A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff
University of California at Davis

BARUG
 presented at GRAIL June 19, 2018

These slides will be available at http://heather.cs.ucdavis.edu/polygrail.pdf

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
    University of
California at
    Davis
```


Neural Networks

Neural Networks

- Series of layers, each consisting of neurons.
- First layer consists of the predictor variables.
- Each neuron has inputs from the previous layer.
- Each neuron has output: Linear combination of inputs, then fed through a nonlinear activation function.
- Final layer output: The prediction, either regression or classification.

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Example

UCI vertebrae data; predict one of 3 classes from 6 predictors.

Error: 43.000304 Steps: 1292

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Polynomial

```
Regression
Norm Matloff University of California at Davis
```


History of NNs

History of NNs

- Treated largely as a curiosity through the 1990s.
- Then in the 2000s, "NN+" models won a number of major competitions, a huge boost to their popularity.
- But also many dismiss them as hype.
- Some say NNs work poorly on their data; others counter, "You're not using them right."

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
Regression
Norm Matloff University of California at Davis
```


Contributions of Our Work

Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
```


Contributions of Our Work

Norm Matloff University of California at Davis

```
(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
```


Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs , in essence, actually are PR. Acronym: NNAEPR.
(c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.

Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
(c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
(d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.

Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs , in essence, actually are PR. Acronym: NNAEPR.
(c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
(d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
(e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.

Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs , in essence, actually are PR. Acronym: NNAEPR.
(c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
(d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
(e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.
(f) Tried many datasets. In all cases, PR meets or beats NNs in predictive accuracy.

Contributions of Our Work

(a) Investigated relation of NNs to polynom. regression (PR).
(b) We present an informal argument that NNs , in essence, actually are PR. Acronym: NNAEPR.
(c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
(d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
(e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.
(f) Tried many datasets. In all cases, PR meets or beats NNs in predictive accuracy.
(g) Developed many-featured R pkg., polyreg.

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff University of California at Davis
```


Notation and Acronyms

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```


Notation and Acronyms

```
- \(n\) cases; \(p\) predictors
- polynomials of degree \(d\)
- PR: polynomial regression
- NNAEPR Neural Networks Are Essentially Polynomial Regression
```

A SurprisingConnection:
Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
Davis

polyreg

- R package.
- Motivated by NNAEPR - use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.

A Surprising

polyreg

- R package.
- Motivated by NNAEPR - use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.
- Dimension reduction options.

polyreg

- R package.
- Motivated by NNAEPR - use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.

polyreg

- R package.
- Motivated by NNAEPR - use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.
- github.com/matloff/polyreg

polyreg

- R package.
- Motivated by NNAEPR - use PR instead of NNs.
- Generates all possible d-degree polynomials in p variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.
- github.com/matloff/polyreg
A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff

 University of California at Davis
NNAEPR

NNAEPR

- Consider toy example:

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


NNAEPR

```
- Consider toy example:
- Activation function \(a(t)=t^{2}\).
```


NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.

A Surprising Connection: Neural Networks and Polynomial Regression

NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.

A Surprising

NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.

A Surprising

NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.
- Etc.

A Surprising

NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.
- Etc.
- Polynomial regression!

NNAEPR

- Consider toy example:
- Activation function $a(t)=t^{2}$.
- Say $p=2$ predictors, u and v.
- Output of Layer 1 is all quadratic functions of u, v.
- Output of Layer 2 is all quartic $(d=4)$ functions of u, v.
- Etc.
- Polynomial regression!
- Important note: The degree of the fitted polynomial in NN grows with each layer.

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
```


Norm Matloff

``` University of California at Davis
```


NNAEPR: General Activation Functions

A Surprising

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t)=t^{2}$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t)=t^{2}$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.
- E.g. Taylor approximation.
- E.g. Stone-Weierstrass Theorem.
- Etc.

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t)=t^{2}$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.
- E.g. Taylor approximation.
- E.g. Stone-Weierstrass Theorem.
- Etc.
- Hence NNAEPR.

```
A Surprising Connection: Neural Networks and Polynomial
Regression
Norm Matloff University of California at
Davis
```


Disclaimer

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```


Disclaimer

```
- We have not (yet) investigated the NNAEPR issue in the contexts of " \(\mathrm{NN}+\mathrm{X}\) ",
```


Disclaimer

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs ($\mathrm{X}=$ preprocessing of an image).

Disclaimer

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs ($\mathrm{X}=$ preprocessing of an image).
- We consider this an orthogonal issue to NNs. E.g. random forests versions of CNNs have been developed.

Disclaimer

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs ($\mathrm{X}=$ preprocessing of an image).
- We consider this an orthogonal issue to NNs. E.g. random forests versions of CNNs have been developed.
- But it is a topic of future research.

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```


Implications of NNAEPR

```
- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NNAEPR, and use PR instead of NNs!
```

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena?

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that the outputs of the layers will have multicollinearity, with each layer having great amounts of multicollinearity.

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that the outputs of the layers will have multicollinearity, with each layer having great amounts of multicollinearity.
- Is it true?

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that the outputs of the layers will have multicollinearity, with each layer having great amounts of multicollinearity.
- Is it true? Yes!

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```

Polynomial
Regression
Norm Matloff University of California at Davis

Multicollinearity Example:

Multicollinearity Example:

MNIST data.

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```


Multicollinearity Example:

MNIST data.

```
Use VIF as measure of multicollinearity.
```

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Multicollinearity Example:

MNIST data.

Use VIF as measure of multicollinearity.

layer	\% VIFs > 10	mean VIF
1	0.0078125	4.3537
2	0.9921875	46.84217
3	1	5.196113×10^{13}

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

Why Use NNs?!

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Why Use NNs?!

- NNAEPR suggests that NNs are unnecessary.

Why Use NNs?!

- NNAEPR suggests that NNs are unnecessary. Just use PR.

Why Use NNs?!

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:

Norm Matloff University of California at Davis

Why Use NNs?!

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:
- No tuning parameter nightmare. (Just one parameter, d.)

Why Use NNs?!

Norm Matloff University of California at Davis

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:
- No tuning parameter nightmare. (Just one parameter, d.)
- No convergence problems.

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).
- In every single dataset, PR matched or exceeded the accuracy of NNs.

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Programmer/Engineer Wages

setting	accuracy
PR, 1	25595.63
PR, 2	24930.71
PR, 3,2	24586.75
PR, 4,2	24570.04
KF, default	27691.56
KF, layers 5,5	26804.68
KF, layers 2,2,2	27394.35
KF, layers 12,12	27744.56

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Prog./Eng. Occupation

setting	accuracy
PR, 1	0.3741
PR, 2	0.3845
KF, default	0.3378
KF, layers 5,5	0.3398
KF, layers 500	0.3401
KF, layers 5,5; dropout 0.1	0.3399
KF, layers 256,128; dropout 0.8	0.3370

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Million Song Data, predict year

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Million Song Data, predict year

setting	accuracy
PR, 1, PCA	7.7700
PR, 2, PCA	7.5758
KF, default	8.4300
KF, layers 5,5	7.9381
KF, layers 2,2	8.1719
DN, layers 2,2	7.8809
DN, layers 3,2	7.9458
DN, layers 3,3	7.8060
DN, layers 2,2,2	8.7796

```
A Surprising
Connection:
    Neural
Networks and
Polynomial
Regression
Norm Matloff
University of
California at
    Davis
```

UCI Forest Cover Data, predict type

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff

 University of California at Davis
UCI Forest Cover Data, predict

 type| setting | accuracy |
| :--- | ---: |
| PR, 1 | 0.6908 |
| PR, 2 | - |
| KF, layers 5,5 | 0.7163 |

A Surprising Connection: Neural
Networks and
Networks and
Polynomial
Polynomial
Regression
Regression

UCI Forest Cover Data, predict type

Norm Matloff University of California at Davis

setting	accuracy
PR, 1	0.6908
PR, 2	-
KF, layers 5,5	0.7163

PR,2: out of memory

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


UCI Concrete Strength

method	correlation (pred. vs. actual)
neuralnet	0.608
kerasformula	0.546
PR, 2	$\mathbf{0 . 8 6 9}$

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

MOOCs Data, predict cert.

setting	accuracy
PR, 1	0.9871
PR, 2	0.9870
KF, layers 5,5	0.9747
KF, layers 2,2	0.9730
KF, layers 8,8; dropout 0.1	0.9712

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Cancer/Genetics, predict Alive

Cancer/Genetics, predict Alive

model	brain cancer	kidney cancer
deepnet	0.6587	0.5387
nnet	0.6592	0.7170
PR (1, 1)	0.6525	0.8288
PR (1, 2)	0.6558	0.8265
PR (PCA, 1, 1)	0.6553	0.8271
PR (PCA, 2, 1)	0.5336	0.7589
PR (PCA, 1, 2)	0.6558	0.8270
PR (PCA, 2, 2)	0.5391	0.7840

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
Polynomial
Regression
Norm Matloff University of California at Davis
```


Crossfit Data, predict Rx rank

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

Crossfit Data, predict Rx rank

model	accuracy	range among 5 runs
KF	0.081	0.164
PR, 1	0.070	0.027
PR, 2	0.071	0.069
PR, 3	0.299	7.08
PR, 4	87.253	3994.5

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

setting	accuracy
PR, 1	$\mathbf{5 8 0 . 6 9 3 5}$
PR, 2	591.1805
DN, layers 5,5	592.2224
DN, layers 5,5,5	623.5437
DN, layers 2,2,2	592.0192

```
A Surprising
Connection:
    Neural
Networks and
    Polynomial
    Regression
Norm Matloff
University of
California at
    Davis
```


Comments

- PR needs development of parallel comp. techniques.

```
A Surprising
Connection:
    Neural
Networks and
```


Comments

- PR needs development of parallel comp. techniques.
- But $d=2$ sufficed in almost all cases.

```

A Surprising

\section*{Comments}
- PR needs development of parallel comp. techniques.
- But \(d=2\) sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.

\section*{Comments}
- PR needs development of parallel comp. techniques.
- But \(d=2\) sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.

\section*{Comments}
- PR needs development of parallel comp. techniques.
- But \(d=2\) sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity.

\section*{Comments}
- PR needs development of parallel comp. techniques.
- But \(d=2\) sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity. Likely causes the convergence problems.

\section*{Comments}
- PR needs development of parallel comp. techniques.
- But \(d=2\) sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity. Likely causes the convergence problems.
- See full paper, https://arxiv.org/abs/1806.06850.```

