Norm Matloff University of California at Davis

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

BARUG presented at GRAIL June 19, 2018

These slides will be available at http://heather.cs.ucdavis.edu/polygrail.pdf

Norm Matloff University of California at Davis

Neural Networks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Neural Networks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- Series of *layers*, each consisting of *neurons*.
- First layer consists of the predictor variables.
- Each neuron has inputs from the previous layer.
- Each neuron has output: Linear combination of inputs, then fed through a nonlinear *activation function*.
- Final layer output: The prediction, either regression or classification.

Norm Matloff University of California at Davis

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

э

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis UCI vertebrae data; predict one of 3 classes from 6 predictors.

Error: 43.000304 Steps: 1292

Norm Matloff University of California at Davis

History of NNs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

History of NNs

A Surprising Connection: Neural Networks and Polynomial Regression

- Treated largely as a curiosity through the 1990s.
- Then in the 2000s, "NN+" models won a number of major competitions, a huge boost to their popularity.
- But also many dismiss them as hype.
- Some say NNs work poorly on their data; others counter, "You're not using them right."

Norm Matloff University of California at Davis

Contributions of Our Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Contributions of Our Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(a) Investigated relation of NNs to polynom. regression (PR).

Norm Matloff University of California at Davis

Contributions of Our Work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(a) Investigated relation of NNs to polynom. regression (PR).(b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.

Norm Matloff University of California at Davis

Contributions of Our Work

- (a) Investigated relation of NNs to polynom. regression (PR).
- (b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
- (c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.

Norm Matloff University of California at Davis

Contributions of Our Work

- (a) Investigated relation of NNs to polynom. regression (PR).
- (b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
- (c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- (d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.

Norm Matloff University of California at Davis

Contributions of Our Work

- (a) Investigated relation of NNs to polynom. regression (PR).
- (b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
- (c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- (d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.

(e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.

Norm Matloff University of California at Davis

Contributions of Our Work

- (a) Investigated relation of NNs to polynom. regression (PR).
- (b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
- (c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- (d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
- (e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.
- (f) Tried many datasets. In all cases, **PR meets or beats NNs in predictive accuracy**.

Norm Matloff University of California at Davis

Contributions of Our Work

- (a) Investigated relation of NNs to polynom. regression (PR).
- (b) We present an informal argument that NNs, in essence, actually are PR. Acronym: NNAEPR.
- (c) We use this to speculate and then confirm a surprising multicollinearity property of NNs.
- (d) NNAEPR suggests that one might simply fit a polynomial model in the first place, bypassing NNs.
- (e) Thus avoid NN's problems, e.g. choosing tuning parameters, nonconvergence and so on.
- (f) Tried many datasets. In all cases, **PR meets or beats NNs in predictive accuracy**.
- (g) Developed many-featured R pkg., polyreg.

Norm Matloff University of California at Davis

Notation and Acronyms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Notation and Acronyms

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- *n* cases; *p* predictors
- polynomials of degree d
- PR: polynomial regression
- *NNAEPR* Neural Networks Are Essentially Polynomial Regression

Norm Matloff University of California at Davis

polyreg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Norm Matloff University of California at Davis

polyreg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• R package.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.
- Generates all possible *d*-degree polynomials in *p* variables.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.
- Generates all possible *d*-degree polynomials in *p* variables.
- Dimension reduction options.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.
- Generates all possible *d*-degree polynomials in *p* variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.
- Generates all possible *d*-degree polynomials in *p* variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.
- github.com/matloff/polyreg

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- R package.
- Motivated by NNAEPR use PR instead of NNs.
- Generates all possible *d*-degree polynomials in *p* variables.
- Dimension reduction options.
- Functions for cross-validation comparison to various NN implementations.
- github.com/matloff/polyreg

Norm Matloff University of California at Davis

NNAEPR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

• Consider toy example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.
- Output of Layer 1 is all quadratic functions of *u*, *v*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.
- Output of Layer 1 is all quadratic functions of *u*, *v*.
- Output of Layer 2 is all quartic (d = 4) functions of u, v.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.
- Output of Layer 1 is all quadratic functions of *u*, *v*.
- Output of Layer 2 is all quartic (d = 4) functions of u, v.
- Etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.
- Output of Layer 1 is all quadratic functions of *u*, *v*.
- Output of Layer 2 is all quartic (d = 4) functions of u, v.
- Etc.
- Polynomial regression!

A Surprising Connection: Neural Networks and Polynomial Regression

- Consider toy example:
- Activation function $a(t) = t^2$.
- Say p = 2 predictors, u and v.
- Output of Layer 1 is all quadratic functions of *u*, *v*.
- Output of Layer 2 is all quartic (d = 4) functions of u, v.
- Etc.
- Polynomial regression!
- **Important note:** The degree of the fitted polynomial in NN grows with each layer.

Norm Matloff University of California at Davis

NNAEPR: General Activation Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t) = t^2$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Norm Matloff University of California at Davis

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t) = t^2$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- E.g. Taylor approximation.
- E.g. Stone-Weierstrass Theorem.
- Etc.

Norm Matloff University of California at Davis

NNAEPR: General Activation Functions

- Clearly this analysis for the toy activation function $a(t) = t^2$ extends to any polynomial activation function.
- But any reasonable activation function is "close" to a polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- E.g. Taylor approximation.
- E.g. Stone-Weierstrass Theorem.
- Etc.
- Hence NNAEPR.

Norm Matloff University of California at Davis

Disclaimer

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X",

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

• We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs (X = preprocessing of an image).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regression Norm Matloff University of California at Davis

A Surprising

Neural Networks and Polynomial

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs (X = preprocessing of an image).
- We consider this an orthogonal issue to NNs. E.g. random forests versions of CNNs have been developed.

Norm Matloff University of California at Davis

A Surprising

Neural Networks and Polynomial Regression

- We have not (yet) investigated the NNAEPR issue in the contexts of "NN+X", e.g. CNNs (X = preprocessing of an image).
- We consider this an orthogonal issue to NNs. E.g. random forests versions of CNNs have been developed.
- But it is a topic of future research.

Norm Matloff University of California at Davis

Implications of NNAEPR

Norm Matloff University of California at Davis

Implications of NNAEPR

- Use our understanding of PR to gain insights into NNs.
- Heed the "advice" of NNAEPR, and use PR instead of NNs!

Norm Matloff University of California at Davis

Multicollinearity in NNs

Norm Matloff University of California at Davis

Multicollinearity in NNs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Test of a good theory: Does it predict new phenomena?

Norm Matloff University of California at Davis

Multicollinearity in NNs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."

Norm Matloff University of California at Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.

Norm Matloff University of California at Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.

Norm Matloff University of California at Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that **the outputs of the layers will have multicollinearity**, with each layer having great amounts of multicollinearity.

Norm Matloff University of California at Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that **the outputs of the layers will have multicollinearity**, with each layer having great amounts of multicollinearity.
- Is it true?

Norm Matloff University of California at Davis

Multicollinearity in NNs

- Test of a good theory: Does it predict new phenomena? E.g. Einstein "solar eclipse experiment."
- PR is well known to be prone to multicollinearity.
- The higher the degree in PR, the worse the multicollinearity.
- Thus NNAEPR predicts that **the outputs of the layers will have multicollinearity**, with each layer having great amounts of multicollinearity.
- Is it true? Yes!

Norm Matloff University of California at Davis

Multicollinearity Example:

Norm Matloff University of California at Davis

Multicollinearity Example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MNIST data.

Norm Matloff University of California at Davis

Multicollinearity Example:

MNIST data. Use VIF as measure of multicollinearity.

Norm Matloff University of California at Davis

Multicollinearity Example:

MNIST data. Use VIF as measure of multicollinearity.

layer	% VIFs > 10	mean VIF
1	0.0078125	4.3537
2	0.9921875	46.84217
3	1	$5.196113 imes 10^{13}$

Norm Matloff University of California at Davis

Why Use NNs?!

Norm Matloff University of California at Davis

Why Use NNs?!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• NNAEPR suggests that NNs are unnecessary.

Norm Matloff University of California at Davis

Why Use NNs?!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• NNAEPR suggests that NNs are unnecessary. Just use PR.

Norm Matloff University of California at Davis

Why Use NNs?!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:

Why Use NNs?!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:
 - No tuning parameter nightmare. (Just one parameter, d.)

Why Use NNs?!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

- NNAEPR suggests that NNs are unnecessary. Just use PR.
- Advantages of PR:
 - No tuning parameter nightmare. (Just one parameter, d.)
 - No convergence problems.

Norm Matloff University of California at Davis

Some of Our Experimental Results

Norm Matloff University of California at Davis

Some of Our Experimental Results

• Compared PR vs. NNs on a wide variety of datasets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Norm Matloff University of California at Davis

Some of Our Experimental Results

• Compared PR vs. NNs on a wide variety of datasets.

- PR: plain or with PCA beforehand
- KF: kerasformula, R NN pkg.
- DN: deepnet, R NN pkg.

Norm Matloff University of California at Davis

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
 - PR: plain or with PCA beforehand
 - KF: kerasformula, R NN pkg.
 - DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).

Norm Matloff University of California at Davis

Some of Our Experimental Results

- Compared PR vs. NNs on a wide variety of datasets.
 - PR: plain or with PCA beforehand
 - KF: kerasformula, R NN pkg.
 - DN: deepnet, R NN pkg.
- Calculated accuracy (mean abs. prediction error, prop. of correct classification).
- In every single dataset, **PR matched or exceeded the** accuracy of NNs.

Norm Matloff University of California at Davis

Programmer/Engineer Wages

Norm Matloff University of California at Davis

Programmer/Engineer Wages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

setting	accuracy
PR, 1	25595.63
PR, 2	24930.71
PR, 3,2	24586.75
PR, 4,2	24570.04
KF, default	27691.56
KF, layers 5,5	26804.68
KF, layers 2,2,2	27394.35
KF, layers 12,12	27744.56

Norm Matloff University of California at Davis

Prog./Eng. Occupation

Norm Matloff University of California at Davis

Prog./Eng. Occupation

setting	accuracy
PR, 1	0.3741
PR, 2	0.3845
KF, default	0.3378
KF, layers 5,5	0.3398
KF, layers 500	0.3401
KF, layers 5,5; dropout 0.1	0.3399
KF, layers 256,128; dropout 0.8	0.3370
Norm Matloff University of California at Davis

Million Song Data, predict year

Norm Matloff University of California at Davis

Million Song Data, predict year

setting	accuracy
PR, 1, PCA	7.7700
PR, 2, PCA	7.5758
KF, default	8.4300
KF, layers 5,5	7.9381
KF, layers 2,2	8.1719
DN, layers 2,2	7.8809
DN, layers 3,2	7.9458
DN, layers 3,3	7.8060
DN, layers 2,2,2	8.7796

Norm Matloff University of California at Davis

UCI Forest Cover Data, predict type

Norm Matloff University of California at Davis

UCI Forest Cover Data, predict type

setting	accuracy
PR, 1	0.6908
PR, 2	-
KF, layers 5,5	0.7163

Norm Matloff University of California at Davis

UCI Forest Cover Data, predict type

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

setting	accuracy
PR, 1	0.6908
PR, 2	-
KF, layers 5,5	0.7163

PR,2: out of memory

Norm Matloff University of California at Davis

UCI Concrete Strength

Norm Matloff University of California at Davis

UCI Concrete Strength

method	correlation (pred. vs. actual)
neuralnet	0.608
kerasformula	0.546
PR, 2	0.869

Norm Matloff University of California at Davis

MOOCs Data, predict cert.

Norm Matloff University of California at Davis

MOOCs Data, predict cert.

setting	accuracy
PR, 1	0.9871
PR, 2	0.9870
KF, layers 5,5	0.9747
KF, layers 2,2	0.9730
KF, layers 8,8; dropout 0.1	0.9712

Norm Matloff University of California at Davis

Cancer/Genetics, predict Alive

Norm Matloff University of California at Davis

$Cancer/Genetics, \ predict \ Alive$

brain cancer	kidney cancer
0.6587	0.5387
0.6592	0.7170
0.6525	0.8288
0.6558	0.8265
0.6553	0.8271
0.5336	0.7589
0.6558	0.8270
0.5391	0.7840
	brain cancer 0.6587 0.6592 0.6525 0.6558 0.6553 0.5336 0.6558 0.6558 0.5391

Norm Matloff University of California at Davis

Crossfit Data, predict Rx rank

Norm Matloff University of California at Davis

Crossfit Data, predict Rx rank

model	accuracy	range among 5 runs
KF	0.081	0.164
PR, 1	0.070	0.027
PR, 2	0.071	0.069
PR, 3	0.299	7.08
PR, 4	87.253	3994.5

Norm Matloff University of California at Davis

NYC Taxi Data, predict trip time

Norm Matloff University of California at Davis

NYC Taxi Data, predict trip time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

setting	accuracy
PR, 1	580.6935
PR, 2	591.1805
DN, layers 5,5	592.2224
DN, layers 5,5,5	623.5437
DN, layers 2,2,2	592.0192

Norm Matloff University of California at Davis

Comments

Norm Matloff University of California at Davis

Comments

• PR needs development of parallel comp. techniques.

A Surprising Connection: Neural Networks and Polynomial Regression

Norm Matloff University of California at Davis

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regression Norm Matloff University of California at Davis

A Surprising Connection:

Neural Networks and Polynomial

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Polynomial Regression Norm Matloff University of California at

Davis

A Surprising

Neural Networks and

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Networks and Polynomial Regression Norm Matloff University of

A Surprising

Neural

California at Davis

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity.

Networks and Polynomial Regression Norm Matloff

A Surprising

Neural

University of California at Davis

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity. Likely causes the convergence problems.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Networks and Polynomial Regression Norm Matloff University of

A Surprising

Neural

California at Davis

- PR needs development of parallel comp. techniques.
- But d = 2 sufficed in almost all cases.
- "Effective degree" of NN probably much bigger than 2. Hence overfitting.
- Default values for number of layers etc. in NN software likely much too large.
- All NN software should monitor multicollinearity. Likely causes the convergence problems.
- See full paper, https://arxiv.org/abs/1806.06850.