low as a

few hundred dollars

• Big Data

• Whatever that is.

Result: Users believe,

“I’ve got the hardware and I’ve got the data need —
so I should be all set to do parallel computation in R
on the data.”

But this “rule” is “honored in the breach,” as the Brits say.
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Not So Simple

• “Embarrassingly parallel” (EP) vs. non-EP algorithms.

• EP: Problem can be easily broken down in independent
tasks, with easy combining. Embarrassing is good — but
not common enough.

• Overhead issues:

• Contention for memory/network.
• Bandwidth limits — CPU/memory, CPU/network,

CPU/GPU.
• Cache coherency problems (inconsistent caches in

multicore systems).
• Contention for I/O ports.
• OS/R limits on number of sockets (network connections).
• Serialization.
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Wish List

• Ability to run on various types of hardware — from R.

• Ease of use for the non-cognoscenti.

• Parameters to tweak for the experts or the daring.
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Outline of My Remarks

• Overview of existing parallel computation options for R
users.

• Level in terms of abstraction, i.e. high-level constructs.
• Level in terms of tech sophistication needed.

“Help, I’m in over my head here!” – a prominent
R developer, entering the parallel comp. world.

• “Cinderellas”: Many users are being overlooked.

• Not enough automatic, tranparent parallelism.
• Not enough for quants, e.g. for time series methods.

• Well then, what can be done?
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Available Software

software abstr. level handle non-EP sophis. level

C++/OpenMP low very good very high

C++/GPU low poor super high

RcppPar. pkg low good very high

parallel pkg medium medium medium

Rdsm pkg low good high

Spark/R pkgs medium poor high

Rmpi pkg low good high

foreach pkg medium poor medium

partools pkg medium good high medium

future pkg medium medium high medium

(OpenMP: standard library for parallelizing on multicore)
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The Takeaways

• R has an impressive array of parallel software tools
available. Better than Python!

• However, all of those tools require a fair amount of
programming sophistication to use.
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Speciality Packages with
Transparent Parallelism

• Using OpenMP, e.g. xgboost, recosystem.

• Using GPU, e.g. gmatrix (not active?).

• Even though transparent to the user in principle, may still
need expertise in hardware/systems to make it run well.
E.g. choice of number of threads, memory capacity issues.
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In Other Words...

• We need to FACE FACTS.

• The days in which data scientists could rely on “black
boxes” are GONE.

• One needs to have at least some knowledge of the innards:

• Machine Learning tuning parameters — defaults underfit,
naive grid search selection overfits.

• For effective parallel computation, one must be adept at
coding and at software “tuning parameters,” e.g. number
of threads.

• Little or no hope for good automatic parallelism.
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Parallel Computation of Time
Series Analyses

Now let’s turn to time series. (Disclaimer: I am not an expert
in time series.)

• Some parallel methods have been developed.

• E.g., if large matrices are involved (say models with long
memory), one can use OpenMP to parallelize matrix
computations

• In some cases one can find a clever way to parallelize a
specific algorithm (F. Belletti, arXiv, 2015).

• But it’s much harder than for i.i.d. models.
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Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects.

E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Possible Obstacles

• Matrix addition/multiplication is EP, but inversion is not.

• Parallelization based on math structures difficult to show
asymptotic validity.

• Breaking t.s. data into chunks might not be EP, due to
boundary effects. E.g. computing number of consecutive
periods in which value is above a threshold — could span
two chunks, or even more.

• Hyndman’s Rule: Any time series model eventually starts
to go bad after very long lengths.



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Our partools Package

• On CRAN, but go to github.com/matloff for the latest
version.

• Large variety (78+) of functions for parallel data
manipulation and computation.

• Some functions do a lot, some just a little. The latter can
be combined into powerful tools, as with Unix/Linux/Mac
scripting.

• Built on top of parallel pkg., plus our own MPI-like
internal system.
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Themes

• “Leave It There” (LIT) theme: Keep data distributed as
long as possible throughout an analysis session, to avoid
costly communications delays. Borrows distrib. object
approach from Hadoop/Spark but much more flexible.

• “Software Alchemy” — convert non-EP to stat. equivalent
EP, thus easy parallelization.
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Possible Obstacles

Can we extend partools to time series applications? Must
overcome:

• Boundary effects problems.

• SA predicated on i.i.d.
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Sample partools Session

• Wikipedia page-access data, Kaggle, 145063 time series of
length 550.

• Say we wish to run arma() for each page. Each is quick,
but 145K of them takes some time. Say we are interested
only in ar1.

• Afterward, we will perform various other operations.

• By LIT Principle, first distribute the data to the workers,
then avoid collecting it back to the manager node if
possible.
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Serial Version

wd ← as . matr ix ( read . csv ( ’ t r a i n 1 . c sv ’ ) )
wdc ← wd [ complete . c a s e s (wd ) , ]
armac ← f u n c t i o n ( x )
{ z ← NA; t r y ( z ← arma ( x )$ coef [ 1 ] } ; z )

system . time ( z ← apply (wdc , 1 , armac ) )
# 624 . 4 5 2 0 . 1 6 4 6 2 4 . 6 4 8

# f i n d the one s w i th weak c o r r e l a t i o n

# f o r f u r t h e r a n a l y s i s

wdlt05 ← wdc [ z < 0 . 5 , ]
# v a r i o u s f u r t h e r ops ( not shown )
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Same But with partools

The plan:

• Distribute the data and LIT. Work on it solely in
distributed form as much as possible.

• Distrib. by calling partools:::distribsplit(), then later save
using partools:::filesave().

• The chunks all have the same name, in this case wdc.
The manager then issues commands via clusterEvalQ(),
the same command to each worker.

• At end of session, save to partools distributed file, so
don’t need to redistribute next time.
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Parallel Version

c l s ← makeC lus te r (4 ) # ’ p a r a l l e l ’ c l u s t e r

s e t c l s i n f o ( c l s ) # i n i t ’ p a r t o o l s ’

d i s t r i b s p l i t ( c l s , ’wdc ’ ) # d i s t r i b . t o wo r k e r s

c l u s t e r E v a lQ ( c l s , l i b r a r y ( t s e r i e s ) )
c l u s t e r E x p o r t ( c l s , ’ armac ’ )
system . time ( c l u s t e r E v a lQ ( c l s ,

a r1 ← apply (wdc , 1 , armac ) ) )
# 0 . 0 2 4 0 . 0 0 0 1 8 0 . 6 5 3

c l u s t e r E v a lQ ( c l s , wd l t05 ← wdc [ a r1 < 0 . 5 , ] ) # LIT !
# v a r i o u s f u r t h e r ops ( not shown )

# now save , i n wdc . 1 , wdc . 2 , . . .

f i l e s a v e ( c l s , ’wdc ’ , ’wdc ’ , 1 , ’ , ’ )

The one-time overhead of distributing the data will continue
to pay off in further analyses.
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More LIT Helpers

• Can distribute the file directly, using partools:::filesplit().

• The functions fileread() and filesave() automatically add
a suffix to the name for chunk number, e.g. wdc.1.

• If do need to “undistribute,” distribcat() will do so,
adding the proper header.

• Functions such as dwhich.min() treat a distributed data
frame as a virtual single d.f., returning row number within
chunk number.

• Etc.
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Software Alchemy: Parallel
Computation for the Masses

• I call this approach Software Alchemy (SA) (Matloff, JSS,
2016). Method independently proposed by several authors.

• Very simple idea:

• Break the data into disjoint chunks.
• Apply the estimator to each chunk, getting θ̂i for chunk i .
• Average the θ̂i to get overall θ̂.
• For ML classification algs, “vote” among chunks.

• Converts non-EP to stat. equivalent EP. Thus easy
parallelization, possibly even superlinear speedup.

• The partools package has a number of SA ops available.
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SA for Time Series

• Not i.i.d. but stationarity and finite memory should be
enough to prove that it works.

• Should work for ARMA, ARIMA, GARCH, etc.

• All this should be considered preliminary.
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Example

l i b r a r y (TSA)
z ← garch . s im ( a lpha=c ( . 0 1 , 0 . 9 ) , n=5000000)
system . time ( p r i n t ( garch ( z ) ) )
# C o e f f i c i e n t ( s ) :

# a0 a1 b1

# 1 . 0 0 1 e−02 8 . 9 8 0 e−01 3 . 7 7 5 e−12

# 1 3 . 0 8 8 0 . 1 4 0 1 3 . 2 2 8

c l s ← makeC lus te r (2 )
s e t c l s i n f o ( c l s )
d i s t r i b s p l i t ( c l s , ’ z ’ )
system . time ( zc2 ← c l u s t e r E v a lQ ( c l s , ga rch ( z )$ coef ) )
# 0 . 0 0 0 0 . 0 0 0 5 . 9 2 5

Reduce ( ’+’ , zc2 ) / 2
# a0 a1 b1

# 1 . 0 0 4 2 9 3 e−02 8 . 9 1 0 9 6 4 e−01 3 . 1 2 0 7 2 3 e−05

SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for a1, a bit further off.
More study needed!



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Example

l i b r a r y (TSA)
z ← garch . s im ( a lpha=c ( . 0 1 , 0 . 9 ) , n=5000000)
system . time ( p r i n t ( garch ( z ) ) )
# C o e f f i c i e n t ( s ) :

# a0 a1 b1

# 1 . 0 0 1 e−02 8 . 9 8 0 e−01 3 . 7 7 5 e−12

# 1 3 . 0 8 8 0 . 1 4 0 1 3 . 2 2 8

c l s ← makeC lus te r (2 )
s e t c l s i n f o ( c l s )
d i s t r i b s p l i t ( c l s , ’ z ’ )
system . time ( zc2 ← c l u s t e r E v a lQ ( c l s , ga rch ( z )$ coef ) )
# 0 . 0 0 0 0 . 0 0 0 5 . 9 2 5

Reduce ( ’+’ , zc2 ) / 2
# a0 a1 b1

# 1 . 0 0 4 2 9 3 e−02 8 . 9 1 0 9 6 4 e−01 3 . 1 2 0 7 2 3 e−05

SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for a1, a bit further off.
More study needed!



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Example

l i b r a r y (TSA)
z ← garch . s im ( a lpha=c ( . 0 1 , 0 . 9 ) , n=5000000)
system . time ( p r i n t ( garch ( z ) ) )
# C o e f f i c i e n t ( s ) :

# a0 a1 b1

# 1 . 0 0 1 e−02 8 . 9 8 0 e−01 3 . 7 7 5 e−12

# 1 3 . 0 8 8 0 . 1 4 0 1 3 . 2 2 8

c l s ← makeC lus te r (2 )
s e t c l s i n f o ( c l s )
d i s t r i b s p l i t ( c l s , ’ z ’ )
system . time ( zc2 ← c l u s t e r E v a lQ ( c l s , ga rch ( z )$ coef ) )
# 0 . 0 0 0 0 . 0 0 0 5 . 9 2 5

Reduce ( ’+’ , zc2 ) / 2
# a0 a1 b1

# 1 . 0 0 4 2 9 3 e−02 8 . 9 1 0 9 6 4 e−01 3 . 1 2 0 7 2 3 e−05

SA version pretty good, 2X speed with coeffs close.

But a
4-worker run gave 0.83 for a1, a bit further off.
More study needed!



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Example

l i b r a r y (TSA)
z ← garch . s im ( a lpha=c ( . 0 1 , 0 . 9 ) , n=5000000)
system . time ( p r i n t ( garch ( z ) ) )
# C o e f f i c i e n t ( s ) :

# a0 a1 b1

# 1 . 0 0 1 e−02 8 . 9 8 0 e−01 3 . 7 7 5 e−12

# 1 3 . 0 8 8 0 . 1 4 0 1 3 . 2 2 8

c l s ← makeC lus te r (2 )
s e t c l s i n f o ( c l s )
d i s t r i b s p l i t ( c l s , ’ z ’ )
system . time ( zc2 ← c l u s t e r E v a lQ ( c l s , ga rch ( z )$ coef ) )
# 0 . 0 0 0 0 . 0 0 0 5 . 9 2 5

Reduce ( ’+’ , zc2 ) / 2
# a0 a1 b1

# 1 . 0 0 4 2 9 3 e−02 8 . 9 1 0 9 6 4 e−01 3 . 1 2 0 7 2 3 e−05

SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for a1, a bit further off.

More study needed!



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Example

l i b r a r y (TSA)
z ← garch . s im ( a lpha=c ( . 0 1 , 0 . 9 ) , n=5000000)
system . time ( p r i n t ( garch ( z ) ) )
# C o e f f i c i e n t ( s ) :

# a0 a1 b1

# 1 . 0 0 1 e−02 8 . 9 8 0 e−01 3 . 7 7 5 e−12

# 1 3 . 0 8 8 0 . 1 4 0 1 3 . 2 2 8

c l s ← makeC lus te r (2 )
s e t c l s i n f o ( c l s )
d i s t r i b s p l i t ( c l s , ’ z ’ )
system . time ( zc2 ← c l u s t e r E v a lQ ( c l s , ga rch ( z )$ coef ) )
# 0 . 0 0 0 0 . 0 0 0 5 . 9 2 5

Reduce ( ’+’ , zc2 ) / 2
# a0 a1 b1

# 1 . 0 0 4 2 9 3 e−02 8 . 9 1 0 9 6 4 e−01 3 . 1 2 0 7 2 3 e−05

SA version pretty good, 2X speed with coeffs close. But a
4-worker run gave 0.83 for a1, a bit further off.
More study needed!



Statistical
Cinderella:

Parallel
Computation

for the Rest of
Us

Norm Matloff
University of
California at

Davis

Conclusions

No “silver bullet.” But the following should go a long way
toward your need for parallel computation.

• “Leave it there” and distributed objects/files.

• SA, previously shown to work well on i.i.d. shows promise
time series.

• The partools package adds a lot of convenience.

Ready for the dissent. :-)

And sorry if I have omitted your favorite software. Just let me
know. :-)
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