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> sim (250 ,2500)
[ 1 ] 0 .6188
[ 1 ] 0 .9096

That’s quite a difference! Eicker-White worked well, whereas assuming
homoscedasticity fared quite poorly. (Similar results were obtained for
n = 100.)

4.5.3 Example: Bike Sharing Data

In our bike-sharing data (Section 1.1), there are two kinds of riders, reg-
istered and casual. We may be interested in factors determining the mix,
i.e.,

registered

registered + casual
(4.47)

Since the mix proportion is between 0 and 1, we might try the logistic
model, introduced in (1.36) in the context of classification. Note, though,
that the example here does not involve a classification problem. so we
should not reflexively use glm() as before. Indeed, that function not only
differs from our current situation in that here Y takes on values in [0,1]
rather than in {0,1}, but also glm() assumes

V ar(Y | X =) = µ(t)(1− µ(t)) (4.48)

(as implied by Y being in {0,1}), which we have no basis for assuming
here. Thus use of glm(), at least in the form we have seen so far, would
be inappropriate. Here are the results:

> shar <− read . csv ( ”day . csv ” , header=T)
> shar$temp2 <− shar$tempˆ2
> shar$summer <− as . integer ( shar$ season == 3)
> shar$propreg <− shar$ reg / ( shar$ reg+shar$cnt )
> names( shar ) [ 1 5 ] <− ” reg ”
> l ibrary (minpack . lm)
> l o g i t <− function ( t1 , t2 , t3 , t4 , b0 , b1 , b2 , b3 , b4 )

1 / (1 + exp(−b0 − b1∗t1 −b2∗t2 −b3∗t3 −b4∗t4 ) )
> z <− nlsLM( propreg ∼
l o g i t ( temp , temp2 , workingday , summer , b0 , b1 , b2 , b3 , b4 ) ,

data=shar , start=l i s t ( b0=1,b1=1,b2=1,b3=1,b4=1))
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> summary( z )
. . .
Parameters :

Estimate Std . Error t value Pr(>| t | )
b0 −0.083417 0.020814 −4.008 6 .76 e−05 ∗∗∗

b1 −0.876605 0.093773 −9.348 < 2e−16 ∗∗∗

b2 0.563759 0.100890 5 .588 3 .25 e−08 ∗∗∗

b3 0.227011 0.006106 37 .180 < 2e−16 ∗∗∗

b4 0.012641 0.009892 1 .278 0 .202
. . .

As expected, on working days, the proportion of registered riders is higher,
as we are dealing with the commute crowd on those days. On the other
hand, the proportion doesn’t seem to be much different during the sum-
mer, even though the vacationers would presumably add to the casual-rider
count.

But are those standard errors trustworthy? Let’s look at the Eicker-White
versions:

> sqrt (diag ( n l svcovhc ( z ) ) )
fakex1 fakex2 fakex3 fakex4

0.021936045 0.090544374 0.092647403 0.007766202
fakex5

0.007798938

Again, we see some substantial differences.

4.5.4 The “Elephant in the Room”: Convergence

Issues

So far we have sidestepped the fact that any iterative method runs the risk
of nonconvergence. Or it might converge to some point at which there is
only a local minimum, not the global one — worse than nonconvergence,
in the sense that the user might be unaware of the situation.

For this reason, it is best to try multiple, diverse sets of starting values.
In addition, there are refinements of the Gauss-Newton method that have
better convergence behavior, such as the Levenberg-Marquardt method.

Gauss-Newton sometimes has a tendency to “overshoot,” producing too
large an increment in b from one iteration to the next. Levenberg-Marquardt
generates smaller increments. Interestingly it is a forerunner of ridge re-


